# **Final Report**

Automatic Cat Litter Box ECE445 Fall 2023

Team #12 Jonathan Chang, Michael Duan, Shihua Cheng

Professor: Arne Fliflet TA: Nikhil Arora

November 28, 2023

#### Abstract

This project successfully addresses the limitations of conventional automatic cat litter boxes by focusing on enhanced odor control and meticulous tracking of cats' litter box usage. The innovative solution features a cat litter box integrated with a motorized raking mechanism, weight sensors, and odor sensors. The motorized rake is triggered by weight sensors to scoop waste efficiently. These sensors are crucial for monitoring the cat's weight, as well as the frequency and duration of litter box use, providing valuable insights into the cat's health. Odor sensors effectively detect and manage ammonia levels, ensuring a more pleasant living environment. The data collected is relayed to the user's smartphone via Wi-Fi, allowing for remote monitoring and control. Collaborating with the ECE Machine Shop, the team achieved all high-level requirements, including 70% accuracy in detecting cat weight, usage frequency, duration, and efficient waste raking. This advanced system enhances cleanliness, offers health monitoring benefits, and ensures a stress-free atmosphere for both cats and their owners.

# Contents

| 1        | Intr   | roduction                | 1         |
|----------|--------|--------------------------|-----------|
|          | 1.1    | Problem                  | 1         |
|          | 1.2    | Solution                 | 1         |
|          | 1.3    | Subsystem Overview       | 1         |
|          | 1.4    | High Level Requirements  | 2         |
| <b>2</b> | Des    | ign                      | <b>2</b>  |
|          | 2.1    | Block Diagram            | 2         |
|          | 2.2    | Board Subsystem          | 2         |
|          | 2.3    | Power Subsystem          | 3         |
|          | 2.4    | Communication Subsystem  | 3         |
|          | 2.5    | Motor Subsystem          | 4         |
|          | 2.6    | Sensor Subsystem         | 4         |
| 3        | Rec    | uirements & Verification | <b>5</b>  |
|          | 3.1    | Board Subsystem          | 6         |
|          | 3.2    | Power Subsystem          | 6         |
|          | 3.3    | Communication Subsystem  | 7         |
|          | 3.4    | Motor Subsystem          | 7         |
|          | 3.5    | Sensor Subsystem         | 8         |
| 4        | $\cos$ | t & Schedule             | 9         |
|          | 4.1    | Cost                     | 9         |
|          | 4.2    | Schedule                 | 10        |
| <b>5</b> | Cor    | nclusion                 | 11        |
|          | 5.1    | Accomplishments          | 11        |
|          | 5.2    | Uncertainties            | 12        |
|          | 5.3    | Ethical Considerations   | 13        |
|          | 5.4    | Future Work              | 13        |
| Re       | efere  | nces                     | 14        |
| A        | ppen   | dix A: R-V Table         | <b>14</b> |

### 1 Introduction

#### 1.1 Problem

Modern automatic cat litter boxes neglect the crucial issue of odor control and often lack the capability to track the duration and frequency of a cat's litter box usage. Over time, as these systems accumulate waste, odors can intensify, causing discomfort for both cats and owners. Given cats' highly sensitive sense of smell, they detect these odors well before humans do. Without monitoring their habits, changes in litter box behavior such as prolonged visits or increased frequency may be missed, which can indicate potential health concerns such as urinary tract infections or digestive issues. These oversights can create an unpleasant living environment, pose health concerns, reduce usability and contribute to stress and anxiety.

#### 1.2 Solution

The proposed solution centers around a cat litter box with a motorized raking mechanism for scooping. The motor will control a pulley system that directs the rake through the entire length of the litter box. Weight sensors will be positioned beneath the litter box. These sensors are responsible for initiating the motorized raking process upon detecting the entry and exit of the cat. Beyond triggering the raking process, these sensors will also act as the means to monitor the cat. By continuously capturing data, they quantify the duration of each cat visit, the frequency of visits and the weight of the cat itself. Odor sensors will be placed within the hood of the litter box, designed to detect and monitor the buildup of ammonia in real-time. This information will be communicated to the user through their phone. The connection between the litter box and the user's phone will be via Wi-Fi. The user will also be able to control the raking through the phone.

#### 1.3 Subsystem Overview

Figure 1 shows an overview of the subsystems of our project. There will be a motor subsystem for raking, a communication subsystem for remote user interactions, and a sensor subsystem to monitor cat health. Additionally, there will be a power subsystem to provide enough power to all the other subsystems. Figure 2 is a more detailed subsystem block diagram.

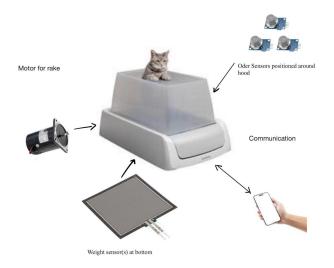



Figure 1: Visual Aid

### 1.4 High Level Requirements

- The litter box should accurately detect the cat's frequency of use, and the duration with an accuracy of 70% or higher.
- The rake should be able to rake the majority of waste into the disposal area (>70%).
- The user should be notified in a timely manner, within 5 minutes from the detection of the sensors.

## 2 Design

#### 2.1 Block Diagram

Figure 2 shows the hardware block diagram of our design.

Software is also needed for the ESP32C3 microcontroller to interact with the hardware and achieve the desired functionalities. Figure 3 shows the software architecture of our design.

#### 2.2 Board Subsystem

This subsystem has an ESP32C3-Mini microcontroller SoC as the core, and has any needed components attached (antenna, H-bridge, voltage regulators,



Figure 2: Hardware Block Diagram

etc). It is used for connecting and interfacing with the motors, sensors and the user. The board subsystem worked as expected, with the MCU being able to be programmed and run programs and all components running stable under full load. Figure 4 shows the draft of the schematic for the PCB.

#### 2.3 Power Subsystem

This subsystem takes incoming 110V AC voltage and transform it to DC voltage at 12V, ensuring safe and stable power throughout the litter box for every component that needs it. Voltage regulators (12V-3.3V and 12V-5V) are used to supply different voltage levels for corresponding components. The power subsystem successfully delivered sufficient current and stable voltage for the motors, board components, and sensors to be used together. Figure 5 shows the schematic of the power subsystem.

#### 2.4 Communication Subsystem

This subsystem allows for the notification to the user. It communicates and transmits data from the MCU to the phone, giving insight to anything the user may need to know through Wi-Fi. In order to support remote controllability, the communication between the litter box and the phone will be over the Internet through MQTT protocol. A web application that can be accessed through phone or computer was also made. There is an odor level

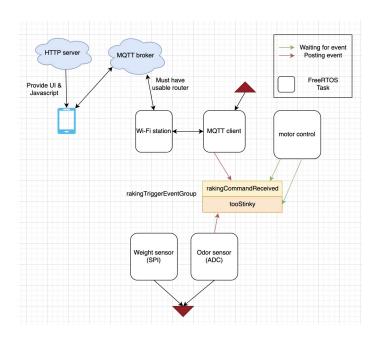



Figure 3: Software Architecture

indicator, a rake button that can trigger an instant raking, and a usage chart that visualizes litter box usage duration and frequency. The communication subsystem successfully transmitted desired data between the user's phone and the litter box. Figure 6 shows the user interface of the web application.

#### 2.5 Motor Subsystem

This subsystem bridges the functionality of the code and data to the physical litter box. It is directly controlled by the MCU. It is attached to the rake through a pulley system for cleaning the litter box. The rake and the pulley system are attached on a stand around the litter box. The motor subsystem was successful in performing raking and provided enough torque to rake through sand. Figure 7 shows the schematics of the motor subsystem.

#### 2.6 Sensor Subsystem

This subsystem gives the MCU the signal to start the cleaning process to ensure a tidy litter box. It is also the sole provider of any information collected concerning the health of the cat and the state of the litter box. The weight sensors are recalibrated after every visit from the cat to ensure the loss of litter will not affect the accuracy. The weight sensors are placed at the bottom of

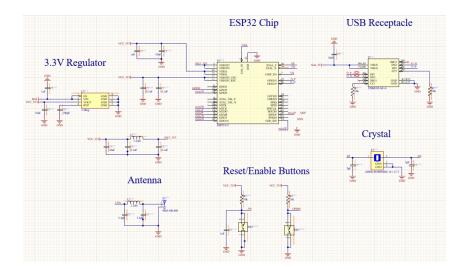



Figure 4: Board Schematic

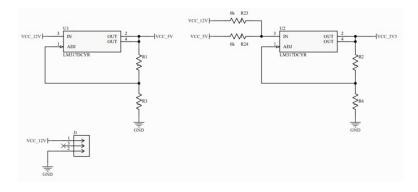



Figure 5: Power Supply Schematic

our entire system, so the entire weight of the system are measured at all times. The odor sensor simply produces an analog output, while the weight sensors operate through the HX711 serial interface, as shown in Figure 8. The odor sensor broke due to direct contact with ammonia solution, while the weight sensors were able to produce accurate readings.

## 3 Requirements & Verification

The complete R-V table can be found in Appendix A.



Figure 6: User Interface

#### 3.1 Board Subsystem

#### 1. Test: Voltage Regulator Stability Under Load

- **Description:** Measure the output voltage of the voltage regulator with a multimeter under load conditions to ensure stability within the 3.0-3.6V range.
- **Results:** The voltage regulator maintained a stable output within the required range of 3.0V to 3.6V under varying load conditions.

#### 3.2 Power Subsystem

- 1. Test: 12V Power Adapter Output Stability
  - **Description:** Measure the output voltage of the 12V power adapter under load, ensuring stability within  $12V \pm 5\%$ .
  - **Results:** The adapter provided a stable 12V output with deviation within 0.35V (3%).

#### 2. Test: Power Supply to PCB and Motors

- **Description:** Connect the power adapter to the PCB and verify the operation of the motor and sensors.
- **Results:** The adapter successfully supplied power to the PCB and motors, with all components functioning correctly.

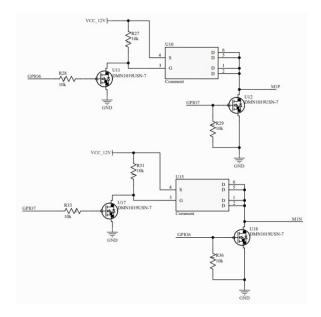



Figure 7: Motor Subsystem

### 3.3 Communication Subsystem

#### 1. Test: Communication Range and Stability

- **Description:** Perform range tests with the ESP32-C3 and a phone with hotspot to simulate a Wi-Fi router at distances up to 15 meters to confirm stable communication at 10 meters.
- **Results:** Stable connection between the MCU and the phone was maintained up to 10 meters.

#### 2. Test: Timely Notification Delivery

- **Description:** Simulate excessive odor or litter box use and verify that notifications are sent to the app within 5 minutes.
- **Results:** Notifications were consistently delivered within 10 seconds, which is much shorter than 5 minutes.

#### 3.4 Motor Subsystem

1. Test: Raking Motor Positional Accuracy

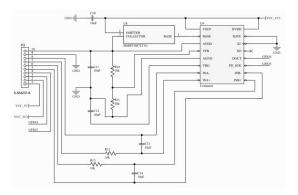



Figure 8: HX711 schematic

- **Description:** Put sand and golf balls in the litter box and start raking, ensuring the motor's position does not deviate by more than 10%.
- **Results:** The motor showed minimal positional deviation under simulated conditions, within 1%.

#### 2. Test: Raking Motor Torque and Smooth Operation

- **Description:** Drive the comb through sand using the motor and observe movement, ensuring no stalling.
- **Results:** The motor provided sufficient torque, and the comb moved smoothly through sand without stalling.

#### 3.5 Sensor Subsystem

- 1. Test: Weight Sensor Capacity and Calibration
  - **Description:** Apply known weights around 25kg on the sensor and confirm operation. Calibrate and test the sensor with various known weights for accuracy.
  - **Results:** The sensor supported the maximum weight and showed accurate readings post-calibration.

## 4 Cost & Schedule

#### 4.1 Cost

#### Labor Cost

The average starting salary of a UIUC electrical engineer grad was \$87,769 which is around \$42/hour. We have three members dedicating around 10 hours per week, for 12 weeks. The labor cost for our group is then \$37,800:

 $\frac{\$42}{\text{hr}} \times \frac{10 \text{ hr}}{\text{week}} \times 12 \text{ week} \times 3 \text{ persons} \times 2.5 \text{(miscellaneous multiplier)} = \$37,800$ 

We also asked the machine shop for help with our mechanical design. We will assume it takes one work week for two people to finish our design at \$30/hr. The cost of the parts required by the machine shop will be simplified with a 2.5 multiplier. The labor cost for the machine shop is then \$6,000:

 $\frac{\$30}{hr} \times \frac{8 hr}{day} \times 5 day \times 2 persons \times 2.5 (miscellaneous multiplier) = \$6,000$ 

Parts Cost

| Description                          | Manufacturer           | Part #                 | Quantity | Total<br>Cost<br>(\$) |
|--------------------------------------|------------------------|------------------------|----------|-----------------------|
| Stainless Steel Cat Lit-<br>ter Box  | Kichwit                | N/A                    | 1        | 39.99                 |
| DC Gear Motor 12V<br>Low Speed 10RPM | Bemonoc                | N/A                    | 2        | 29.79                 |
| 12V 5A Power Adapter                 | Velain                 | N/A                    | 1        | 10.98                 |
| USB 2.0 Type C Con-<br>nector        | GCT                    | USB4105-GF-<br>A       | 1        | 0.81                  |
| Wi-Fi Module                         | Espressif              | ESP32-C3-<br>MINI-1-H4 | 1        | 1.9                   |
| Motor Driver                         | Texas Instru-<br>ments | DRV8874PWPR            | 1        | 3.39                  |

Table 1: Parts Costs

| Description                 | Manufacturer           | Part #                          | Quantity | Total<br>Cost<br>(\$) |
|-----------------------------|------------------------|---------------------------------|----------|-----------------------|
| Load Cell Set               | DIYMalls               | N/A                             | 1        | 7.99                  |
| Linear Regulator            | Texas Instru-<br>ments | LM317DCYR                       | 2        | 1.6                   |
| Crystal Oscillator          | Abracon                | ABM8-<br>40.000MHZ-10-<br>1-U-T | 1        | 1.03                  |
| Resistors, Various          | N/A                    | N/A                             | ~20      | ~5                    |
| Capacitors, Various         | N/A                    | N/A                             | ~30      | ~10                   |
| Misc. Board Compo-<br>nents | N/A                    | N/A                             | N/A      | ~10                   |
| Taxes + Delivery            | N/A                    | N/A                             | ~12%     | 134.48                |

#### **Total Cost**

The total cost of this project is the sum of the labor cost and part cost:

37,800 + 6,000 + 135 = 43,935

The total cost is **\$43,935**.

### 4.2 Schedule

| Table 2: | Schedule |
|----------|----------|
|----------|----------|

| Week         | Task                                            | Person   |   |
|--------------|-------------------------------------------------|----------|---|
| 9/25 - 10/1  | Design review sign-up                           | All      |   |
|              | Make a sketch for litter box dimensions for ma- | All      |   |
|              | chine shop                                      |          |   |
|              | Purchase hardware parts                         | All      |   |
| 10/2 - 10/8  | Design review                                   | All      |   |
|              | Purchase electronic parts                       | All      |   |
|              | Work on PCB design                              | Jonathan |   |
|              | Research on ESP32 programming                   | Shihua   | & |
|              |                                                 | Michael  |   |
| 10/9 - 10/15 | Teamwork Evaluation I                           | All      |   |
|              | Finalize PCB design                             | Jonathan |   |

| Week          | Task                                             | Person   |
|---------------|--------------------------------------------------|----------|
|               | Work on driver for SPI interface to read weight  | Michael  |
|               | sensor readings                                  |          |
|               | Work on GPIO driver to control motors            | Shihua   |
| 10/16 - 10/22 | Complete PCB order                               | All      |
|               | Test SPI driver with dev kit and weight sensor   | Michael  |
|               | on breadboard                                    |          |
|               | Test PCB functionality                           | Jonathan |
|               | Test GPIO driver for motor control on PCB        | Shihua   |
| 10/23 - 10/29 | Individual Progress Report                       | All      |
|               | Make changes to PCB should there be any issue,   | Jonathan |
|               | and order new PCB if necessary                   |          |
|               | Work on driver for ADC on ESP32-C3 for odor      | Michael  |
|               | sensor readings                                  |          |
|               | Work on driver for Wi-Fi on ESP32-C3 for com-    | Shihua   |
|               | munication subsystem                             |          |
| 10/30 - 11/5  | Test ADC driver by connecting odor sensors       | Michael  |
|               | and read sensor value in different environments  |          |
|               | Test Wi-Fi driver by trying to connect to phone  | Shihua   |
|               | and sending packets, and make a web applica-     |          |
|               | tion                                             |          |
| 11/6 - 11/12  | Finish subsystem drivers and integrate the       | Shihua & |
|               | drivers to the main program                      | Michael  |
|               | Test system hardware functionality on litter box | Jonathan |
|               | Finalize and prepare for mock demo               | All      |
| 11/13 - 11/19 | Mock demo                                        | All      |
|               | Do final amendments to the project if necessary  | All      |
|               | Team contract fulfillment                        | All      |
| 11/27 - 12/3  | Final Demo                                       | All      |
|               | Mock Presentation                                | All      |
|               | Prepare for final presentation                   | All      |

## 5 Conclusion

### 5.1 Accomplishments

The project's primary objective, to revolutionize the traditional cat litter box experience through automation and smart technology integration, has been met with resounding success. Our team's dedication to quality and innovation has culminated in a series of notable accomplishments that have not only fulfilled but also exceeded the project's high-level requirements.

Central to our achievements is the development and execution of a robust and reliable printed circuit board (PCB). The PCB has emerged as the cornerstone of our design, adeptly handling programs loaded onto the microcontroller unit and showcasing exemplary performance under full operational load.



Figure 9: The Completed Cat Litter Box

A crowning feature of our project is the web application, characterized by its user-friendly interface and efficient communication protocols. This application has successfully established seamless communication with the litter box via the Internet, facilitating a long-distance, real-time interaction that has proven to be both reliable and convenient for the end-user. Remarkably, the communication latency has been observed to be less than a few seconds, which is substantially lower than the five-minute response time outlined in the initial high-level requirements.

In terms of durability and design aesthetics, the cat litter box has been constructed using metal that promise longevity and ease of maintenance.

As we move towards the completion of this project, these achievements are not merely milestones but also a reflection of our team's unwavering commitment to excellence and the transformative potential of our innovative approach to automated pet care solutions.

#### 5.2 Uncertainties

Despite the aforementioned successes, we encountered certain unpredicted challenges that introduced a degree of uncertainty to the project. The odor sensor, a critical component of our design, sustained damage due to direct contact with an ammonia solution, leading to its inability to read values postexposure. Consequently, it consistently registered a reading of zero, which prevented us from displaying accurate odor levels on the web application as we had originally planned.

Moreover, the web application's current architecture does not support data persistence. This limitation necessitates that users keep their browsers active to receive notifications. This design shortfall poses a significant drawback for practical, everyday use where uninterrupted long-term monitoring is essential.

Our team is assessing these issues with a view to devising effective solutions that will enhance the system's reliability and user-friendliness, thereby ensuring that the final product not only meets but exceeds user expectations and requirements.

#### 5.3 Ethical Considerations

Our project, guided by the IEEE Code of Ethics, emphasizes safety, integrity, and respect at every step.

Our top priority is the safety of both humans and cats. Every design choice will prioritize eliminating hazards, and we're committed to sustainable development practices. For example, all sensitive data are transmitted in encrypted protocols, ensuring privacy and data safety for our users. Also, the raking mechanism will never start if the weight sensor detects the presence of a cat, ensuring the safety of cats.

We welcome honest feedback and will promptly correct any errors. Every team member's contribution is valued, ensuring a collaborative effort. Everyone involved is treated with respect, and we have zero tolerance for any form of discrimination or harassment.

We aim to maintain these ethical standards throughout the project and expect our teammates to do the same, ensuring a supportive and ethical working environment.

#### 5.4 Future Work

Although we have successfully achieved all of our high level requirements, some improvements can be made to make the project more well-rounded and useful in a practical sense.

First, we plan to integrate a high-quality ammonia sensor to the litter box which can read accurate ammonia levels through the ADC interface. With the integration of odor sensors, our users will be able to see accurate real-time odor level on the web application to determine whether raking is necessary.

Second, we plan to add a back-end process to our application that saves past data to a database and loads recent data when the website is accessed, making it possible for the user to keep track of their cat's health data without having to always keep the application open.

With these functionalities implemented, our cat litter box will make up for the features that most expensive automatic cat litter boxes on the market lack.

## References

- [1] IEEE Code of Ethics. Institute of Electrical and Electronics Engineers. https://www.ieee.org/about/corporate/governance/p7-8.html.
- [2] MQTT Protocol Specifications. *MQTT.org.* https://mqtt.org.
- [3] Getting Started with ESP32. *Espressif Systems*. https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/.
- [4] LM317 3-Terminal Adjustable Regulator. Texas Instruments. https:// www.ti.com/lit/ds/symlink/lm317.pdf.
- [5] Salary Averages. ECE ILLINOIS. https://ece.illinois.edu/ admissions/why-ece/salary-averages.

### Appendix A: R-V Table

### Voltage Regulator

| Requirement                        | Verification                        |
|------------------------------------|-------------------------------------|
| R1. The voltage regulators must    | V1. Measure the output voltage of   |
| output a stable voltage within the | the regulator through a multimeter  |
| operating voltage of the           | under load conditions and ensure it |
| microcontroller, weight sensors,   | remains stable, within range.       |
| odor sensors $(3.0-3.6V)$ .        |                                     |
| R2. The voltage regulator must     | V2. Run the ESP32-C3 and weight     |
| output a stable current that can   | sensor at the same time and         |
| supply all components of the PCB.  | measure the output current to       |
|                                    | make sure it is stable.             |

## **Raking Motor**

| Requirement                          | Verification                          |
|--------------------------------------|---------------------------------------|
| R1. The motor will not produce       | V1. Place sand and balls to           |
| positional deviation due to          | simulate cat feces in the litter box, |
| resistance.                          | start raking and ensure that the      |
|                                      | position does not change by more      |
|                                      | than 10%.                             |
| R2. The motor must provide           | V2. Place the comb in a tray of       |
| sufficient torque to ensure the comb | sand. Drive the comb through the      |
| moves smoothly through sand,         | sand using the motor and observe      |
| overcoming resistance without        | the movement of the comb,             |
| stalling.                            | ensuring there are no instances of    |
|                                      | stalling or getting stuck. Measure    |
|                                      | the torque or current of the motor    |
|                                      | during this process, ensuring they    |
|                                      | are within normal ranges.             |

# Weight Sensor

| Requirement                          | Verification                        |
|--------------------------------------|-------------------------------------|
| R1. The weight sensor must           | V1. Apply known weights around      |
| support the maximum weight for       | 25kg on the sensor and confirm the  |
| its usage (Combined weight of litter | system works.                       |
| box and cat).                        |                                     |
| R2. The weight sensor must have      | V2. Calibrate and test the sensor   |
| calibration functionality.           | with known weights to ensure its    |
|                                      | readings are accurate. Choose       |
|                                      | several different weight points for |
|                                      | testing to verify accuracy          |
|                                      | post-calibration, including the     |
|                                      | minimum and maximum values          |
|                                      | within the calibration range.       |

## **Odor Sensor**

| Requirement                         | Verification                         |
|-------------------------------------|--------------------------------------|
| R1. The odor sensor must provide    | V1. Test the sensor in environments  |
| accurate and reliable odor          | with varying ammonia                 |
| detection.                          | concentrations. Ensure the sensor's  |
|                                     | output accurately reflects the       |
|                                     | changes and can distinguish high     |
|                                     | (above 25 ppm) from low levels.      |
| R2. The odor sensor must operate    | V2. Add water to the sand in the     |
| effectively in a humid environment  | litter box. Verify that the sensor   |
| with 80% RH.                        | continues to provide consistent and  |
|                                     | accurate odor readings.              |
| R3. The sensor must be positioned   | V3. Position the sensor at different |
| optimally within the litter box for | locations within the litter box and  |
| maximum odor exposure.              | measure its ability to detect odors  |
|                                     | accurately. Determine the optimal    |
|                                     | sensor placement for maximum         |
|                                     | exposure to litter box odors.        |

## Communication Subsystem

| Requirement                        | Verification                        |
|------------------------------------|-------------------------------------|
| R1. The communication system       | V1. Perform range tests by placing  |
| must reliably maintain a range of  | the ESP32-C3 with the               |
| approximately 10 meters at 9dBm    | communication system and a paired   |
| transmit power.                    | phone app at varying distances      |
|                                    | from 1 to 15 meters. Confirm stable |
|                                    | communication at 10 meters.         |
| R2. The system must provide        | V2. Simulate odor or litter box use |
| timely notifications within 5      | events using odor sources/weights,  |
| minutes to the web app upon        | and verify that the system sends    |
| detecting excessive odor or litter | notifications to the app within 5   |
| box use.                           | minutes.                            |

## 12V Power Adapter

| Requirement                       | Verification                        |
|-----------------------------------|-------------------------------------|
| R1. The voltage adapter must      | V1. Measure the output voltage of   |
| provide a stable 12V output with  | the adapter under load conditions   |
| an error of less than $5\%$ .     | and ensure it remains stable at 12V |
|                                   | $\pm 5\%.$                          |
| R2. The adapter must consistently | V2. Plug the power adapter into     |
| provide a minimum current output  | the PCB and make sure the motor     |
| enough to support the PCB and     | and sensors are working.            |
| motors ( $\geq 2A$ )              |                                     |

# H-bridge

| Requirement                       | Verification                     |
|-----------------------------------|----------------------------------|
| R1. The H-bridge must provide     | V1.Connect the H-bridge to the   |
| bidirectional control of the 12-V | ESP32 and the 12-V DC motor.     |
| DC motor.                         | Use GPIO pins on the ESP32 to    |
|                                   | send control signals to the      |
|                                   | H-bridge, verifying both forward |
|                                   | and reverse motor rotations.     |