
MIDI Music Box

By

Jeremy Lee

Sean Liang

Tyler Shu

Final report for ECE 445, Senior Design, Fall 2023

TA: Gregory Jun

December 2023

Team 22

2

Abstract

This final report comprehensively describes the design process and implementation of a

MIDI music box which reads music instruction through a digital data format called MIDI and

processes the MIDI data, sending analog signals to a speaker to play sound. The planned

capabilities of the project include playing 4 different waveforms, eight notes of polyphony,

playing sounds up to 15KHz, and volume up to 20 watts.

After many design stages, the final project was powered by a DC power jack and took in

MIDI data through a USB port, outputting sounds that correspond to the MIDI data. The project

was ultimately able to play the four different waveforms, eight notes of polyphony, sounds up to

15khz, but could only provide at most 10 watts of power to our speaker. Additionally, the project

adjusts the volume of each note played based on the intensity of the note’s keypress on the

controller.

3

Table of Contents

1. Introduction 5
1.1 Performance Requirements 5

2. Design 6
2.1 High-Level Operations and Block Diagram 6
2.2 Block-Level Changes 8
2.3 Power and Output Conversion Subsystem 8
2.4 Signal Processing and Conversion Subsystem 9

2.4.1 Raspberry Pi 9
2.4.2 MIDI Data 9
2.4.3 Wavetable Oscillator 9
2.4.4 Software Implementation 10
2.4.5 555-Timer 11
2.4.6 DAC 11

2.5 Output Control Subsystem 12
2.5.1 Potentiometer 12
2.5.2 Switches 12

2.6 Output Subsystem 13
3. Verification 14

3.1 Power and Output Conversion Subsystem 14
3.2 Signal Processing and Conversion Subsystem 15
3.3 Output Control Subsystem 16
3.4 Output Subsystem 17

4. Costs and Schedule 18
4.1 Parts 18
4.2 Labor 18
4.3 Schedule 18

5. Conclusions 19
5.1 Accomplishments 19
5.2 Uncertainties 19
5.3 Ethical and Safety Considerations 19
5.4 Future Work 20

6. References 21
Appendix A: Requirement and Verification Tables 22
Appendix B: Parts and Labor Costs 23
Appendix C: Project Schedules 26
Appendix D: MIDI Data 27

4

Appendix E: Schematics 27

5

1. Introduction

Music is a very popular activity, but oftentimes there is an entry barrier as musical

equipment tends to be expensive and inaccessible. MIDI controllers are a popular tool for music,

and low-end controllers do not have any sort of audio playback. As such, it is very difficult for a

beginner to obtain a usable instrument. Our goal was to make a simple music box that can be

connected to a MIDI controller and output sound without the use of any external music

production software.

1.1 Performance Requirements

With emphasis on project functionality at the core of any development, the team set

several high-level requirements at the beginning of the process in order to provide benchmarks

and expectations for project functionality:

1. The project must be able to synthesize at least four different tones (waveforms),

including (but not restricted to): Triangle, Square, Sine, and Sawtooth.

2. The project must be able to produce at least eight note polyphony - that is, the project

must have the ability to combine at least eight different musical parts together to form a

harmony.

3. The project must be able to produce pitch in the frequency range of C2 (65.4 Hz) - C5

(523.5 Hz), with additional capability of reaching up to 15 KHz including harmonics for

synthesized tones.

4. The project must be able to drive a speaker up to 20W.

These requirements provided realistic expectations for the project’s functionality, with emphasis

on sound variation through the different tones, polyphony, and full range of frequencies enabling

the user to produce music in full, in addition to the power requirement providing the user with

adequate playback volume. These high-level requirements acted as guidelines for development,

and drove the development process throughout the project’s lifetime.

6

2. Design

2.1 High-Level Operations and Block Diagram

To create active playback for MIDI Devices, the team developed a device which mainly

utilizes a RPi3 (Raspberry Pi 3 Model B) and a DAC (Digital to Analog Converter) to convert

the digital MIDI data into analog signals able to be amplified and utilized by traditional speakers

for playback. The project’s operations starts with the RPi3, which takes in MIDI Data Input from

the external MIDI Controller connected via the RPi3’s USB Port and transforms the digital data

into a digital signal to be converted into an analog signal by the DAC. The RPi3 determines

which waveform (like a Sine Wave or Square Wave) to transform the digital data into by reading

two switch circuits connected to the RPi3’s GPIO Pins. Additionally, the RPi3 maintains a

constant rate of output by reading input from an external clock circuit provided by an

LM555-Timer Clock Circuit, executing and producing output only on the rising edge of the

clock. The RPi3 transmits the digital signal to the DAC using the SPI (Serial Peripheral

Interface) protocol with every clock cycle, based on the aforementioned rising edge.

The DAC then sends the analog signal to a potentiometer, which will determine the

overall gain of the produced wave, after which the signal is amplified by the Volume Amplifier

and subsequently output by the Speaker. The entire system is powered by a 12V DC-DC Power

Jack connected to an external supply, which is converted to 5V and 3.3V for proper use. The

final high-level block diagram is shown in Figure 2.1 below, and provides an overview of the

project’s operations.

7

Figure 2.1: Final High-Level Block Diagram

The block diagram is split into two main systems, each containing two subsystems. The

Processing System contains the Signal Processing and Conversion Subsystem (SPCS) which

handles the signal processing required to generate waveforms representative of our audio

feedback, as well as the Power Output and Conversion Subsystem (POCS), which is responsible

for powering the entirety of the project. The Sound Systems contains the Output Control

Subsystem (OCS), which provides an interface for users to control the project’s output, whether

that be through determining which waveform to output or the waveform’s gain. The system also

includes the Output Subsystem (OS), which is responsible for amplifying the waveform to an

audible level and outputting the waveform via a speaker. The R&V (Requirements and

Verification) tables for each subsystem are shown in Appendix A at the end of this document.

8

2.2 Block-Level Changes

Several block-level changes were made during the project’s development, mainly

involving the Processing System. The original block diagram for the SPCS included the usage of

a filter applied to the digital signal based on MIDI Velocity, which was subsequently integrated

into the RPi3’s software operations. Additionally, the Timer Clock Circuit was added to the

SPCS, and was not originally part of the design - this component was integrated once initial

testing raised synchronization issues and inconsistent sampling rates for signals that were output

by the RPi3. Without the Timer Clock Circuit, the RPi3 would output digital signals to the DAC

based on the speed of the RPi3’s code’s operations, which would vary significantly based on the

level of polyphony being produced due to larger amounts of mathematical operations being

performed. By including the clock, the RPi3 would output at a constant rate, determined by the

speed of the clock.

The entirety of the POCS was also redone - the initial design utilized a Lithium-Ion

battery and a voltage regulator as opposed to a DC-DC Power Jack and Step-Down Converters.

The design was changed due to the potential inconsistencies of running a battery, with charge

depleting over time, thus warranting the usage of the DC-DC Power Jack and a Wall Adapter to

provide more consistent power input.

Additionally, the OS originally included the possibility of a 3.5mm jack instead of an

external speaker, with the removal of such to simplify project design and usage.

2.3 Power and Output Conversion Subsystem

Upon analysis of the project’s power requirements, it was clear that the project would

require 3 different voltage lines: a 3.3V line to be utilized as the DAC’s Voltage Reference, a 5V

line to be utilized as the primary power supply for almost all components, and a 12V line to be

utilized as the power supply for the Volume Amplifier. Thus, the team opted to utilize a DC-DC

Jack which connected to a wall adapter which would output 12V, and utilize a 12V to 5V

Step-Down Converter as well as a 12V to 3.3V Step-Down Converter to provide power to the

corresponding voltage lines. The wall-powered approach was chosen over a battery approach due

to the more consistent nature of the wall adapter’s voltage over a battery’s lifetime depletion, as

well as the nonessential nature of portability in this application

9

2.4 Signal Processing and Conversion Subsystem

The SPCS contains components essential to the Signal Processing Applications of the

project. In the following sections, we will discuss the various hardware and software components

that drive the operations of the SPCS.

2.4.1 Raspberry Pi

We decided to use a Raspberry Pi 3 to take in MIDI data, perform calculations and output

digital data to our DAC. The RPi3 was chosen due to the data capacity limitations of most

commercially available microcontrollers, lacking the storage required to store the 4 waveforms

mentioned previously. Additionally, with a focus on speed of operations, the RPi3 became a

suitable candidate for the project, with a more than sufficient processing speed and memory

capacity. If the project were given more time to develop, the team would have explored the usage

of other microcontrollers such as the Raspberry Pi Pico to optimize the size and cost of the

device.

2.4.2 MIDI Data

In order to create sound, we need to read MIDI data, sent serially from a MIDI controller.

MIDI data consists of individual messages, each with a status byte and up to two data bytes [1].

As seen in Figure 4.6, the MIDI messages for “Note On” and “Note Off” contain three bytes: a

status byte which contains message type and the MIDI Channel (which is unused), a data byte

containing the Note Number (or pitch), and another data byte containing the note velocity

(intensity of keypress) [2]. Each keypress only sends a single MIDI message upon the note’s

onset and termination.

2.4.3 Wavetable Oscillator

To generate sound waveforms, the project employed a technique known as Wavetable

Synthesis. 1024 samples of one full period of an arbitrary wave are stored into memory, sampled

based on the “phase” of the target waveform. The wavetable acts as a circular buffer, with values

being sampled from the table based on the pitch of the note, which determines how fast the phase

10

changes every sample, also known as the phase increment [3]. The phase increment p for our

program can be calculated with the following equation:

(1)𝑝 = 1024𝑓
𝑓

𝑠

Where f is the desired frequency of the output, and fs is the sampling/playback rate. The

frequency of a note in Hz given the MIDI note number n can be calculated as [4]:

(2)𝑓 = 440 • 2
𝑛−69

12

These two equations allow us to use the pitch value from our input MIDI data and convert it into

a digital signal. Since the phase increases every sample and the wavetable is circular, we are able

to modulo the phase by 1023, to consistently select values within the wavetable.

2.4.4 Software Implementation

The software component was originally implemented in Python, and ported over to C++

later in the development process. For our Python Implementation, we used the PyRtMidi library

to interface with our MIDI controller and read MIDI messages. We utilized three dictionaries for

the current phase increment, phase, and output. Each note is used for the key in all three

dictionaries. Once a “Note On'' message is received, the phase increment is calculated using

equations (1) and (2). Then, every sample the calculated phase increment is added to the current

phase, and the phase acts as a read pointer to the wavetable. Since the phase increment is usually

not a whole number, the current phase is rounded to the nearest integer, and the value of the

wavetable at that phase is written into the output dictionary. Finally, all the values from the

output dictionary are summed, resulting in the final output value for the sample. When we

receive a “Note off” message, all values paired with the note are deleted. This ensures that we

only sum the values of currently active notes for the final output. For sending the output to the

DAC, we used the spidev library.

We later switched to C++ as the Python Implementation was too slow for what we

wanted to achieve. While using the Python Implementation, the software struggled to achieve

above a sampling rate of ~15KHz, with Polyphony causing the sample rate to drop as

mathematical operations increased. Switching the implementation to C++ yielded impressive

results - with a maximum sampling rate of 39KHz reached, the software was significantly faster.

The C++ implementation employed a similar method as the Python Implementation, but opted to

11

frontload the Frequency and Phase Increment calculations in the interest of program efficiency

and speed. The implementation also included several other features: software to read GPIO pins

connected to external switches to determine output waveform, implementation to synchronize the

program with an external clock to keep the sampling rate constant, and capacity to include note

velocity into sound intensity. The implementation also used the same RtMidi library as the

Python Implementation, utilizing its base C++ version, as well as using the WiringPi library to

implement GPIO Operations and the SPI Protocol, as opposed to Python’s spidev library.

2.4.5 555-Timer

With the need for the RPi3 to send data at a fixed, consistent sampling rate, the team

implemented a clock circuit that would output a square wave at a predetermined frequency. The

RPi3 implementation would read the value from a GPIO pin and wait for a rising edge, at which

the program would execute the majority of the implementation and output a signal to the DAC.

Figure 2.2 shows the schematic of the clock circuit, as well as its predetermined output

frequencies based on component values.

Figure 2.2: LM555-Timer Clock Circuit and Predetermined Output Frequencies

2.4.6 DAC

With no onboard DAC available on the RPi3, the team opted to use an external DAC to

achieve any conversion requirements. Though DACs are available on some microcontrollers,

most commercially available microcontrollers do not include DACs, and those that do are

typically expensive - thus, the usage of an external DAC circumvents these issues, allowing the

project to utilize the flexibility and speed of the RPi3. The team chose a DAC with a high

enough bit resolution - without the proper resolution, the project would face significant

12

quantization issues, causing the audio output to be inaccurate or unclean. The team decided to

utilize a 10-bit resolution for a sufficient but simple implementation, utilizing the common SPI

data interface for easier project understanding and portability, as long as innate compatibility

with the RPi3’s features.

2.5 Output Control Subsystem

The OCS contains components essential to providing the user with operational freedom

in regards to the project’s outputs. In the following sections, we will discuss the various

hardware components that drive the operations of the OCS.

2.5.1 Potentiometer

To achieve the full variable gain effect, the team utilized the P160KNP-0QC15B10K

Plastic Linear 0-10kΩ Potentiometer that was adjustable by hand and connected to the Volume

Amplifier. The full range of resistance provided by the Potentiometer dampened the signal given

by the DAC prior to amplification, creating a gain effect as desired. This feature was integrated

with the goal of giving the user the ability to adjust the project’s volume as needed.

Figure 2.3: Volume Amplifier Circuit with Potentiometer

2.5.2 Switches

To achieve waveform variability, the team utilized two 2-pin SPDT switches to

implement a small state machine, as depicted by Figure 2.4. With a 2-pin Switch

Implementation, a resistor was required, leading to a dissipation of heat when the switch was

closed and potentially a system failure - therefore, the team opted to utilize a 3-pin SPDT witch

instead, allowing each switch to toggle between two different values - 1 or 0 - to utilize as inputs

to our State Machine.

13

Figure 2.4: State Machine for Waveform Variability

2.6 Output Subsystem

As the final terminal of the project, the OS utilizes an Audio Amplifier Circuit, seen in

Figure 2.3, and a Speaker to achieve the project’s final output. The circuit shown in Figure 2.3 is

able to achieve gain values between 20 and 200, utilizing the 12V line to sufficiently power the

Volume Amplifier. As seen in Figure 2.3, the subsystem utilizes the LM386 in combination with

the Speaker and a Potentiometer to achieve sound with variable gain.

14

3. Verification

In the following sections, the testing and verification of each subsystem (and whether

they achieve the high-level requirements) will be discussed. The R&V table for each subsystem

is included in Appendix B for reference.

3.1 Power and Output Conversion Subsystem

To verify that the results of the POCS matched the requirements set within Table 1 in

Appendix A, the team measured the output voltage of the step-down converters using a

multimeter. The requirement - which stated that each voltage needed to stay within 0.15V of the

target voltage, was initially met and maintained within initial circuit implementation, but

subsequent testing in later weeks showed varying results outside of the required range, possibly

due to environmental and temperature factors of part degradation over time. Figure 3.1 displays

the voltage measured through each step-down converter at the time of the failed testing.

Figure 3.1: Voltage Outputs of the 5V Step-Down Converter (Left) and 3.3V Step-Down Converter (Right)

15

3.2 Signal Processing and Conversion Subsystem

To verify the program’s output signals matched the requirements with Table 2 in

Appendix A, an oscilloscope was utilized to analyze the waveforms produced by the DAC.

During testing, the team found that the maximum sample rate of the DAC was approximately

40KHz, as shown in Figure 3.2, enabling the program to output frequencies up to around 20KHz

according to the Nyquist-Shannon Sampling Theorem, which states that a “signal sampled at a

rate F can be fully reconstructed if it contains only frequency components below half that

sampling frequency: F/2” [7]. In other words, the maximum frequency signal f that can be

reconstructed with our sampling frequency fs is:

(3)𝑓 =
𝑓

𝑠

2

Additionally, upon playing the lowest note on our MIDI Keyboard, a pitch with a frequency of

approximately 4Hz was measured. The results of this testing can be seen in Figures 3.2 and 3.3.

These results meet two high-level requirements, indicating that the project is able to output

signals of up to 15KHz, including signals between the predetermined C2-C5 range. In the final

design, the note frequency range was expanded beyond the C2-C5 range to include the full MIDI

output, which ranged from A0-G#9.

Figure 3.2: Playback Rate of Generated Signal

Figure 3.3: 4 Hz Note

16

The project was also able to accurately output our four desired waveforms - Sine, Square,

Sawtooth, and Triangle, fulfilling yet another high-level requirement. Figure 3.4 shows the

various waveforms produced by the project.

Figure 3.4: Waveforms. Sine Wave (Top Left), Square Wave (Top Right), Sawtooth Wave (Bottom Left), and Triangle

Wave (Bottom Right).

3.3 Output Control Subsystem

To verify the OCS’s functionality matched the requirements with Table 3 in Appendix A,

the team applied an Oscilloscope to the DAC’s output to determine the type of waveform being

output and the amount of gain achieved. As seen in previously Figure 3.4, we were able to create

all 4 waveforms and choose our waveform depending on the switch. Additionally, the team

verified the functionality of the potentiometer that controlled the gain of the amplifier circuit by

reading its input wave and output wave on an oscilloscope. Despite initial claims of the amplifier

circuit stating a max gain of 200, we were only able to achieve a gain of 100 before voltage

clipping occurred, resulting in unusable sound. We calculated gain using the following:

(4)𝐺𝑎𝑖𝑛 = 𝑃𝑒𝑎𝑘−𝑡𝑜−𝑃𝑒𝑎𝑘 𝑜𝑢𝑡𝑝𝑢𝑡
𝑃𝑒𝑎𝑘−𝑡𝑜−𝑃𝑒𝑎𝑘 𝑖𝑛𝑝𝑢𝑡

17

Figure 3.5: Triangle Wave Input and Output of the amplifier circuit

Figure 3.6: Peak-to-Peak voltage values of the input and output wave used for calculating gain.

3.4 Output Subsystem

To verify the OS’s functionality matched the requirements with Table 4 in Appendix A,

an Oscilloscope was applied to the Amplifier Circuit, as well as a Multimeter. As previously seen

in Figure 3.6, the Amplifier Circuit successfully applies gain to the input wave, but experiences

clipping at gain values above 100, failing the requirement included in the table. However, as

previously seen in Figure 3.2 and calculations given by Equation 3, the project is able to output

frequencies up to 15KHz, as indicated by the requirements. Although these two requirements

were confirmed through the usage of an Oscilloscope, the final requirement was confirmed

through the usage of the Multimeter - upon measurement of the speaker’s wattage, the team

found that the speaker struggled to exceed 10W at maximum volume, lower than the

requirement’s indicated 20W. Although the OS fell short in one aspect, the subsystem’s functions

remained sufficient enough for project operations to remain relatively unaffected.

18

4. Costs and Schedule

The following sections details the various costs of development - whether that be through

parts or labor - that were incurred through the project’s lifetime.

4.1 Parts

Various parts costs were incurred during the project’s lifetime, throughout different parts

of development. While a large portion of the overall cost came from the shipping of parts, some

parts were significantly more expensive than others - namely, the RPi3 and Speaker were some

of the costliest items utilized throughout the project. Table 5 in Appendix B shows the costs of

parts that were ordered throughout the project, and indicate the total cost of development from a

hardware perspective of the project.

4.2 Labor

In addition to the parts cost of the project, a labor cost was estimated using the following

formula for each member of the project, as well as estimated labor for other individuals such as

the machine shop:

(4)𝐼𝑑𝑒𝑎𝑙 𝑆𝑎𝑙𝑎𝑟𝑦 (𝐻𝑜𝑢𝑟 𝑅𝑎𝑡𝑒) × 𝐴𝑐𝑡𝑢𝑎𝑙 𝐻𝑜𝑢𝑟𝑠 𝑆𝑝𝑒𝑛𝑡 × 2. 5

where Ideal Salary is estimated to be a $20 per hour rate. The total hours per individual is given

by Table 6 in Appendix B. See such for more detail.

4.3 Schedule

Figure 4.2, 4.3, 4.4, and 4.5, located in Appendix C, provide detail on the development

process that took place throughout the project’s lifetime. Figure 4.2 shows the overall

development schedule of every section included in the same image, while Figure 4.3 shows the

schedule regarding the project’s Conception and Research, Figure 4.4 shows the schedule

regarding the project’s Software Design, and Figure 4.5 shows the schedule regarding the

project’s Circuit Design and Test Results Verification. These schedules represent the start and

completion dates of various tasks set out during the duration of the project.

19

5. Conclusions

The following section provides the team’s reflection on the project such as

accomplishments, uncertainties, ethical considerations, and future work.

5.1 Accomplishments

Overall the project was able to achieve the main functionality central to the user

experience, with the full range of musical frequencies, waveform variability, and multi-note

polyphony achieved in full. Although the project was unable to drive its speaker at the target

wattage, its sound produced - although quite noisy - is still more than sufficient for the user from

a volume-experience perspective. Further refinement of the project could produce quality results.

5.2 Uncertainties

Though the project worked almost in full, the quality of sound produced by the project

did not match expectations. The output sound contained audible noise, and did not resemble the

intended waveform when sufficiently amplified past a value of 100, caused by Voltage Clipping

due to the Amplifier’s limitations. The precision of the clock also presented uncertainties - the

variations in its rate caused inconsistencies within the playback rate, which ultimately decides

the output of the project, producing notes that deviated from their intended frequencies.

Additionally, inconsistencies in power caused by the Step-Down Converters forced the project to

utilize the RPi3’s Micro-USB port plugged into an appropriate charger for power, as opposed to

being powered by the project itself. Overall, component failures throughout the project as well as

inadequate circuit design to prevent such led to the large amount of uncertainty and

inconsistency experienced by project developers.

5.3 Ethical and Safety Considerations

Our project follows the IEEE Code of Ethics to promote the highest standards of

integrity, responsibility, and professionalism during the project’s development. While there are

no blatant ethical violations, potential breakings of the code can occur. The team focused on II of

the code, treating “all persons fairly and with respect, to not engage in harassment or

20

discrimination, and to avoid injuring others”. The project’s complexity would likely lead to

frustration for each team member and potentially violation of the code. Additionally, the team

strived “to ensure this code is upheld by colleagues and co-workers” since each team member

had responsibilities outside the senior design class, leading to a lack of support to colleagues to

follow the code. Consistent monitoring of personal integrity, proper documentation of additional

rules and expectations to follow, and accountability were implemented throughout the project’s

development

In addition to ethical concerns, safety concerns were identified at the start of the project

where potential misuse of the project and lab equipment can lead to harm such as electrocution,

burns, and unpleasant noise to the ear. Many precautions were taken such as avoiding the

adjustment of the system while in operation, starting at a low volume before increasing volume,

and ensuring the operation in low voltage conditions.

5.4 Future Work

Though the project’s applications are relatively niche, the project’s applications areas are

extremely essential to increasing accessibility to electronic music synthesis methods. Several

improvements could be made to significantly improve the project’s performance. First, utilizing a

DAC with a higher-bit resolution would produce sound more accurate and consistent to the

sound found within the modern music range, increasing the precision of our device as well as

possibly reducing the noise. Secondly, improving the amplifier circuit, through increasing its

amplification capabilities to achieve the full gain effect of 200 and reducing the noise it creates,

would significantly improve the sound quality output by the project as well as its volume range.

Lastly, incorporating a different, cheaper microcontroller, like the Raspberry Pi Pico, would

significantly reduce the cost of the project, simplifying the project’s design and size as well as

making the project more accessible to the public. While the project has been proven to be

relatively capable, further refinement and development could yield promising results and elevate

the project to commercial viability.

21

6. References

[1] “Expanded MIDI 1.0 Messages List (Status Bytes)”, web page. Available at:

https://www.midi.org/specifications-old/item/table-2-expanded-messages-list-status-bytes

[2] Breve, Bernardo & Cirillo, Stefano & Cuofano, Mariano & Desiato, Domenico.

Perceiving space through sound: mapping human movements into MIDI. pp. 49-56, 2020.

[3] G. P. Scavone, “Wavetable Synthesis”, web page. Available at:

https://www.music.mcgill.ca/~gary/307/week4/wavetables.html

[4] G. Scavone, “Midi/Frequency Conversion”, web page. Available at:

https://www.music.mcgill.ca/~gary/307/week1/node28.html

[5] “How to Build a Clock Circuit with a 555 Timer”, web page. Available at:

https://www.learningaboutelectronics.com/Articles/555-timer-clock-circuit.php

[6] “Audio Amplifiers”, web page. Available at:

http://techlib.com/electronics/audioamps.html

[7] “Nyquist Frequency”, web page. Available at:

https://www.gatan.com/nyquist-frequency

[8] “IEEE Code of Ethics”, web page. Available at:

https://www.ieee.org/about/corporate/governance/p7-8.html

https://www.midi.org/specifications-old/item/table-2-expanded-messages-list-status-bytes
https://www.music.mcgill.ca/~gary/307/week4/wavetables.html
https://www.music.mcgill.ca/~gary/307/week1/node28.html
https://www.learningaboutelectronics.com/Articles/555-timer-clock-circuit.php
http://techlib.com/electronics/audioamps.html
https://www.gatan.com/nyquist-frequency
https://www.ieee.org/about/corporate/governance/p7-8.html

22

Appendix A: Requirement and Verification Tables

Table 1: Power and Output Conversion Subsystem Requirements and Verification

Requirements Verification

- 5V Power Supply should vary from
4.85V - 5.15V

- 3.3V Power Supply should vary from
3.15V - 3.45V

- Voltage read from a multimeter should
maintain the given range for 30
seconds

Table 2: Signal Processing Conversion Subsystem Requirements and Verification

Requirements Verification

- The Raspberry Pi must be able to read
Serial input from its serial ports
utilizing the MIDI protocol, at the rate
determined by the protocol (31250 bits
per second)

- The DAC must contain a resolution of
a minimum of 10-bits

- The DAC must be able to output
waveforms with frequencies within the
target range, up to 15KHz

- The DAC must be able to produce 4
different waveforms (Sine, Square,
Triangle, Sawtooth)

- Verify Serial reading by passing in test
input with predefined waveform, and
verifying based on output audio

- Utilize all bits of DAC Components
capable of 10-bits. Evaluate based on
waveform clarity with Oscilloscope

- Verify DAC Frequency Range and
waveform shape using Oscilloscope
and test input

Table 3: Output Control Subsystem Requirements and Verification

Requirements Verification

- Changing the switches changes the
output sound and output waveform

- Intensity of sound should be
adjustable using a dial provided by the
subsystem

- Measure waveform for shape and
intensity using an Oscilloscope to
verify both requirements

23

Table 4: Output Subsystem Requirements and Verification

Requirements Verification

- The amplifier must be able to receive
and amplify waveforms provided by
the Output Control Subsystem, and
output an amplified waveform with a
gain between 20 and 200 to the
speaker

- The Speaker must be able to output
frequencies within the range defined
by the high-level requirements, which
reach up to 15KHz

- The Speaker must be able to output
sound with a power of 0W to 20W

- Utilize Oscilloscope to analyze
spectrum of sound, reading the
original unamplified wave and the
amplified wave and visually
determining the gain

- Utilize Oscilloscope to analyze the
range of the Speaker, with test input

- Utilize Multimeter to assess power
output of Speaker, with test input

24

Appendix B: Parts and Labor Costs
Table 5: Parts Costs

Description Manufacturer Part # Quantity Cost ($)
Raspberry Pi 3
Model B Board Raspberry Pi 1 65
SSOP-16 TO DIP-16
SMT ADAPTER Chip Quik Inc. PA0182-ND 3 11.07
SMOOTH FLOW
LOW TEMP
SOLDER PAST Chip Quik Inc. 315-NC191LT10-ND 1 7.95
SPEAKER 8OHM
800MW TOP PORT
88DB Soberton Inc. 433-1104-ND 3 5.25
IC AMP CLASS AB
MONO 325MW
8SOIC Texas Instruments LM386MX-1/NOPBCT-ND 3 3.33
IC DAC/AUDIO
24BIT 200K 16
SSOP Texas Instruments

296-41373-1-ND - Cut
Tape (CT) 5 9.6

IC AMP CLASS AB
MONO 700MW
8DIP Texas Instruments 296-43959-5-ND 4 5.12
SPEAKER 8OHM
800MW TOP PORT
88DB Soberton Inc. 433-1104-ND 1 1.75
IC DAC 10BIT
V-OUT 8DIP

Microchip
Technology MCP4911-E/P-ND 4 7.88

CAP CER 10UF 50V
X5R 1206 Murata Electronics 490-12456-1-ND 10 4.05
Varying Capacitors
and Resistors N/A N/A 30 3
SWITCH TOGGLE
SPDT 3A 120V E-Switch EG2447-ND 4 11.88
DC DC
CONVERTER 5V
2.5W CUI Inc. 102-4244-ND 3 8.43
DC DC
CONVERTER 3.3V
1.65W CUI Inc. 102-4243-ND 3 8.43

25

LM386N-3/NOPB
IC AMP CLASS AB
MONO 700MW
8DIP Texas Instruments 296-43959-5-ND 1 1.28
SPEAKER 8OHM
800MW TOP PORT
88DB Soberton Inc. 433-1104-ND 1 1.75
IC DAC 10BIT
V-OUT 8DIP

Microchip
Technology MCP4911-E/P-ND 1 1.97

OPTOISO 5KV
DARL W/BASE
8DIP Lite-On Inc. 160-1795-ND 3 2.31
SMALL SGNL
DIODE DO35 100V
175C onsemi 1N4148FS-ND 3 0.3
XTAL OSC XO
20.0000MHZ
HCMOS TTL ECS Inc. X964-ND 2 6.3
XTAL OSC XO
24.0000MHZ
HCMOS SMD ECS Inc. XC1953TR-ND 2 1.72
DC DC
CONVERTER 15V
15/-5.0V 1.4

Mornsun America,
LLC 2725-QA053C-1505R3-ND 2 8.84

IC ADC/AUDIO
24BIT 96K
14TSSOP Texas Instruments 296-31708-2-ND 2 6
IC DAC 10BIT
V-OUT 8SOIC

Microchip
Technology MCP4911-E/SN-ND 2 3.66

IC DAC 16BIT
V-OUT 10MSOP

Analog Devices
Inc.

505-AD5683RARMZ-RL7
TR-ND 4 30.04

ESP32-S2-MINI-1
DEV BRD Espressif Systems

1965-ESP32-S2-DEVKIT
M-1-ND 2 16

XTAL OSC XO
4.0000MHZ
HCMOS TH

CTS-Frequency
Controls

110-MXO45HS-3C-4M000
000-ND 2 6.42

XTAL OSC XO
4.0000MHZ
HCMOS TH

CTS-Frequency
Controls

110-MXO45-3C-4M000000
-ND 2 4.24

Total 301.46

26

Table 6: Labor Costs

Rate Hours Total ($)

Jeremy Lee 20 121 2420

Sean Liang 20 110 2200

Tyler Shu 20 115.5 2310

Other 20 10 200

Total 356.5 7130

27

Appendix C: Project Schedules

Figure 4.2: Overall Development Schedule

Figure 4.3: Development Schedule - Project Conception and Research

Figure 4.4: Development Schedule - Software Design

Figure 4.5: Development Schedule - Circuit Design and Test Results Verification

28

Appendix D: MIDI Data

Figure 4.6: Example “Note On” MIDI Message

29

Appendix E: Schematics

Figure 2.5: Final Schematic Design

