Jeremy Lee
Sean Liang
Tyler Shu

MIDI Music Box

Background and Problem

- Music can be expensive / inaccessible
- The use of MIDI controllers are very common in music
production
- Cheap MIDI keyboards have no sound output
- Setting up can get complicated

- Want to make a simple plug-and-play product

Components

High-Level Requirements

Subsystems and Design

Functional Test Results

131

High Level
Requirements

Project Goals and Requirements:

1. Synthesize Four different waveforms: Sine, Square, Triangle,
Sawtooth

2. Produce Eight Note Polyphony - that is, simultaneously play 8
notes

3. Produce Pitch in the Frequency Range C2(65.4Hz) - C5(525.5H7),
with additional capability of capability of 15kHz with Harmonics

4. Drive a speaker utilizing up to 20W of power

Subsystems - Original

Block Diagram

Processing System

Processes MIDI Input and
convert to Analog Signal

Included potential filter

Power Subsystem

Generate and Convert Voltage

to appropriate levels

Utilize a Li-Ion battery and
Step-Down regulator for 3.3V
Output Control Subsystem
Enable User-Controlled Input

for Sound Variability

Output Subsystem

Amplify and Output modified

Analog Signal

Processing System

Board Microcontroller
(Raspberry Pi)

(Wave Tat;e Lookup)

Filter Applied to Digital
Signal based on Velocity

v

MIDI ||
Data |
Input |
1 ;
| | signal
| | Processing
| | and
: Conversion
| | Subsystem
I

Digital-to-Analog Converters

Power Subsystem

Lithium-lon Battery [5V]

Step-Down Voltage Regulator

Output Control Subsystem

Waveform Control
— Input

|
|
|
|
|
: [Two Switches]

Volume Control
[Potentiometer]

Produces Unique Address from
Wave Table based on Pitch and
Waveform Control Input

| Sound System

Volume Amplifier |
(Or Dampener)

Speaker (May
#| Include 3.5mm
Jack)

A

Output Subsystem

Subsystems - Final
Block Diagram

- Signal Processing and

Conversion Subsystem
- Incorporated Timer Circuit to
create consistent output
- Power incorporated to power
Raspberry Pi as opposed to
Micro-USB Power Source
- Power Output and Conversion

Subsystem
- Incorporated DC Power Jack
and Step-Down Converters
- Output Control Subsystem
- No changes made
- Output Subsystem
- Final output changed from
3.5mm Jack to a Speaker

r— —————————————————————————————————————— -
A |
| Processing System Power Output and o
| | Signal Processing and Conversion Colivaision Subsystom) .
|
| SUbSVStfm Digital-to-Analog |_| '
b I Converter] Step-Down Converter (12V to :
| Raspberry Pi = 5V)
e GPIO 1 L '
Input | i 555-Timer | | Step-Down Converter (12V to |
oo 3.3V) |
Produces Unique Address from CloCk Clrcult |
Wave: Table:based on Pich andl|r=crararmasaabls e e ey s e . J
Waveform Control Input
5V Power
12V Power
Y [o e v == 3.3V Power
: Waveform Control || SPIData
Input Volume Control - :
: [Two Switches] [Potentiometer] Serial Input (MIDI)
| DATA (Wired)
| | Output Control Subsystem |
[
| 5 |
> Volume Amplifier
: L Speaker :
: § ound SVStem Output Subsystem :

Final Schematic

Components:

Raspberry Pi: RPI Model 3B+
Reads input data from MIDI
Controller
- Outputs data to DAC representing
Digital Signal
- Alsoreads data from Switches
connected via GPIO Pins
Timer IC: LM555
- Used to standardize the Sample
Rate by clocking RPI code
Digital-to-Analog Converter (DAC):
MCP4911
- Converts Digital Signal from
Raspberry Pi to Analog Signal
Amplifier: LM386
- Amplifies Analog Signals,
amplifies Analog Signal from DAC
12V to 5V Step Down Converter:
VX7805-500
- Provides power for majority of
circuit
12V to 3.3V Step Down Converter:
VS7803-500
- Provides reference voltage for
DAC

DAC;QUL*I |7,

C_Potentiometer_Unpolarized

E

M386_AMPLIFIER
LM386MX~1_NOP

JE:
- L

ASIEIEIE[EIE]E

IRHRBRBE

GND

Amplifier Circuit

Power Circuit

POWER_JACK2
KLDX-0202-8
wlef
i

C1_STEPDOWNS
100F

SWITCHL

Pi-

.7

Switch
Circuit

Pi=19.MOSI__4_|o

vourp—8—

7
VREF|eS—
(]

v
GND

8 DAC_OUT

3V3 POWER

CLOCK_TIMER1
M555CM_NOPB

Clock Circuit

Raspberry Pi

aspberry_Pi_3_Model 8

TIMER_OUT

1D_5D/GPI00E
1D_SC/GPIO12E-

SCLKO/GPIO114

PWMO/GPI012¢
PWM1/GPIO1 33

D7 Pi-SwiTCH1
bo Pi-switch2

TIMER_OUT

Power Subsystem

- Utilizes the Power
Circuit, producing 5V
lines and 3.3V lines

- 3.3Vline feeds into DAC

- 5Vline feeds into all other
components

12V POWER l
J— EGGREE | Amplifier Circuil | Power Circuit R NGRS
= I LM386MX~1_NOPB TR KLDX-0202-8|
T W & =
$ 3 C_Speaker2 el o
° 2 3 i 12V POWER
2 o eyt sreass
5 3 2 | npur vour [-& < C_Speakert
L E I o
+ = 8 C_SpeakerS
g 2 Gt =1
S 5 = FEm— c1_sTEPDOWN
2 3 5 | I 2 10 Ohms C_Speaker C_Voltage2 100F
H C_pint 100F
< Cspeater?
& 1nF (0.0014F) CR21 et
C_pint_1 o CSpeakerdy Speakert C1_STEPDOWNS 5
10uf '“r’ [Speaker 10uF
o
- 2e §9
: "8 a2
w
i 2 £7 g3
3 88 %8
5V POWER 8o %
S8 25| se
Switch Digital—-to—Analog Converter SR 72| 3%
= s £
H Circuit DAC — 3
3 MCP4911-E/SN
o !
10k | M vouT—2& DAC_OUT ol
o 7 V3 POWER
5V POWER VREF|<-£ 3v3 Pow|
Oy *LDAC 5
- 2
GHp R,SWZ; SWITCHZ 12.2u
Ly R 4 +1l [casfeppowns
3 ano 100
1 pio2.5v4 —L 5V POWER 7l [tepoowns
Raspberry P) o
Clock Circuit - Tl FczStepoouns
CLOCK_TIMERL 1
LM555CH_NOPB
Raspberry_Pi_3_Mode
5V POWER s [0,
4
CONTROLLVOLTAGE
C2_Timert DISCHARGE GPI014/TXD 10_50/GPi00LL e
1uF (100nF) 4 1 Reser ourPut GPI015/RXD 1D_SC/GPIO1
6] TuResHoLD
2] tmiceer 36hcpi016 SDA/GPI02 TIMER.OUT
oo e i SCL/GPI034>
ey 12L6pi018/PuMO .
R_Timer2 GCLKO/GPIO4
T o 0% % GPI019/MISO1 GCLK1/GPI0S
il 286GPI020/MOSI1 GCLK2/GPIO6
= CLtiment 1 - [T el
I0F(A08E) 330 TE/PioTeS L o cco
Leeri022 CTEO/GPI08 =
=PGPI023 MIS00/GPI09
Fr sy s CRLE LT
2cpi025 SCLKO/GPIO1 1 1=
3Zcpi026
13L6pi027 PWMO/GPIO1232
PWM1/GPI013¢

Output

$RHEINER Amplifier Circuit] Power Circuit
i s | ’
g ur ‘ —.] i T
< o 335FL ¥ C_Speaker2 |
23 3 HEs EEH— jt
S [T I 33f Speakers | %*ﬂl_._‘
U 'l. h A l.ﬁ J__'ﬁ i R2 10 Ohms | 537ﬂk59eaxe s‘ +| C_voltage2 “';'[”CW
— F = = 4 ol | R 2L Cvottage: o
tilizes the Amplifier i e 1-1 L Wt e
lrcul Touf Chaz T — F” 2 Speaker 100F
o oo
P 5%
- Connected to the > y_4 fe 93
A zo 8%
Output Control —B a8
pu ontro g}uitc‘r{ Digital—to—Analog Converter B8 5B | sg
2 rcu . a3 5
Subsystem g LLJ ﬁd'
> R Swmon o mz' Imm ;
10k = 8 DACOUT ol
- Takes in dampened = T e el o
PI=10 HOSi sck VREFl<
DAC output o LT | - "
10k .i, SW_SPST v + C4_S[EPDOWNS
o s srmm | Seons
0 g g Clock Circuit - Raspberry Pi ’ A2 Hernomns
CLOCK_TIMER1 1
- Amplifier Circuit
. 5V _POWER s lve N)JL .-icﬂ\) ! o
contains an LM386 o v
. s ioom: rm e bt g e o =
Ampllﬁer I 2 ::T:&oln ﬁ 2:2;: zzfzi Ei:i TIMER_OUT
. . 12L6p1018/PWMO il
- Amplifier responsible Ao TR
38,Gp1020/M0SI1 GCLK2/GPI06PL
f . - (o’{u‘rw':’;m 40L6pi021/5CLK1 o &
or output gain s i i A
:—: GPI023 MIS00/GPIO9: —; —
Hooe mveedh DRI
. . . EE| g:g;: PwMo/cmoxzzg’é
- Amplifier Circuit also
contains the Speaker | S

"Wenzel, C. (n.d.). Audio Amplifiers. techlib.com. http://techlib.com/electronics/audioamps.html

oacour LM386_ANPLIFIERS R Amplifier Circuit | Power Circuit e s
S b | } —
t g w
57 H vl
= | ul C_S ker2)| -
u S S em H Borm 3 lowest (oees 7 et 12V POWER 17
2 _iwpur vour |5 eakerd
I o
JECH A -—
v

- Utilizes the Switch
Circuit to control type of

Waveform —
- Connected to GPIO Switch :
Pins on Raspberry Pi L L

2B

A
E FIEREIRTL

Sol B

]
SERET
— i
PEARAR

+
]
Speskers) — C1_STEPDOWNS
Speaker 100F
+
4+

Digital—to—Analog Converter | “*7$200

DAC
MCP4911-E/SN

SWITCHL

g 100F |
DAC_C100 j oAC_clouF2
&| sw.ses
10k & & = P DAC_OUT
147/07 " Pi-24.CE0__ 2 |.cc yesl—7
Pi-19_MOSI 4 5
| L4 oo *LDAC]
DK GND T 0
Rsw2ey| SWITCHS
- ilizes part of the !
GND

Pi-SWITCH2

Clock Circuit Raspberry Pi

Amplifier Circuit to
control gain of waveform
- Integrated into Output

LM555CM_NOPB

aspberry_Pi_3_Model 8

g 7 Pi-SWITCHL
1D_5D/GPI00EL
b eC/cpios 28 Pi=swiTcH2

|S]e

Subsystem i, o
6CLKO/GPIO4SL
- Originally intended to e et
g
[439 26
be part of Output R - L
C trol Subs Stem %g:g;; 3?58?2?33&*
On y ’ e 2:5;6 wno/cmoxzf_ﬁ

PWM1/GPI013:

but was built into
Amplifier Circuit

- Takes input from the
DAC, outputs to
Output Subsystem

Signal Processing
and Conversion

Subsystem

- Utilizes the Raspberry Pi,
DAC!, and Clock Circuit

- Clock Circuit feeds into
Raspberry Pi to provide
constant external
clocking

- Raspberry Pi connected
to DAC to provide Digital
Data for conversion

- DAC connected to
Amplifier Circuit

LM386_AMPLIFIER1
LM386MX~1_NOPB

Amplifier Circuit

3 wF

DAC_OUT l |

2

N 9%

T &

+iNeuT
-iNpUT
GAIN

GAN_1

1nF (0.0014F)
C_Pin1_1
10uF

33uF, Speakers
. F
= *55} Speaker2
? - 4
svonss
e rE—Y e e
B 1 | e
T 330 Speakers
— | P
Bl R2 10 Ohms | 33uF Speaker6 +l, Cvatagez
L — | Kttt =i
330F] C_Speaker7
cR21 T 71"— 4
: [sseppeseearenl " konien
] [Speaker

Power Circuit

12V POWER

e —

C1_STEPDOWNS

Switch

Pi-swiTCH1

Circuit

5V POWER

Digital—-to—Analog Converter|

DAC
MCP4911-E/SN

DAC wo j DA[clour2
VoD
Pi-20CE0 2 l.cc

sck
—>{sDI

PI—23.5CLK 3 o] J
Pi=19 MOSI__4

vouT
vss|

*LDAC

8 _DAC_0UT
S 3V3 POWER
5
v
GND

Clock Circuit

wiTCH1
Rswid W_SPST
1%’/07* e
5V POWER
o or
SMZN SWITCHZ
1ok B swsest
s
H
CLOCK_TIMER1
LM555CH_NOPB
5V POWER s

v

CONTROLVOLTAGE
DISCHARGE

tzwex

(oorI

TRIGGER

Raspberry_Pi_

_—
Raspberry Pi

3_Model B

oureur |2 1
36|
s 1]

.

— C1_Timert

I 01uF (10nF)

=
R R ke
™ =

Ja 48]

paulv. (2015, October 25). Add an analog output to the Pi (DAC). Raspberry Pi Forums. https:/forums.raspberrypi.com//viewtopic.php?f=37&t=124184

vl’aur
\

|

GPIO14/TXD 1D_SD/GPio0qeL—EI=SWITCH1
GPI015/RXD 1D_5C/Gpi01428PI=SWITCH2
GPI016 5DA/GPI024 3 TIMER.OUT
GPIO17 SCL/GPI03E>-
GPI018/PWMO
GCLKO/GPIOA L
GPI019/MISO1 GCLK1/GPIOS2Y
GPI020/MOSI1 GCLK2/GPIO6PL
GPI021/SCLK1 ;
TEL/GPI07eRE
GPI022 CEO/GP Uez_‘ll Pl=26.CE0
GPI023 MIS00/GPIOgLE
GPI024 MOS10/GPi010i2 PI=19.HOS)
GPI025 SCLK0/GPIo1123 Pi=23.SCLK
GPI026
GP1027 PWMO,/GPI012d52
PWM1/GPI013eP3

[3v3 POWER

Pi-2.5V1

Pi-6_GND1

i3

¥
C1_STEPDOWN
100F

4

S ow
29
b wnin
Ro 28
g .2
b
22 uZ
£9 32
3n 23
22 &2
€8 53| =e
EE Th| 28
is
g
3
1 5V POWER

& ;.

POWER_JACK2
KLDX-0202-B

EPDOWNS
EPDOWNS

EPDOWNS

PCB Design

Size Standardized
for Container
Dimensions

Design - Power Output and
Conversion Subsystem

Power Output and Conversion
Subsystem Timeline

Initial Power Subsystem Stage
- Amplifier powered by lab power
supply
- DAC was powered by Raspberry PI
G GPIO pins

g Final Power Subsystem Stage

CNAOL

Uimoe AL
HipOe A

- Amplifier powered by 12V power

STEE NN e
: YX7803-500 ja(}k
3 o A7es 500
' (EEMUMN- oY, - 12Vto 5V DC-DC converter output
GND/~VOUT 1 o powers Raspberry PI and DAC
+VOUT/GND +VIN? e g S

12V to 3.3V DC-DC converter output

-+ +| y = ——

[
|
;

SERER L "3 = o used for reference voltage for the
! il nfS 2 | RE
" S DAC

: 53 Sy

Verification of 5V Power

Results - Power Output
and C Onversion - Failed to consistently hit
Sub Syst em target voltage, but came

Supply Using Multimeter
Target Range: 4.85V - 5.15V

close

- Power issues caused by

inconsistent and insufficient

voltage lead to issue
powering the Raspberry Pi

- New issue, issue arose after
break

Verification of 3.3V Power

Supply using Multimeter
Target Range: 3.15V - 3.45V

- Failed to consistently hit
target voltage, issue may be

with booster or other load
factors

Clock Design: Sample Rate

Problem ¥ é

mQ

- Naive approach to read MIDI data

C
T

100nF

o 8
and output digital data to the DAC - [2 ;
resulted in a change in the sample T [3 555 5
rate depending on the amount of e [[4 5

5V

notes pressed

AT

- No set sampling frequency

c1

Solution :—TL: 10nF

- Create a simple square wave circuit

of a desired frequenc
q y To create a 6Hz signal, R1= 10MQ and C= 10nF.

- Used LMs55, capacitors and a resistor To create a 600Hz signal, R1= 100KQ and C= 10nF.
- Adjusted resistance to get desired To create a 134Hz signal, R1= 470KQ and C= 10nF.
clock frequency To create a 1.7KHz signal, R1= 33KQ and C= 10nF.

To create a 43KHz signal, R1= 1KQ and C= 10nF.
To create a 180KHz signal, R1= 150Q and C= 10nF.
To create a 252KHz signal, R1= 100Q and C= 10nF.

How to build a clock circuit with a 555 timer. (n.d.).
hitps://www.learningaboutelectronics.com/Articles/555-timer-clock-circuit. php

Clock Design - Results

Results
- Able to create a square wave
of our desired sampling
frequency of 32 khz with a
resistor value of 1220 ohms

Future Problems
- Duty Ratio might be a
problem in calculating the

H-E"—" ——

> Curoors

sampling rate for our gl BA0000us [¥3: 5768250

program

MIDI Data: An Overview

- Musical Instrument Digital Interface (MIDI) is a standard for both transmitting and storing music.
- Datais sent serially
- MIDI data itself is not audio

- Data consists of MIDI messages: one status byte followed by up to two data bytes

- A status byte always starts with a 1, while a data byte always

Status Explanation Msq Size Byte 1 Byte 2

0xSc Mote Off 2 pitch velocity starts with a o

0x9¢ Note On 2 pitch velocity

OxhAe [Key Pressure 2 key pressure - For our project, we focused on two messages: note on & note off
0xBe Controller Change 2 controller value

OxCo | Program Change 1 preset - Note on is sent at the start of a note press and note off is sent at
OxDc Channel Pressure 1 pressure

OxEe Pitch Bend 2 bend LSE | bend MSE the release

0xFE Active Sensing
OxFF System Reset

0xFO | System Exclusive n vendor ID anything
0xF2 Song Position 2 position LSE | position MSE
0xF3 Song Select 1 song number
OxFS | Unofficial Bus Select ! bus nurmber
0xFé& Tune Request u}
OxF7 End of SysEx u]
0OxF8 Timing Tick u]
OxF & Start Song u}
0OxFB Continue Song u]
OxFC Stop Song u]
0
0

MIDI Data: An Overview (con’t)

- For note on & note off messages, the two data bytes contain information about the pitch and the velocity (how
“hard” a note is played)

- We don’t use any MIDI channels for our project

- Anote on with a velocity of o is equivalent to a note off

Status byte Data byte Data byte

1]oJo[1]oJo[1]o]o]1]oJo]o[1]o]1]o1]1]0]0]1]0]0

I Il Il III I
| T I |

Note ON MIDI CH (3) Note Number (A4) Velocity (100)

Python Design:
An Overview

- General idea: read MIDI messages sent from the controller,
specifically NOTE ON / NOTE OFF

- Based on the notes being played, calculate the output value and
send the data to the DAC

oython’

Python Design: RtMidi

- For reading MIDI data, we used the PyRtMidi library (based on RtMidi for C++)
- This allowed the Pi to detect the MIDI controller and parse MIDI messages
- We only read input MIDI data, the program doesn’t need to output any MIDI data

ports = range(midiin.getPortCount())
if ports:
for i in ports:
print(i)
print(midiin.getPortName(i))
print("Opening port 1!")
midiin.openPort(1)
while True:

C late

for note in phase
phase[note] += phase_incr[note]
phase[note] = phaselnote] % wt_resolutio
for note in note_samples:
note_samples[note] = sine[round(phaselnote])] #
output = sum(note_samples.values()) #value to
print(output)

Python Design: RtMidi

- Once the program detects a MIDI message, it checks for note on or note off messages
- For a note on message, the program does some calculations for the output value of the note

- For anote off, the program clears the output value of the note

note_samples = {}
phase = {}
phase_incr = {}

def midi_init(midi):

if midi.isNoteOn():
global polyphony
polyphony += 1
frequency = 440 x (2 *»k« ((midi.getNoteNumber() - 69) / 12))
phase[midi.getMidiNoteName (midi.getNoteNumber())] = @
phase_incr[midi.getMidiNoteName(midi.getNoteNumber())] = wt_resolution * frequency / sample_rate
note_samples[midi.getMidiNoteName(midi.getNoteNumber())] = @

elif midi.isNoteOff():
polyphony —= 1

del note_samples[midi.getMidiNoteName(midi.getNoteNumber())]
del phase[midi.getMidiNoteName(midi.getNoteNumber())]
del phase_incr[midi.getMidiNoteName(midi.getNoteNumber())]
elif midi.isController():
print('CONTROLLER ', midi.getControlNumber(), midi.getControlvalue())

Python Design: Wave Table

For calculating the output samples, we use the same technique used in
wavetable synthesis

- One period of a wave is stored in memory (we use 1024 samples, generally
the number of samples is a power of 2)

- Atagiven sample, the output value is one sample of the wavetable.

- The current position of the wavetable can be thought of as the phase.

- Every sample, the phase of the wavetable increments by a certain amount.

- The increment depends on the table size, frequency of the note, and
playback rate.
- Our wavetables were initialized in python as arrays.

100

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

SawRoundedToSquare

0 0

- ~

a
15 v

UNISON DETUNE BLEND PHASE RAND
A Phase:

PAN LEVEL

o

200 400 600 800

1000

Python Design: Wave Table

To implement this in python, we used dictionaries for each note’s output value, current phase, and phase increment

- The key for the dictionaries are the note numbers, so each note has one key:pair value

- The phase increment is constant for each note and only needs to be calculated once

- The frequency of a note is 440 « 2™ -% /12 where nn is the note number (from the MIDI message)

- The phase increment is the frequency of the note multiplied by the number of samples in the wavetable, divided by the
playback rate

- Each sample, the phase increment is added to the phase, and the wavetable value at the phase is set.

- The final output is the sum of each individual note’s output

for note in phase_incr: # calculate ses for the current sample.
phase[note]l += phase_incr[note] #incr i
phase[note]l = phase[notel % wt_resolution

for note in note_samples:
note_samples[note]l = sinelround(phasel[notel)] #add ve
output = sum(note_samples.values()) #value to output to

C++ Design: An
Faster Solution

- Python Implementation too slow, extremely limited sample rate
caused frequency range to be too small
- Ported program over to C++
- RtMidi library for Python based on same library for C++,
program needed to be modified accordingly
- SPI Library for Python not available in C++, researched and
used the WiringPi library which included an SPI sub-library

- General idea for program stayed the same

- Fun Fact: C++ is anywhere from 10x to 100x faster than Python,

depending on context!!

Bales, R. (2023, May 20). C++ vs. python: Full comparison.
History-Computer. https://history-computer.com/c-vs-python-2/

C++ Design: Initial Gomputatlo

Table Computation based on Sample Rate
- Similar to Python Approach, tables are
pre-computed
- One table of 1024 samples for each wave
computed
- Other computations to relieve computational

load later in the program:

- Frequency for each note number computed
- Phase Increment for each note number

computed
Sample Rate Calculation
- Sample rate calculated at the beginning of
operations to evaluate timer/clock-circuit
performance
- Evaluated using nanosecond precision timing,

counts predetermined number of clock cycles

AR “Lo

v

=
a

OOuble frequenc1es[NUM POSSIBLE_NOTES];
double phase_increments[NUM_POSSIBLE_NOTES];

void initTables(void) 11 double sineWave[1024];
{) double squareWave[1024];

calculateFrequencies();
calculatePhaseIncrements();
calculatelWaveforms();

setSampleRate timespec& startTime, struct timespec& endTime)
int count = @;
clock_gettime(CLOCK_MONOTONIC_RAW, &startTime);
while(count < 100)

while(digitalRead(CLOCK_PIN) == LOW

whi digitalRead(CLOCK_PIN) == HIGH
count++;

(CLOCK_MONOTONIC_RAW, &endTime);

Time = (endTime.tv_sec - startTime.tv_sec) * 1e9 + (endTime.tv_nsec -

dol P

elapsedTime = elapsedTime / 1080;

double frequency = 1.0 / (elapsedTime * le-9);
CLOCK_RATE = (int)frequency;

SAMPLE_RATE =
std::cout << "Clock Rate is:" << CLOCK_RATE << std::endl;

double triangleWave[1024];
double sawtoothWave[1024];

startTime.tv_nsec)

C++ Design: GPIO and SPI Setup

GPIO Initialization
- GPIO Pins Setup using WiringPi library

setupGPIOANdSPI(

int setup;

- Pin Numbers defined by WiringPi Convention N
. std::cout << "Setting up SPI..." << std::endl;
aSSIgned based on constants set at the tOp of setup = wiringPiSPISetup(SPI_CHANNEL, SPI_SPEED);

std::cout << "SPI set up with Channel " << SPI_CHANNEL << " and Speed " << SPI_SPEED << std::endl;

std::cout << "Setting up Clock Pin and Switch Pins..." << std::endl;

- Initial Setup of specific pins required e
pinMode(CLOCK_PIN, INPUT);
LI 3 3 pinMode(SW_PIN_1, INPUT);
SPI Inltlallzatlon pinMode(SW_PIN_2, INPUT);
std::cout << "Clock Pin set up using WiringPi Pin " << CLOCK_PIN << std::endl;
= SPI Protocol Initialization using Wiringpi std::cout << "Please note that WiringPi Numbering Convention differs from RPI's.\n" << std::endl;
std::cout << "Switch Pins set up using WiringPi Pins " << SW_PIN_1 << " and " << SW_PIN_2 << std::endl;
Sub—library Wiring‘PiSPI std::cout << "GPIO and SPI Setup Complete!™ << std::endl;
9 C

return;

- Channel and Speed specified for initialization

C++ Design: Recelving MIDI Data
Utilizing the RtMidi Library Sl e
- (C++ code utilizes the RtMidi library to handle
receiving MIDI data from the USB Ports
- Initializes a RtMidiln object, Opens a Port for

(void)signal (SIGINT, finish);

RtMidiIn *midiin = nullptr;

reading :
- Callback Function for Interrupt-based approach g ' ld oS aewiRTtd) §
iE;Il()IT?(l catch(RtMidiError &error)

Ports = midiin->getPortCount();

- Initial implementations used Interrupt method but ‘
encountered major errors with segmentation > iF(nPorts ==)

faults created by interrupt approach

midiin->openPort

midiin->ignoreTypes(f

std::cout << "MIDI Protcol Set Up!" << std::endl;

return midiin;

C++ Design: Reading the Buffer

Reading the Available Message

g har> message;
. . o 572 >getMessage(&message);
- Program checks the associated port for data in T

if(!message.empty()

its buffer

- Avoids the Interrupt-based approach. Previous

Hé;t;s =>mé;;$ée:;ize();
t messageByte;
implementation using such would cause a Fortnst
{

messageByte = (int)message.at(i);

}

ed int 1 = @; i < nBytes; i++)
Segmentation Fault due to memory access of
removed entries when interrupt occurs during

mathematical operations

- Processes any new data/messages from the MIDI e P B
Controller X fote on -5 check

- Messages consist of NOTE ON or NOTE OFF A
messages 1 e

- Tirst Byte contains Note Number

- Second Byte contains Note Velocity (Keypress

Intensity)
- NOTE ON Message: Note added to e e e
mapdictonars of 08 NOTES
- NOTE OFF Message: Note removed from = .

map/dictionary of “ON NOTES”

C++ Design: Determining the Wavetform
Checking the GPIO Pins and Switches

- Switch status checked upon each iteration using i e GRS bl e)

if(wave ==

the WiringPi Library

- Pointer re-assigned based on target waveform arrayPtr = sineWave;
int checkSwitchPins()

int switchl = digitalRead(SW_PIN_1);
int switch2 = digitalRead(SW_PIN_2);

else if(wave == 1)

if(switchl == LOW && switch2 == LOW)
{ arrayPtr = squareWave;

return ©;

else if(switchl == LOW && switch2 == HIGH)

¢
{
return 1;

else if(wave == 2

els f(switchl == HIGH && switch2 == LOW)

arrayPtr = triangleWave;

return 2;

else if(switchl == HIGH & switch2 == HIGH)
I
{

else if(wave ==

return 3;

return -1;

arrayPtr sawtoothWave;

else
Switch 1 Switch 2 Wave Produced :
0 0 Square 0
K arrayPtr sinelWave;
0o 1 Sine
1 o) Triangle
1 1 Sawtooth

Design: DAC Output

sum = ©;

C++

& pair: phase
int key = pair.first;

phase[key] += phase_increments[key - NOTE_NUM_OFFSET];
phase[key] = fmod(phase[key], WT_RESOLUTION - 1);

sum += (arrayPtr[(int)phase[key]] + 1) * 64;

if(sum > 1024

sum = 1023;

int output = (int)sum;
outputToDAC(output, 10);

Incrementing the Phase
With pre-calculated frequencies and phase

increments, the phase of each wave in the dictionary is

added, summed up into one output wave/value

oid outputToDAC(int value, int bits)

highByte;
output[31;
result;

lowByte = ©6b0EEEEEEO;
lowByte |= (value << 2);
lowByte & 6b11111100;

highByte |= (value >> 6);

char*>(output), 2

Following the SPI Protocol
The output value is then masked and formatted appropriately

following the SPI Protocol, and output to the DAC using the
WiringPi library. The function is currently configured to
output 10-bit output to the DAC, which includes 4 Control
Bits at the beginning

Requirements and Verification - Signal
Processing and Conversion Subsystem

The following Requirements and Verification table was generated to evaluate the
subsystem’s performance and provide a goal for functionality. Functional test
results are provided in the following slides.

Requirements Verification
- The Raspberry Pi must be able to - Verify Serial reading by passing in
read Serial input from its serial test input with predefined
ports utilizing the MIDI protocol, waveform, and verifying based on
at the rate determined by the output audio
protocol (31250 bits per second) - Utilize all bits of DAC Components
- The DAC must contain a resolution capable of 10-bits. Evaluate based
of a minimum of 10-bits on waveform clarity with
- The DAC must be able to output Oscilloscope
waveforms with frequencies within - Verify DAC Frequency Range and
the target range, up to 15KHz waveform shape using Oscilloscope
- The DAC must be able to produce 4 and test input
different waveforms (Sine, Square,
Triangle, Sawtooth)

Test Results - Signal Processing
and Conversion Subsystem DAC Frequency

' REEN AL e
- The DAC should be able to
—-——i ig%;“ﬁ%g output signals up with
T . |
L | measuring the rate of the

-. : — DAC’s clock rate and output

to be 39.840kHz, we

frequencies up to 15kHz. By

calculate the Nyquist
Frequency (Maximum
Frequency) to be 39.840kHz
/ 2 =19.92kHz, exceeding

our requirement.

Frequencies of as low as 4 Hz were also

achieved!

Test Results - Signal Processing
and Conversion Subsystem

DAC Waveform Outputs
The DAC is able to output four different

waveforms. Shown above are the Sine,
Square, Triangle, and Sawtooth
Waveforms that are the output of the

DAC.

Design - Output and
Control Subsystem

- Simple switch design to send high or
low signal to GPIO pins
- 10K potentiometer for a controllable

gain from 20 to 200

3.3V

/L_./ RA1

GND

Active High

1uF

10k
1nF
hitp://techlib.com/electronics/audioamps.html
Switch 1 Switch 2 Wave Produced
0 o Square
o] 1 Sine
1 (o) Triangle

Sawtooth

Verification - Output
Control Subsystem and
Output Subsystem

Waveform Variability
Able to hear a difference in the

sound when flipping switches,
but ran into issues where one
GPIO pin wasn’t getting any
voltage high signal

Verification - Output
Control Subsystem and
Output Subsystem

Gain Variability
Gain was achieved using a potentiometer linked to an amplifier circuit. Maximum gain of

100 was achieved, with values over such causing clipping, likely driven by the limitation of
the amplifier used. Gain is able to be controlled using the potentiometer.

O, T
LT, W ‘

Maximum gain value calculated: 11.3/0.113 =
100

Verification - Output
Subsystem

Speaker Frequency Range
As mentioned previously, Nyquist

Frequency was calculated to be
above 15kHz, indicating that the
speaker should be able to output
such

Relationship of Nyquist frequency & rate (example)

Nyquist
Bandlimited channel f'equenCy .
| Nyquist Sample

rate rate
T

0 B 1/2Ifs 2B ¥s

frequency

Speaker Power Rating
The Speaker is rated for 35W, indicating maximum load. However, the circuit was

providing about 1 watt of power as we used a LM386 which had an power rating of 1

watt
Rated Input Power (AES Continuous) 35 Watts RMS (AES Continuous)

Maximum Input Power (IES short term) 70 Watts Peak (IEC Short Term)

Recommended Amplifier Power 35 Watts FTC

Verification - Output
Subsystem

Project Final Output

- Full range of MIDI
Notes able to be
output

- Different types of
waveforms available

- 8 Note Polyphony
achieved

- Speaker can be
driven up to
specified wattage,
but is not due to

circuit limitations

Conclusions - What we Learned
MIDI Data
- How MIDI Data is Formatted
- How MIDI Data is Delivered
Interfacing with DACs
- The various types of protocols DACs utilize
- How DAC Resolution can affect precision
- How to synchronize your application with DACs
Signal Processing
- How to generate and sample signals based on a predetermined sample rate
- How specific frequencies and waveforms can be implemented and produced using physical devices
Engineering Design
- How Subsystems feed into the overall purpose
- How to research and and generate circuit designs to fulfill your goals

- How diagnose issues with the project and incrementally improve aspects about it

Conclusions - What We Would Do
Differently

Experiment with Different DACs
- The project was largely limited by the capabilities of the DAC in use, with issues such as Quantization
- Explore how the various different data protocols could affect the quality of sound we produce
- Explore how different bit resolutions could affect the quality of sound we produce
Experiment with Different Audio Amplifier Circuits
- Alternative amplifier circuits could have provided lower-noise amplification, leading to higher sound quality
- Alternative circuits could have had a larger amplification effect, enabling the project to drive larger, higher power
hardware
Engineering Design
- Researching more in-depth designs to advance our design even further

- Create a more approoriale schedule that better reflected the turnaround parts for parts and components

Recommendations for
further work.

Switch to a 16-bit DAC or other Higher Resolution
- Ahigher bit depth would give more dynamic range, precision and potentially less noise
- Reduces quantization issues
Improve the Capabilities of the Amplifier Circuit
- Improve and employ a lower-noise and higher-power Amplifier Circuit, to further improve the sound quality and
increase the volume range at which sound can be produced
Utilize Other Microcontrollers
- With the goal of keeping overall cost of the project design, the potential usage of cheaper microcontrollers would be
beneficial
- Even using the Raspberry Pi Pico may be sufficient

References

Bales, R. (2023, May 20). C++ vs. python: Full comparison. History-Computer. https://history-computer.com/c-vs-python-2/
How to build a clock circuit with a 555 timer. (n.d.). https:/www.learningaboutelectronics.com/Articles/555-timer-clock-circuit.php

paulv. (2015, October 25). Add an analog output to the Pi (DAC). Raspberry Pi Forums.
https:/forums.raspberrypi.com//viewtopic.php?f=3781t=124184

Wenzel, C. (n.d.). Audio Amplifiers. techlib.com. http://techlib.com/electronics/audioamps.html

Thank You!

