

ChipCaddy

Justin Wang, Marvin Camras, Anish Rajesh

ECE 445 FA23: Team 16

December 4th, 2023

Problem

What does ChipCaddy do?

High Level Requirements

- 1. Pot count should be updated within 5 seconds of sensor reading.
- 2. The user will be able to **reset the pot count** to 0.

What does ChipCaddy do?

High Level Requirements

3. The user can **choose the number of ways the pot will be split**, and the respective color denominations will be **shown on the LCD**.

What does ChipCaddy do?

High Level Requirements

4. The device will keep a tally of the number of chips counted

Block Diagram

Power Subsystem

- PCB powered by external 6V battery pack
- 6V are supplied to the linear actuator (pushing motor) and servo (spinning motor)
- 3.3V output of LT1117 regulator to LCD, STM32, and color sensor

Power Design Changes

- 1) From project proposal
 - 12V battery pack with motors being powered by MCU
- 2) Pre-design document
 - 9V battery pack with two voltage regulators, 3.3V & 6V
- 3) Final design
 - 6V battery pack with one voltage regulator, 3.3V

Motor Subsystem

- Servo motor for rotating
 - 210 degrees of freedom
- Linear actuator for pushing chips

Motor Design Considerations

Requirements	Verification
1.Both motors receive 6 +/- 0.5% Volts from the power subsystem.	1.Insert three chips into the contraption.2.Apply a voltmeter to both motor connections and record the values in a table for all the chip ejections.

Stall Torque (4.8V)	42 oz-in (3.0 kg/cm)
Stall Torque (6.0V)	51 oz-in (3.7 kg/cm)

Control Subsystem

- STM32F103C8T6 microcontroller is the brain
- Nucleo-64 development board for prototyping and system integration
- Handles timing, internal logic, and control of LCD, buttons, motors, and sensor

Control Design Considerations

- 1) MCU selection
 - o ESP32 to STM32
- 2) PCB programming
 - STMCube to STMduino
- 3) Algorithm for split pots
 - Greedy algorithm
- 4) Incorrect soldering of STM32
 - Soldered MCU incorrectly, used Nucleo board for the demo

Sensing Subsystem

- TCS3200 color sensor
 - Photodiode converts reflected light to current
 - Current then converted to frequency

Sensing Design Considerations

Requirements	Verification
•The microcontroller receives the right RGB value corresponding to the chip that is inserted, based on information relayed from the TCS3200 sensor.	1.Insert the <i>x</i> amount of chips the contraption supports, of varying colors. 2.Record the values received by the microcontroller that corresponds to the TCS3200, ensuring that each value is within a standard tolerance from a central value. E.g. if we chose Green to have a central value of 200, all chips should be between 180 and 220 if the tolerance value is set to 20.

Red: 46Green: 38Blue: 22

Blue

Red: 44Green: 31Blue: 29

Green

User Interface Subsystem

Final Design

- Full functionality on development board and PCB
- Nucleo-64 board for final demonstration
- Difficulties differentiating between green and blue chip
- Small issue with motor torque

Next Steps

- PCB integration
- Accommodation of side pots, all-ins
- Improve packaging, noise, and speed

Final Thoughts

 Gained experience soldering, low-level programming, debugging, PCB layout, mechanical design

Works Cited

Amazon.com: Nucleo-F401RE STM32 nucleo-64 development board with ..., https://www.amazon.com/NUCLEO-F401RE-Nucleo-64-Development-STM32F401RE-

connectivity/dp/B07JYBPWN4 (accessed Dec. 4, 2023).

Amazon. Com: Tenergy Nimh Receiver Rx Battery with Hitec Connectors 6V..., www.amazon.com/Tenergy-Rechargeable-Connector-Airplanes-Aircrafts/dp/B001BCOWLY. Accessed 4 Dec. 2023.

Frequency of light | overview & color spectrum - study.com, https://study.com/learn/lesson/frequency-light.html (accessed Dec. 4, 2023).

"HS-318 Servo-Stock Rotation." Servo City, www.servocity.com/hs-318-servo/. Accessed 3 Dec. 2023.

R. Fee, "6 reasons why live poker is easier than online poker," Upswing Poker, https://upswingpoker.com/live-poker-vs-online-poker-easier/ (accessed Sep. 14, 2023).

"TCS3200 color sensor - programmable color light-to-frequency converter," ams, https://ams.com/tcs3200 (accessed Dec. 3, 2023).

Utmel. "Esp32 vs. STM32: Which One Is Better?" *Utmel*, Utmel Electronics, 22 Feb. 2022, <u>www.utmel.com/components/esp32-vs-stm32-which-one-is-better?id=1383</u>.

Zion Market Research, "Trading card game market size, share and demand 2030," Zion Market Research, https://www.zionmarketresearch.com/report/trading-card-game-market (accessed Sep. 14, 2023).

Thank You!