

Wireless Remote Motor Controller

Electrical & Computer Engineering

Group #20 Aaron Chen, Boon Sheng Lee, Kyungha Kim

12/05/2023

Agenda

Problem Statement
 Design Overview
 Project Build and Testing
 Successes and Challenges
 Conclusions
 Recommendations for Further Work

1. Problem Statement

Purpose of the Project

The Importance of an Efficient Motor Controller

- Various applications like robotics, drones, and remote-controlled vehicles
- Simplicity in the design systems
- Wireless control through user-friendly interface web design

2. Design Overview

High Level Requirements & Block Diagram

1. Wireless Control

• Wi-Fi remote control of a DC motor within 5-10 meters.

2. Voltage & Current Control

• supports 12-24V DC and handles up to 10A current.

3. Speed Control

• Users can adjust motor speed from 0 to 100%.

Block Diagram and Visual Aid

Schematic and PCB Design

3. Project Build and Testing

Subsystems Presentation of Project Video

Power Subsystem Overview

Power System Requirement	Verification
Limit the input voltage of the ESP 32 to only 3.3 Volts	 Check the buck converter output with a multimeter to ensure a steady 3.3 volts before connecting it to the ESP32.
Organize the voltage and current to each system for when it is needed.	 Test points to monitor subsystem currents and voltages, checking for irregularities

Video Presentation

- **Control**ling the **motor**'s speed, direction, and braking
- H-Bridge with four MOSEFTS, two gate drivers, and a current sensor

Requirement	Verification	
The motor controller can handle 12V	 Verify using a 12V voltage source Test points in schematic to monitor system at 12V 	
IRF3205 MOSFETs fully switch on with a ±20V input from the gate driver	 Select the IR2104SPBF MOSFET driver ensures safe operation within a 10 to 600V range for N-channel MOSFETs. 	

Motor Controller Subsystem Overview

• Schematic for H-Bridge and PCB layout

- Manages **DC motor behavior** through Motor Controller Subsystem
 - acceleration
 - deceleration
 - forward and backward movement
 - stopping

Requirement	Verification	
The ESP32 must interpret user input status .	 Verify default website functionality Log data sent to ESP32 Ensure DC motor responds correctly to commands. 	

ECE 445: Wireless Remote Motor Controller (Group 20)

Motor 1 Control

Ι

 Arduino IDE programs the ESP32 to dictate DC geared motor responses to website inputs.

			0% duty cycle
Π	 	 	10% duty cycle
			25% duty cycle
			50% duty cycle
ſ			80% duty cycle
			100% duty cycle

Requirement	Verification
Arduino IDE programs ESP32 for motor direction via the website commands.	Test varied commands from the websiteConfirm consistent motor response
Arduino IDE programs ESP32 for speed control via the website commands.	 Verify PWM signal reduces speed by adjusting duty cycle

Video Presentation

GRAINGER ENGINEERING

Safety Features

To prevent Short Circuit

- 1. Fuse Protection
 - multiple schottky diodes implemented in the gate driver circuits
 - In-build diodes within the MOSFETs
- 2. Dead Time
 - turn off one set of transistors and turn on the opposite set
- 3. Current limiting
 - in-line current measurement to accurately measure the motor current

H-Bridge Circuit

4. Successes and Challenges

Achievements Obstacles Faced

Achievements

Positive Aspects

- Power subsystem
 - \circ $\,$ outputs 12V to Power Line $\,$
 - outputs 3.3V to ESP32 & Current Sensors
- **Circuit** functions properly after replacing H-bridge with L298N-module.
- Website wirelessly controls motor direction, speed (10 -15m range).

Obstacles Faced

Negative Aspects

- Incorrect **diode** size on PCB
- Gate driver legs broke a day before demo
- Unprogrammable ESP32 chip

5. Conclusion

Lessons Learned Redesign Considerations

- Our PCB board was working. Unfortunately, the circuit board was shorted.
- Demoed our project with a prebuilt in H-bridge module.

6. Recommendations for Further Work

Areas for Improvement

- Substituting the correct gate drivers
- Optimize PCB component layout
- Adding more test points

- Ordering a surplus of key components for back up plans
- Triple checking our PCB design before ordering
- Decoupling Capacitors

- Improved Thermal Dissipation
- Incorporating additional functions onto the webpage
 - real-time RPM
 - current readings

Thank You! Questions?

GRAINGER ENGINEERING