
MIDI Music Box

Jeremy Lee

Sean Liang

Tyler Shu

Background and Problem
- Music can be expensive / inaccessible

- The use of MIDI controllers are very common in music
production

- Cheap MIDI keyboards have no sound output
- Setting up can get complicated

- Want to make a simple plug-and-play product

High-Level Requirements

Subsystems and Design

Functional Test Results

Components

High Level
Requirements

Project Goals and Requirements:
1. Synthesize Four different waveforms: Sine, Square, Triangle,

Sawtooth
2. Produce Eight Note Polyphony - that is, simultaneously play 8

notes
3. Produce Pitch in the Frequency Range C2(65.4Hz) - C5(525.5Hz),

with additional capability of capability of 15kHz with Harmonics
4. Drive a speaker utilizing up to 20W of power

Subsystems - Original
Block Diagram

- Processing System
- Processes MIDI Input and

convert to Analog Signal
- Included potential filter

- Power Subsystem
- Generate and Convert Voltage

to appropriate levels
- Utilize a Li-Ion battery and

Step-Down regulator for 3.3V
- Output Control Subsystem

- Enable User-Controlled Input
for Sound Variability

- Output Subsystem
- Amplify and Output modified

Analog Signal

Subsystems - Final
Block Diagram Elaborate on a personal detail you want to share.

- Signal Processing and
Conversion Subsystem

- Incorporated Timer Circuit to
create consistent output

- Power incorporated to power
Raspberry Pi as opposed to
Micro-USB Power Source

- Power Output and Conversion
Subsystem

- Incorporated DC Power Jack
and Step-Down Converters

- Output Control Subsystem
- No changes made

- Output Subsystem
- Final output changed from

3.5mm Jack to a Speaker

Final Schematic
Components:
Raspberry Pi: RPI Model 3B+

- Reads input data from MIDI
Controller

- Outputs data to DAC representing
Digital Signal

- Also reads data from Switches
connected via GPIO Pins

Timer IC: LM555
- Used to standardize the Sample

Rate by clocking RPI code
Digital-to-Analog Converter (DAC):
MCP4911

- Converts Digital Signal from
Raspberry Pi to Analog Signal

Amplifier: LM386
- Amplifies Analog Signals,

amplifies Analog Signal from DAC
12V to 5V Step Down Converter:
VX7805-500

- Provides power for majority of
circuit

12V to 3.3V Step Down Converter:
VS7803-500

- Provides reference voltage for
DAC

Power Subsystem
- Utilizes the Power

Circuit, producing 5V
lines and 3.3V lines

- 3.3V line feeds into DAC

- 5V line feeds into all other
components

Output
Subsystem

- Utilizes the Amplifier
Circuit1

- Connected to the
Output Control
Subsystem

- Takes in dampened
DAC output

- Amplifier Circuit
contains an LM386
Amplifier

- Amplifier responsible
for output gain

- Amplifier Circuit also
contains the Speaker

1Wenzel, C. (n.d.). Audio Amplifiers. techlib.com. http://techlib.com/electronics/audioamps.html

Output Control
Subsystem

- Utilizes the Switch
Circuit to control type of
Waveform

- Connected to GPIO
Pins on Raspberry Pi

- Utilizes part of the
Amplifier Circuit to
control gain of waveform

- Integrated into Output
Subsystem

- Originally intended to
be part of Output
Control Subsystem,
but was built into
Amplifier Circuit

- Takes input from the
DAC, outputs to
Output Subsystem

Signal Processing
and Conversion
Subsystem

- Utilizes the Raspberry Pi,
DAC1, and Clock Circuit

- Clock Circuit feeds into
Raspberry Pi to provide
constant external
clocking

- Raspberry Pi connected
to DAC to provide Digital
Data for conversion

- DAC connected to
Amplifier Circuit

1paulv. (2015, October 25). Add an analog output to the Pi (DAC). Raspberry Pi Forums. https://forums.raspberrypi.com//viewtopic.php?f=37&t=124184

PCB Design
Size Standardized
for Container
Dimensions

Design - Power Output and
Conversion Subsystem

Initial Power Subsystem Stage
- Amplifier powered by lab power

supply
- DAC was powered by Raspberry PI

GPIO pins
Final Power Subsystem Stage

- Amplifier powered by 12V power
jack

- 12V to 5V DC-DC converter output
powers Raspberry PI and DAC

- 12V to 3.3V DC-DC converter output
used for reference voltage for the
DAC

Power Output and Conversion
Subsystem Timeline

Results - Power Output
and Conversion
Subsystem

Target Range: 4.85V - 5.15V
- Failed to consistently hit

target voltage, but came
close

- Power issues caused by
inconsistent and insufficient
voltage lead to issue
powering the Raspberry Pi

- New issue, issue arose after
break

Verification of 5V Power
Supply Using Multimeter

Target Range: 3.15V - 3.45V
- Failed to consistently hit

target voltage, issue may be
with booster or other load
factors

Verification of 3.3V Power
Supply using Multimeter

Clock Design: Sample Rate
Problem

- Naive approach to read MIDI data
and output digital data to the DAC
resulted in a change in the sample
rate depending on the amount of
notes pressed

- No set sampling frequency

Solution
- Create a simple square wave circuit

of a desired frequency
- Used LM555, capacitors and a resistor
- Adjusted resistance to get desired

clock frequency

How to build a clock circuit with a 555 timer. (n.d.).
https://www.learningaboutelectronics.com/Articles/555-timer-clock-circuit.php

Clock Design - Results

Results
- Able to create a square wave

of our desired sampling
frequency of 32 khz with a
resistor value of 1220 ohms

Future Problems
- Duty Ratio might be a

problem in calculating the
sampling rate for our
program

MIDI Data: An Overview
- Musical Instrument Digital Interface (MIDI) is a standard for both transmitting and storing music.
- Data is sent serially
- MIDI data itself is not audio
- Data consists of MIDI messages: one status byte followed by up to two data bytes

- A status byte always starts with a 1, while a data byte always
starts with a 0

- For our project, we focused on two messages: note on & note off
- Note on is sent at the start of a note press and note off is sent at

the release

MIDI Data: An Overview (con’t)
- For note on & note off messages, the two data bytes contain information about the pitch and the velocity (how

“hard” a note is played)
- We don’t use any MIDI channels for our project
- A note on with a velocity of 0 is equivalent to a note off

Python Design:
An Overview

-- General idea: read MIDI messages sent from the controller,
specifically NOTE ON / NOTE OFF

- Based on the notes being played, calculate the output value and
send the data to the DAC

Python Design: RtMidi
- For reading MIDI data, we used the PyRtMidi library (based on RtMidi for C++)
- This allowed the Pi to detect the MIDI controller and parse MIDI messages
- We only read input MIDI data, the program doesn’t need to output any MIDI data

Python Design: RtMidi
- Once the program detects a MIDI message, it checks for note on or note off messages
- For a note on message, the program does some calculations for the output value of the note
- For a note off, the program clears the output value of the note

Python Design: Wave Table
- For calculating the output samples, we use the same technique used in

wavetable synthesis
- One period of a wave is stored in memory (we use 1024 samples, generally

the number of samples is a power of 2)
- At a given sample, the output value is one sample of the wavetable.
- The current position of the wavetable can be thought of as the phase.
- Every sample, the phase of the wavetable increments by a certain amount.
- The increment depends on the table size, frequency of the note, and

playback rate.
- Our wavetables were initialized in python as arrays.

Python Design: Wave Table
- To implement this in python, we used dictionaries for each note’s output value, current phase, and phase increment
- The key for the dictionaries are the note numbers, so each note has one key:pair value
- The phase increment is constant for each note and only needs to be calculated once
- The frequency of a note is 440 • 2(nn - 69 / 12) where nn is the note number (from the MIDI message)
- The phase increment is the frequency of the note multiplied by the number of samples in the wavetable, divided by the

playback rate
- Each sample, the phase increment is added to the phase, and the wavetable value at the phase is set.
- The final output is the sum of each individual note’s output

C++ Design: An
Faster Solution

- Python Implementation too slow, extremely limited sample rate
caused frequency range to be too small

- Ported program over to C++
- RtMidi library for Python based on same library for C++,

program needed to be modified accordingly
- SPI Library for Python not available in C++, researched and

used the WiringPi library which included an SPI sub-library
- General idea for program stayed the same
- Fun Fact: C++ is anywhere from 10x to 100x faster than Python,

depending on context!1

1Bales, R. (2023, May 20). C++ vs. python: Full comparison.
History-Computer. https://history-computer.com/c-vs-python-2/

C++ Design: Initial Computations
Table Computation based on Sample Rate

- Similar to Python Approach, tables are
pre-computed

- One table of 1024 samples for each wave
computed

- Other computations to relieve computational
load later in the program:

- Frequency for each note number computed
- Phase Increment for each note number

computed

Sample Rate Calculation
- Sample rate calculated at the beginning of

operations to evaluate timer/clock-circuit
performance

- Evaluated using nanosecond precision timing,
counts predetermined number of clock cycles

C++ Design: GPIO and SPI Setup
GPIO Initialization

- GPIO Pins Setup using WiringPi library
- Pin Numbers defined by WiringPi Convention

assigned based on constants set at the top of
the code

- Initial Setup of specific pins required

SPI Initialization
- SPI Protocol Initialization using WiringPi

sub-library, WiringPiSPI
- Channel and Speed specified for initialization

C++ Design: Receiving MIDI Data
Utilizing the RtMidi Library

- C++ code utilizes the RtMidi library to handle
receiving MIDI data from the USB Ports

- Initializes a RtMidiIn object, Opens a Port for
reading

- Callback Function for Interrupt-based approach
ignored

- Initial implementations used Interrupt method but
encountered major errors with segmentation
faults created by interrupt approach

C++ Design: Reading the Buffer
Reading the Available Message

- Program checks the associated port for data in
its buffer

- Avoids the Interrupt-based approach. Previous
implementation using such would cause a
Segmentation Fault due to memory access of
removed entries when interrupt occurs during
mathematical operations

- Processes any new data/messages from the MIDI
Controller

- Messages consist of NOTE ON or NOTE OFF
messages

- First Byte contains Note Number
- Second Byte contains Note Velocity (Keypress

Intensity)

- NOTE ON Message: Note added to
map/dictionary of “ON NOTES”

- NOTE OFF Message: Note removed from
map/dictionary of “ON NOTES”

C++ Design: Determining the Waveform
Checking the GPIO Pins and Switches

- Switch status checked upon each iteration using
the WiringPi Library

- Pointer re-assigned based on target waveform

C++ Design: DAC Output

With pre-calculated frequencies and phase
increments, the phase of each wave in the dictionary is
added, summed up into one output wave/value

The output value is then masked and formatted appropriately
following the SPI Protocol, and output to the DAC using the
WiringPi library. The function is currently configured to
output 10-bit output to the DAC, which includes 4 Control
Bits at the beginning

Incrementing the Phase Following the SPI Protocol

Requirements and Verification - Signal
Processing and Conversion Subsystem

The following Requirements and Verification table was generated to evaluate the
subsystem’s performance and provide a goal for functionality. Functional test
results are provided in the following slides.

Requirements Verification

- The Raspberry Pi must be able to
read Serial input from its serial
ports utilizing the MIDI protocol,
at the rate determined by the
protocol (31250 bits per second)

- The DAC must contain a resolution
of a minimum of 10-bits

- The DAC must be able to output
waveforms with frequencies within
the target range, up to 15KHz

- The DAC must be able to produce 4
different waveforms (Sine, Square,
Triangle, Sawtooth)

- Verify Serial reading by passing in
test input with predefined
waveform, and verifying based on
output audio

- Utilize all bits of DAC Components
capable of 10-bits. Evaluate based
on waveform clarity with
Oscilloscope

- Verify DAC Frequency Range and
waveform shape using Oscilloscope
and test input

Test Results - Signal Processing
and Conversion Subsystem

The DAC should be able to
output signals up with
frequencies up to 15kHz. By
measuring the rate of the
DAC’s clock rate and output
to be 39.840kHz, we
calculate the Nyquist
Frequency (Maximum
Frequency) to be 39.840kHz
/ 2 = 19.92kHz, exceeding
our requirement.

DAC Frequency
Range

Frequencies of as low as 4 Hz were also

achieved!

Maximum frequency evaluated by measuring the Sample Rate of the DAC

Test Results - Signal Processing
and Conversion Subsystem

The DAC is able to output four different
waveforms. Shown above are the Sine,
Square, Triangle, and Sawtooth
Waveforms that are the output of the
DAC.

DAC Waveform Outputs

Design - Output and
Control Subsystem

- Simple switch design to send high or
low signal to GPIO pins

- 10K potentiometer for a controllable
gain from 20 to 200

http://techlib.com/electronics/audioamps.html

Verification - Output
Control Subsystem and
Output Subsystem

Able to hear a difference in the
sound when flipping switches,
but ran into issues where one
GPIO pin wasn’t getting any
voltage high signal

Waveform Variability

Verification - Output
Control Subsystem and
Output Subsystem

Gain was achieved using a potentiometer linked to an amplifier circuit. Maximum gain of
100 was achieved, with values over such causing clipping, likely driven by the limitation of
the amplifier used. Gain is able to be controlled using the potentiometer.

Gain Variability

Maximum gain value calculated: 11.3 / 0.113 =

100

Verification - Output
Subsystem

As mentioned previously, Nyquist
Frequency was calculated to be
above 15kHz, indicating that the
speaker should be able to output
such

The Speaker is rated for 35W, indicating maximum load. However, the circuit was
providing about 1 watt of power as we used a LM386 which had an power rating of 1
watt

Speaker Frequency Range Speaker Power Rating

Verification - Output
Subsystem

- Full range of MIDI
Notes able to be
output

- Different types of
waveforms available

- 8 Note Polyphony
achieved

- Speaker can be
driven up to
specified wattage,
but is not due to
circuit limitations

Project Final Output

Conclusions - What we Learned
MIDI Data

- How MIDI Data is Formatted

- How MIDI Data is Delivered

Interfacing with DACs
- The various types of protocols DACs utilize

- How DAC Resolution can affect precision

- How to synchronize your application with DACs

Signal Processing
- How to generate and sample signals based on a predetermined sample rate

- How specific frequencies and waveforms can be implemented and produced using physical devices

Engineering Design
- How Subsystems feed into the overall purpose

- How to research and and generate circuit designs to fulfill your goals

- How diagnose issues with the project and incrementally improve aspects about it

Experiment with Different DACs
- The project was largely limited by the capabilities of the DAC in use, with issues such as Quantization

- Explore how the various different data protocols could affect the quality of sound we produce

- Explore how different bit resolutions could affect the quality of sound we produce

Experiment with Different Audio Amplifier Circuits
- Alternative amplifier circuits could have provided lower-noise amplification, leading to higher sound quality

- Alternative circuits could have had a larger amplification effect, enabling the project to drive larger, higher power

hardware

Engineering Design
- Researching more in-depth designs to advance our design even further

- Create a more appropriate schedule that better reflected the turnaround parts for parts and components

Conclusions - What We Would Do
Differently

Recommendations for
further work.
Switch to a 16-bit DAC or other Higher Resolution

- A higher bit depth would give more dynamic range, precision and potentially less noise
- Reduces quantization issues

Improve the Capabilities of the Amplifier Circuit
- Improve and employ a lower-noise and higher-power Amplifier Circuit, to further improve the sound quality and

increase the volume range at which sound can be produced

Utilize Other Microcontrollers
- With the goal of keeping overall cost of the project design, the potential usage of cheaper microcontrollers would be

beneficial
- Even using the Raspberry Pi Pico may be sufficient

References
Bales, R. (2023, May 20). C++ vs. python: Full comparison. History-Computer. https://history-computer.com/c-vs-python-2/

How to build a clock circuit with a 555 timer. (n.d.). https://www.learningaboutelectronics.com/Articles/555-timer-clock-circuit.php

paulv. (2015, October 25). Add an analog output to the Pi (DAC). Raspberry Pi Forums.
https://forums.raspberrypi.com//viewtopic.php?f=37&t=124184

Wenzel, C. (n.d.). Audio Amplifiers. techlib.com. http://techlib.com/electronics/audioamps.html

Thank You!

