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Background and Problem
- Music can be expensive / inaccessible

- The use of MIDI controllers are very common in music 
production

- Cheap MIDI keyboards have no sound output
- Setting up can get complicated

- Want to make a simple plug-and-play product



High-Level Requirements

Subsystems and Design

Functional Test Results

Components



High Level 
Requirements

Project Goals and Requirements:
1. Synthesize Four different waveforms: Sine, Square, Triangle, 

Sawtooth
2. Produce Eight Note Polyphony - that is, simultaneously play 8 

notes
3. Produce Pitch in the Frequency Range C2(65.4Hz) - C5(525.5Hz), 

with additional capability of capability of 15kHz with Harmonics
4. Drive a speaker utilizing up to 20W of power



Subsystems - Original 
Block Diagram

- Processing System
- Processes MIDI Input and 

convert to Analog Signal
- Included potential filter

- Power Subsystem
- Generate and Convert Voltage 

to appropriate levels
- Utilize a Li-Ion battery and 

Step-Down regulator for 3.3V 
- Output Control Subsystem

- Enable User-Controlled Input 
for Sound Variability

- Output Subsystem
- Amplify and Output modified 

Analog Signal



Subsystems - Final 
Block Diagram Elaborate on a personal detail you want to share.

- Signal Processing and 
Conversion Subsystem

- Incorporated Timer Circuit to 
create consistent output

- Power incorporated to power 
Raspberry Pi as opposed to 
Micro-USB Power Source

- Power Output and Conversion 
Subsystem

- Incorporated DC Power Jack 
and Step-Down Converters

- Output Control Subsystem
- No changes made

- Output Subsystem
- Final output changed from 

3.5mm Jack to a Speaker



Final Schematic
Components:
Raspberry Pi: RPI Model 3B+

- Reads input data from MIDI 
Controller

- Outputs data to DAC representing 
Digital Signal

- Also reads data from Switches 
connected via GPIO Pins

Timer IC: LM555
- Used to standardize the Sample 

Rate by clocking RPI code
Digital-to-Analog Converter (DAC): 
MCP4911

- Converts Digital Signal from 
Raspberry Pi to Analog Signal

Amplifier: LM386
- Amplifies Analog Signals, 

amplifies Analog Signal from DAC
12V to 5V Step Down Converter: 
VX7805-500

- Provides power for majority of 
circuit

12V to 3.3V Step Down Converter: 
VS7803-500

- Provides reference voltage for 
DAC 



Power Subsystem
- Utilizes the Power 

Circuit, producing 5V 
lines and 3.3V lines

- 3.3V line feeds into DAC

- 5V line feeds into all other 
components



Output 
Subsystem

- Utilizes the Amplifier 
Circuit1

- Connected to the 
Output Control 
Subsystem

- Takes in dampened 
DAC output

- Amplifier Circuit 
contains an LM386 
Amplifier

- Amplifier responsible 
for output gain

- Amplifier Circuit also 
contains the Speaker

1Wenzel, C. (n.d.). Audio Amplifiers. techlib.com. http://techlib.com/electronics/audioamps.html



Output Control 
Subsystem

- Utilizes the Switch 
Circuit to control type of 
Waveform

- Connected to GPIO 
Pins on Raspberry Pi

- Utilizes part of the 
Amplifier Circuit to 
control gain of waveform

- Integrated into Output 
Subsystem

- Originally intended to 
be part of Output 
Control Subsystem, 
but was built into 
Amplifier Circuit 

- Takes input from the 
DAC, outputs to 
Output Subsystem



Signal Processing 
and Conversion 
Subsystem

- Utilizes the Raspberry Pi, 
DAC1, and Clock Circuit

- Clock Circuit feeds into 
Raspberry Pi to provide 
constant external 
clocking

- Raspberry Pi connected 
to DAC to provide Digital 
Data for conversion

- DAC connected to 
Amplifier Circuit

1paulv. (2015, October 25). Add an analog output to the Pi (DAC). Raspberry Pi Forums. https://forums.raspberrypi.com//viewtopic.php?f=37&t=124184 



PCB Design
Size Standardized 
for Container 
Dimensions



Design - Power Output and 
Conversion Subsystem

Initial Power Subsystem Stage
- Amplifier powered by lab power 

supply
- DAC was powered by Raspberry PI 

GPIO pins 
Final Power Subsystem Stage

- Amplifier powered by 12V power 
jack

- 12V to 5V DC-DC converter output 
powers Raspberry PI and DAC

- 12V to 3.3V DC-DC converter output 
used for reference voltage for the 
DAC

Power Output and Conversion 
Subsystem Timeline



Results - Power Output 
and Conversion 
Subsystem

Target Range: 4.85V - 5.15V
- Failed to consistently hit 

target voltage, but came 
close

- Power issues caused by 
inconsistent and insufficient 
voltage lead to issue 
powering the Raspberry Pi

- New issue, issue arose after 
break

Verification of 5V Power 
Supply Using Multimeter

Target Range: 3.15V - 3.45V
- Failed to consistently hit 

target voltage, issue may be 
with booster or other load 
factors

Verification of 3.3V Power 
Supply using Multimeter



Clock Design: Sample Rate
Problem

- Naive approach to read MIDI data 
and output digital data to the DAC 
resulted in a change in the sample 
rate depending on the amount of 
notes pressed

- No set sampling frequency

Solution
- Create a simple square wave circuit 

of a desired frequency
- Used LM555, capacitors and a resistor
- Adjusted resistance to get desired 

clock frequency

How to build a clock circuit with a 555 timer. (n.d.). 
https://www.learningaboutelectronics.com/Articles/555-timer-clock-circuit.php 



Clock Design - Results

Results
- Able to create a square wave 

of our desired sampling 
frequency of 32 khz with a 
resistor value of 1220 ohms

Future Problems
- Duty Ratio might be a 

problem in calculating the 
sampling rate for our 
program



MIDI Data: An Overview
- Musical Instrument Digital Interface (MIDI) is a standard for both transmitting and storing music.
- Data is sent serially
- MIDI data itself is not audio
- Data consists of MIDI messages: one status byte followed by up to two data bytes

- A status byte always starts with a 1, while a data byte always 
starts with a 0

- For our project, we focused on two messages: note on & note off
- Note on is sent at the start of a note press and note off is sent at 

the release



MIDI Data: An Overview (con’t)
- For note on & note off messages, the two data bytes contain information about the pitch and the velocity (how 

“hard” a note is played)
- We don’t use any MIDI channels for our project
- A note on with a velocity of 0 is equivalent to a note off



Python Design: 
An Overview

-- General idea: read MIDI messages sent from the controller, 
specifically NOTE ON / NOTE OFF

- Based on the notes being played, calculate the output value and 
send the data to the DAC



Python Design: RtMidi
- For reading MIDI data, we used the PyRtMidi library (based on RtMidi for C++)
- This allowed the Pi to detect the MIDI controller and parse MIDI messages
- We only read input MIDI data, the program doesn’t need to output any MIDI data



Python Design: RtMidi
- Once the program detects a MIDI message, it checks for note on or note off messages
- For a note on message, the program does some calculations for the output value of the note
- For a note off, the program clears the output value of the note



Python Design: Wave Table
- For calculating the output samples, we use the same technique used in 

wavetable synthesis
- One period of a wave is stored in memory (we use 1024 samples, generally 

the number of samples is a power of 2)
- At a given sample, the output value is one sample of the wavetable.
- The current position of the wavetable can be thought of as the phase.
- Every sample, the phase of the wavetable increments by a certain amount.
- The increment depends on the table size, frequency of the note, and 

playback rate.
- Our wavetables were initialized in python as arrays.



Python Design: Wave Table
- To implement this in python, we used dictionaries for each note’s output value, current phase, and phase increment
- The key for the dictionaries are the note numbers, so each note has one key:pair value
- The phase increment is constant for each note and only needs to be calculated once
- The frequency of a note is 440 • 2(nn - 69 / 12) where nn is the note number (from the MIDI message)
- The phase increment is the frequency of the note multiplied by the number of samples in the wavetable, divided by the 

playback rate
- Each sample, the phase increment is added to the phase, and the wavetable value at the phase is set.
- The final output is the sum of each individual note’s output



C++ Design: An 
Faster Solution

- Python Implementation too slow, extremely limited sample rate 
caused frequency range to be too small

- Ported program over to C++
- RtMidi library for Python based on same library for C++, 

program needed to be modified accordingly
- SPI Library for Python not available in C++, researched and 

used the WiringPi library which included an SPI sub-library
- General idea for program stayed the same
- Fun Fact: C++ is anywhere from 10x to 100x faster than Python, 

depending on context!1

1Bales, R. (2023, May 20). C++ vs. python: Full comparison. 
History-Computer. https://history-computer.com/c-vs-python-2/ 



C++ Design: Initial Computations
Table Computation based on Sample Rate

- Similar to Python Approach, tables are 
pre-computed

- One table of 1024 samples for each wave 
computed

- Other computations to relieve computational 
load later in the program:

- Frequency for each note number computed
- Phase Increment for each note number 

computed

Sample Rate Calculation
- Sample rate calculated at the beginning of 

operations to evaluate timer/clock-circuit 
performance

- Evaluated using nanosecond precision timing, 
counts predetermined number of clock cycles



C++ Design: GPIO and SPI Setup
GPIO Initialization

- GPIO Pins Setup using WiringPi library
- Pin Numbers defined by WiringPi Convention 

assigned based on constants set at the top of 
the code

- Initial Setup of specific pins required

SPI Initialization
- SPI Protocol Initialization using WiringPi 

sub-library, WiringPiSPI
- Channel and Speed specified for initialization



C++ Design: Receiving MIDI Data
Utilizing the RtMidi Library

- C++ code utilizes the RtMidi library to handle 
receiving MIDI data from the USB Ports

- Initializes a RtMidiIn object, Opens a Port for 
reading

- Callback Function for Interrupt-based approach 
ignored

- Initial implementations used Interrupt method but 
encountered major errors with segmentation 
faults created by interrupt approach



C++ Design: Reading the Buffer
Reading the Available Message

- Program checks the associated port for data in 
its buffer

- Avoids the Interrupt-based approach. Previous 
implementation using such would cause a 
Segmentation Fault due to memory access of 
removed entries when interrupt occurs during 
mathematical operations

- Processes any new data/messages from the MIDI 
Controller

- Messages consist of NOTE ON or NOTE OFF 
messages

- First Byte contains Note Number
- Second Byte contains Note Velocity (Keypress 

Intensity)

- NOTE ON Message: Note added to 
map/dictionary of “ON NOTES”

- NOTE OFF Message: Note removed from 
map/dictionary of “ON NOTES”



C++ Design: Determining the Waveform
Checking the GPIO Pins and Switches

- Switch status checked upon each iteration using 
the WiringPi Library

- Pointer re-assigned based on target waveform



C++ Design: DAC Output

With pre-calculated frequencies and phase 
increments, the phase of each wave in the dictionary is 
added, summed up into one output wave/value

The output value is then masked and formatted appropriately 
following the SPI Protocol, and output to the DAC using the 
WiringPi library. The function is currently configured to 
output 10-bit output to the DAC, which includes 4 Control 
Bits at the beginning

Incrementing the Phase Following the SPI Protocol



Requirements and Verification - Signal 
Processing and Conversion Subsystem

The following Requirements and Verification table was generated to evaluate the 
subsystem’s performance and provide a goal for functionality. Functional test 
results are provided in the following slides. 

Requirements Verification

- The Raspberry Pi must be able to 
read Serial input from its serial 
ports utilizing the MIDI protocol, 
at the rate determined by the 
protocol (31250 bits per second)

- The DAC must contain a resolution 
of a minimum of 10-bits

- The DAC must be able to output 
waveforms with frequencies within 
the target range, up to 15KHz

- The DAC must be able to produce 4 
different waveforms (Sine, Square, 
Triangle, Sawtooth)

- Verify Serial reading by passing in 
test input with predefined 
waveform, and verifying based on 
output audio

- Utilize all bits of DAC Components 
capable of 10-bits. Evaluate based 
on waveform clarity with 
Oscilloscope

- Verify DAC Frequency Range and 
waveform shape using Oscilloscope 
and test input



Test Results - Signal Processing 
and Conversion Subsystem

The DAC should be able to 
output signals up with 
frequencies up to 15kHz. By 
measuring the rate of the 
DAC’s clock rate and output 
to be 39.840kHz, we 
calculate the Nyquist 
Frequency (Maximum 
Frequency) to be 39.840kHz 
/ 2 = 19.92kHz, exceeding 
our requirement.

DAC Frequency 
Range

Frequencies of as low as 4 Hz were also 

achieved!

Maximum frequency evaluated by measuring the Sample Rate of the DAC



Test Results - Signal Processing 
and Conversion Subsystem

The DAC is able to output four different 
waveforms. Shown above are the Sine, 
Square, Triangle, and Sawtooth 
Waveforms that are the output of the 
DAC.

DAC Waveform Outputs



Design - Output and 
Control Subsystem

- Simple switch design to send high or 
low signal to GPIO pins

- 10K potentiometer for a controllable 
gain from 20 to 200

http://techlib.com/electronics/audioamps.html



Verification - Output 
Control Subsystem and 
Output Subsystem

Able to hear a difference in the 
sound when flipping switches, 
but ran into issues where one 
GPIO pin wasn’t getting any 
voltage high signal

Waveform Variability



Verification - Output 
Control Subsystem and 
Output Subsystem

Gain was achieved using a potentiometer linked to an amplifier circuit. Maximum gain of 
100 was achieved, with values over such causing clipping, likely driven by the limitation of 
the amplifier used. Gain is able to be controlled using the potentiometer.

Gain Variability

Maximum gain value calculated: 11.3 / 0.113 =  

100



Verification - Output 
Subsystem

As mentioned previously, Nyquist 
Frequency was calculated to be 
above 15kHz, indicating that the 
speaker should be able to output 
such

The Speaker is rated for 35W, indicating maximum load. However, the circuit was 
providing about 1 watt of power as we used a LM386 which had an power rating of 1 
watt 

Speaker Frequency Range Speaker Power Rating



Verification - Output 
Subsystem

- Full range of MIDI 
Notes able to be 
output

- Different types of 
waveforms available

- 8 Note Polyphony 
achieved

- Speaker can be 
driven up to 
specified wattage, 
but is not due to 
circuit limitations

Project Final Output



Conclusions - What we Learned
MIDI Data

- How MIDI Data is Formatted

- How MIDI Data is Delivered

Interfacing with DACs
- The various types of protocols DACs utilize

- How DAC Resolution can affect precision

- How to synchronize your application with DACs

Signal Processing
- How to generate and sample signals based on a predetermined sample rate

- How specific frequencies and waveforms can be implemented and produced using physical devices

Engineering Design
- How Subsystems feed into the overall purpose

- How to research and and generate circuit designs to fulfill your goals

- How diagnose issues with the project and incrementally improve aspects about it



Experiment with Different DACs
- The project was largely limited by the capabilities of the DAC in use, with issues such as Quantization

- Explore how the various different data protocols could affect the quality of sound we produce

- Explore how different bit resolutions could affect the quality of sound we produce

Experiment with Different Audio Amplifier Circuits
- Alternative amplifier circuits could have provided lower-noise amplification, leading to higher sound quality

- Alternative circuits could have had a larger amplification effect, enabling the project to drive larger, higher power 

hardware

Engineering Design
- Researching more in-depth designs to advance our design even further

- Create a more appropriate schedule that better reflected the turnaround parts for parts and components

Conclusions - What We Would Do 
Differently



Recommendations for 
further work.
Switch to a 16-bit DAC or other Higher Resolution

- A higher bit depth would give more dynamic range, precision and potentially less noise
- Reduces quantization issues

Improve the Capabilities of the Amplifier Circuit
- Improve and employ a lower-noise and higher-power Amplifier Circuit, to further improve the sound quality and 

increase the volume range at which sound can be produced

Utilize Other Microcontrollers
- With the goal of keeping overall cost of the project design, the potential usage of cheaper microcontrollers would be 

beneficial
- Even using the Raspberry Pi Pico may be sufficient



References
Bales, R. (2023, May 20). C++ vs. python: Full comparison. History-Computer. https://history-computer.com/c-vs-python-2/

How to build a clock circuit with a 555 timer. (n.d.). https://www.learningaboutelectronics.com/Articles/555-timer-clock-circuit.php

paulv. (2015, October 25). Add an analog output to the Pi (DAC). Raspberry Pi Forums. 
https://forums.raspberrypi.com//viewtopic.php?f=37&t=124184

Wenzel, C. (n.d.). Audio Amplifiers. techlib.com. http://techlib.com/electronics/audioamps.html 



Thank You!


