

Simplifying Part Access

Team #26

Aidan Yaklin, Matheu Fletcher, Tejas Aditya

December 5th, 2023

Team Introductions

Aidan Yaklin

- Senior in CE
- ☐ Focus in chip design
- Acted as PCB lead

Matheu Fletcher

- Senior in CE
- ☐ Focus in security and system administration
- Acted as Mechanical & CAD lead

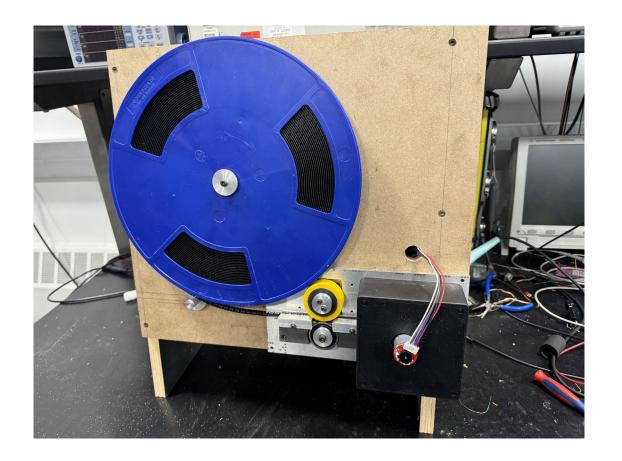
Tejas Aditya

- Senior in CE
- ☐ Focus in cloud computing
- □ Acted as code lead

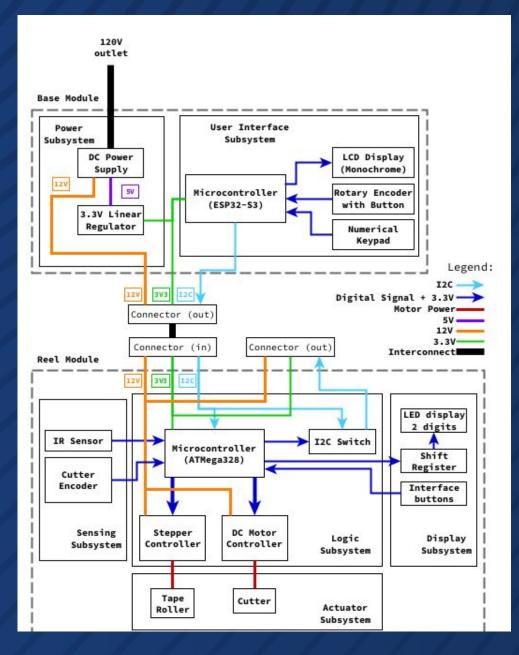
Agenda

- ☐ Introduction
- ☐ Core components
- → PCB design
- ☐ Software design
- ☐ Mechanical design
- Changes
- Demonstration
- ☐ Challenges
- ☐ Conclusion

Project Introduction & Objectives



Introduction:


Create an automated solution for dispensing tape and reel SMD components

High Level Objectives:

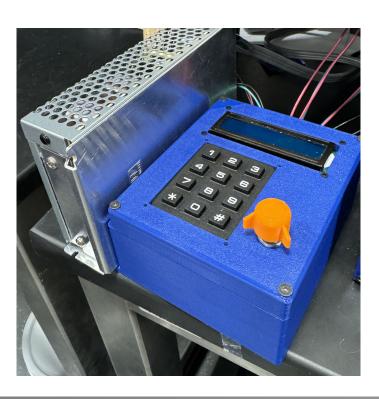
- Accept 7" and 13" diameter reels
- Reels up to 25mm wide, and 4mm deep
- ☐ Precise feed of reel, within +/- 1mm
- → Yield rate of 90%
- Support up to three modules simultaneously

Block Diagram:

Subsystems consisting of:

- □ Base Module
 - Power
 - User Interface
- Reel Module
 - Sensing
 - □ Logic
 - Display
 - Actuator

ELECTRICAL & COMPUTER ENGINEERING GRAINGER ENGINEERING


Requirements & Verifications

Base Module & UI

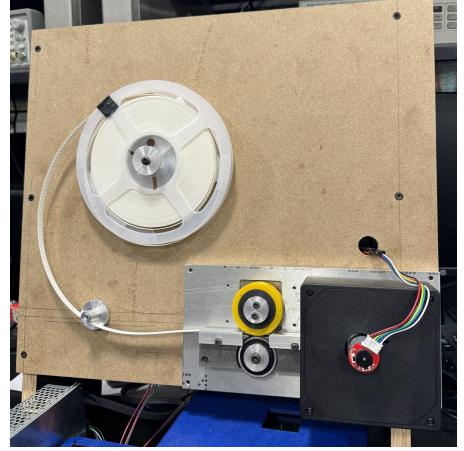
Able to verify:

- Behaves as expected
- ☐ Had problems clearing errors

Requirements	Verification
 The ESP32 can enumerate the attached reel modules on the I2C bus The ESP32 can communicate with the attached reel modules on the I2C bus The ESP32 can detect communication errors and fail safely 	 Connect a reel module or microcontroller with reel module simulation software to the I2C bus Verify that the ESP32 enumerates the connected module, and reads spacing Disconnect the module and verify that an error is reported
 The LCD shows: #cuts and #repeats reel position in the daisy chain If an error status is present, the component information should be replaced with an error message If no modules are attached, the display should show a "No Reels" message 	 Verify that the LCD displays "No Reels" Disconnect power, add a microcontroller with a reel module simulation program to the I2C bus, and reconnect power Verify that the LCD shows appropriate job information
The ESP32 can read the rotary encoder and keypad	 Can identify turns of encoder Can detect encoder button press Can detect numpad buttons

ELECTRICAL & COMPUTER ENGINEERING GRAINGER ENGINEE

Reel Module



Able to verify:

- ☐ Reel module attaches to base
- □ Reel module can drive stepper at correct voltage
- Saves spacing to EEPROM

Requirement	Verification
Can communicate with the base module over I2C at 400 kHz	Confirm device is enumerated over the I2C bus and should be shown on the base module display
Confirm pulses to the stepper to accurately dispense the correct number of components	Use the on-board interface to command the module to dispense 100 components, then verify
Can save reel configuration and calibration to the chip when powered off	 Set reel spacing Cycle power to the reel module Use the on-board interface to verify that the spacing is the same

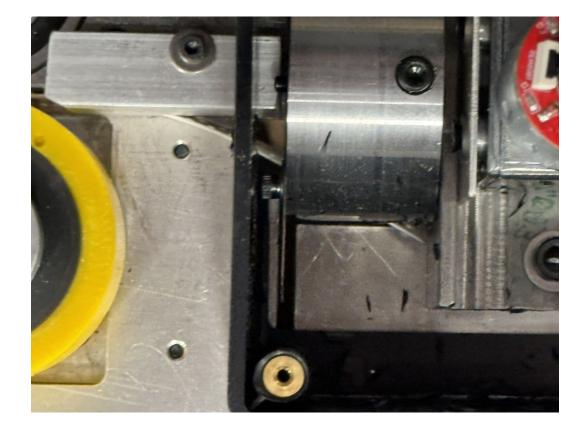
Actuator

Feed System verified:

- ☐ Accuracy per step at ~0.43mm
- ☐ ¼ of that with microstepping
- □ Met stepper torque requirement at minimum speed allowed (runs at higher)

Requirement	Verification
Maximum feed rate of at least 5 mm/s	 Command the module to cut 100 components Measure the distance moved and time to calculate the feed rate
Tape feed positional accuracy of at most +/- 0.5 mm	 Cut 10 individual components Measure the width of each cut component and verify that it is within tolerance
Sufficient torque to pull tape from the reel, especially at low speeds	 Command the module to cut 1 component Verify that 1 component is cut from the tape, the stepper motor does not stick, and the tape does not slip

ELECTRICAL & COMPUTER ENGINEERING GRAINGER ENGINEERIN


Cutter

Cutter System verified:

- ☐ Cut speed actually 3 seconds (could be improved in software)
- ☐ Kill switch halfway

Requirements	Verification
 Motor can cut through the the tape reliably within the span of a couple seconds 	 Send cut operation, confirm it cuts accurately, not jamming or stalling Cuts take maximum of 2 seconds per cut
Confirm that the blade safety mechanism is working	 Ensure user can not fit finger in hole Ensure that the cutter motor stops entirely after pressing the kill switch

ELECTRICAL & COMPUTER ENGINEERING

GRAINGER ENGINEER

GRAINGER ENGINEER

Sensing - IR

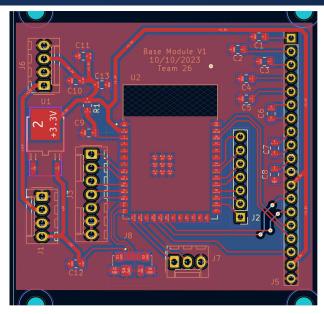
IR System:

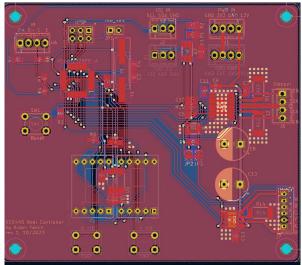
Did not get implemented in the end. As such, verifications here were not met

Requirements	Verification
The IR sensor can distinguish between the tape and a sprocket within the tolerance of ±1%	 Ensure that nothing is in between the IR sensor module and then record the boolean value from the ATMega328's Pass tape through it and record the value when the tape is blocking the IR path. Ensure that it is different from the initial value Move the tape so a sprocket is now in between the transmitter and receiver. Confirm that the value is the same as the default value

Assembly

PCB work




Base Module

- ESP32-S3 Chosen
 - Availability
 - □ Micro-USB connection
 - ☐ Wifi capabilities if upgrades made
- Design with molex connectors in mind
- ☐ Optimized component layout

Reel Module

- → ATmega328PB
 - Availability
 - ☐ Pin count
 - High reliability
- → Motor Drivers
 - □ DRV8231 H-bridge motor driver for the cutter,
 - □ A4982 stepper controller
- ☐ I2C switch for daisy-chaining
- LED display for debugging

Code

Base Module Code

- Based on the Arduino Core for ESP32-S3 library
- → Polling driven design
 - Keyboard and encoder input at desired time
 - Error and run availability polling

Reel Module Code

- Bare-metal C code (no Arduino library)
- ☐ Interrupt-driven design
 - ☐ Timers for regular tasks
 - Pin-change interrupts
 - ☐ I2C command interrupts
- Main loop implemented as a state machine

```
uint8_t lsb = spacing & 0x00FF;
uint8_t msb = (spacing & 0xFF00) >> 8;
Wire.beginTransmission(attached_reels[addr_idx].addr);
Wire.write(SPACING_REGISTER_LB_CMD); // lower byte is 6
Wire.write(lsb);
Wire.write(SPACING_REGISTER_UB_CMD);
Wire.write(msb);
return Wire.endTransmission();
```

```
// - COM3A = 0

// - COM3B = 0

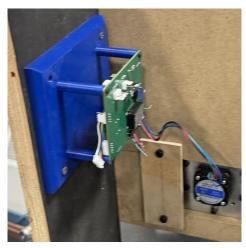
// - WGM3 = 0100 ([1:0] = 00)

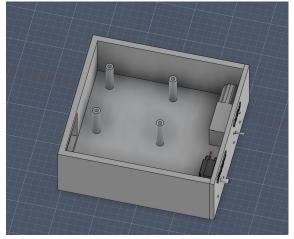
TCCR3A = 0;

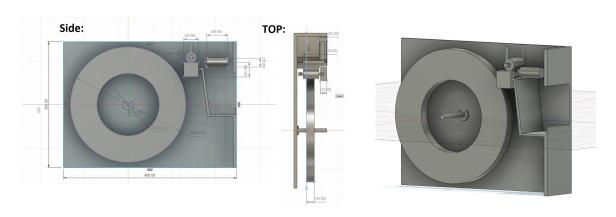
// - ICNC3 = 0

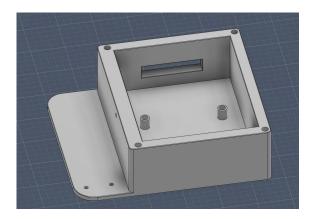
// - ICES3 = 0

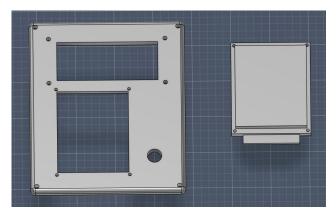
// - WGM3 = 0100 ([3:2] = 01)

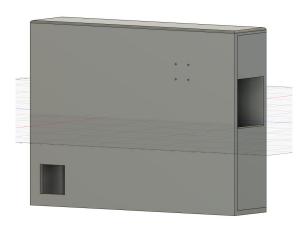

// - CS1 = 000 (no clock)

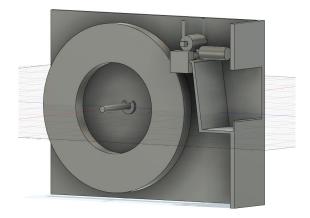

TCCR3B = (1 << WGM32);
```

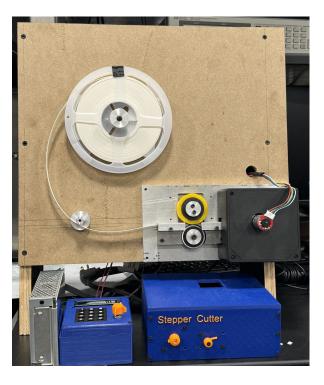


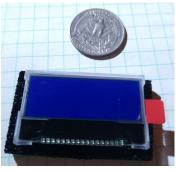

General Design:


- CAD work consisted of:
 - ☐ Initial motor mounts and feed design
 - Mounting standoff for reel module
 - Box for reel module
 - ☐ Knob for rotary encoder
 - Box for base module
 - □ Power supply cover


15

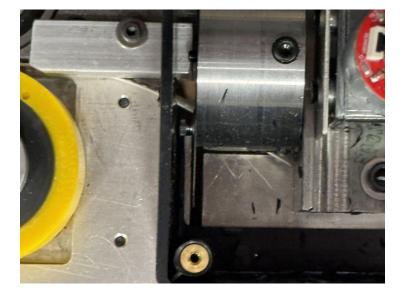

Design Changes




From concept to physical

- Multiple -> Single mechanical module
- ☐ Reduced max reel dimensions
- Quantity of components per cut limited
- ☐ Changed screen component used
- ☐ Flipped CAD design
- ☐ Changed cutter motor
- □ Roller dimensions
- Definitive last Reel module

Other Challenges



Numerous mistakes

We had a number of occurrences and problems that required debugging and redoing work in order to get the project in a testable state. These included:

- ☐ Frying a pin of the Atmega chip
- ☐ Loose pins on the screen
- ☐ Lack of test points
- ☐ Missing program-enable button for ESP32
- Cutter motor jamming
- ☐ Fix floating I2C with jumper

Final touches

Demonstration:

Showcasing the operation of the final product

Conclusions

Works, but needs calibration

- Feasible
- → Works
- ☐ Initial setup is tricky
- → Assuring exact measurements

We learned:

- ☐ Implementation of PCB design
- **□** 12C
- ☐ General design and test of a prototype

If done again, would get parts earlier to better test subsystems early

Continuing the project

Focus on accuracy, and scaling

To continue this project, the primary goals would be to:

- ☐ Focus on calibrating the feed distance
- Improve cut speed (software patch and improved motor)
- Make cut pieces fall out cleaner
- Make design slimmer (via board design and motor choices)
- Keep smaller tapes from trying to curl up
- Better aligned cutting blade
- ☐ Being able to run the dispensing operation on multiple reels simultaneously

Ethics Concerns

- □ Cutter
 - Box mostly prevents harm
 - may have gap where tape feeds
 - → Killswitch
 - ☐ Prefer hardware overcurrent software
- ☐ Seek honest criticism (IEEE 7.8. I.5)
- ☐ Treat others fairly (IEEE 7.8 II)

Thank You

Any Questions?

