
Plant Irrigation and Monitoring System
ECE 445 Design Document - Fall 2023

Team #08
Kevin Le, John Burns, Carlos Toledo

Professor: Olga Mironenko
TA: Sainath Barbhai



Table of Contents
1 Introduction 2

1.1 Problem 2
1.2 Solution 2
1.3 Visual Aid 3
1.4 High Level Requirements 4

2 Design 5
2.1 Block Diagram 6
2.2 Functional Overview 6

2.2.1 UI Subsystem: 6
2.2.2 Control Subsystem 8
2.2.3 Moisture Sensing Subsystem: 9
2.2.3 Tolerance Analysis 10

2.3 Cost and Schedule 11
2.3.1 Cost Analysis 11
2.3.2 Schedule 12

3 Ethics and Safety 13
4 Citations 14
Appendix 1 14
Cost Analysis Spreadsheet 20



1 Introduction

1.1 Problem:
Gardening is a skill that takes a lot of intensive care and effort as each individual plant has its
respective living condition it must meet. These living conditions such as required sunlight,
minimum amount of water, and climate vary from plant to plant and it can be very difficult to be
attentive to all these details in keeping your plants in the best possible condition as we are
occupied with our busy lives or simply lack the skill. Watering outdoor plants can be very
tedious and a task often forgotten.

1.2 Solution:
Our solution to this is to micro-manage the watering aspect of home gardening, taking input
from soil sensors to form a smart irrigation system. This system will help the user monitor a
single plant or more. In terms of current competitors on the market, other similar products are
limited to the number of plants that can be monitored and require a water pump. This system
will be modular and can be linked together to build a larger system. Other systems only
measure the moisture content within the first couple inches of the surface and do not connect
directly to a water hose. Our solution will water the plant till the whole pot is moist and fully
watered. Using Solenoid valves in connection to a garden hose for irrigation, a single plant can
be configured to have a minimal moisture level, providing the most desirable conditions for your
plant, or a connect system can be created via daisy chaining.

There is a similar project from Spring 2023 but there are significant differences. The Project i
and referring to is the "Don't Kill My Plant" Habit Tracker. Their project converts phone habits to
watering / environmental changes. Our project aims to care for the plant in an outdoor setting
and allows for multiple plants to be taken care of. Another similar project is DIY Plantify from
Spring 2023. This project moves plants away from light if it is too intense and tests moisture
levels based on weight. Again, very different from our water irrigation system.



1.3 Visual Aid



1.4 High Level Requirements

1. Requirement 1: The system controls moisture levels in individual plants, performing
standard watering on schedule until drainage occurs, and continually monitors and
waters plants if moisture deviates by more than土 10% from user-defined values.

2. Requirement 2:The system starts watering within土 15 minutes of the user-defined time,
will only water within permissible windows to土 15 minute accuracy, and stays within 土
5% of the user-defined daily water usage limit.

3. Requirement 3: The system can control multiple plants at once via master-slave
communication; each slave operates independently and is not influenced by the state of
other slaves.



2 Design

2.1 Block Diagram



2.2 Functional Overview

2.2.1 UI Subsystem:

This subsystem is the user interface through which parameters can be set for operation of the
system. It will communicate via bluetooth or WiFi with the Control subsystem and will relay input
information from the user about permissible water usage, permissible watering hours, and the
minimum moisture levels for each individual plant. Additionally, the subsystem must be able to
receive information from the control subsystem about the moisture level of each plant and the
water consumption information. The subsystem will also be able to save each plant’s
configuration information to save effort on repeated plants. To build the Web-App, we will use a
Javascript library called React.js, as well as react-bootstrap and CSS for the styling of the web
page for a smoother user experience. We will use React Hooks such as useState and useEffect
to store the necessary parameters inputted by the user and to dynamically render new
information after refresh. To save the config data, we will use GraphQL to generate our own
data type as each plant has its four unique parameters and with Express.js, we will use that as
our backend server to connect to our frontend client and communicate with HTTP requests.
Specifically, the HTTP Post request will allow us to send the user input data to the backend to
be stored in a JSON file so that we can reuse this data later. To communicate with the MCU via
bluetooth/wifi, we will first need to connect the ESP32-S3-WROOM to the PCB and make sure
all the power and ground connections are proper. Then, we need to use the built-in WiFi.h
library which allows us to use the ESP32 as a station. This means the ESP32 can behave as a
client/server and handle requests to other devices connected to the network. We are going to
use HTTP endpoints to process these requests and a library called ESPAsyncWebServer for
server functionality. For client functionality, we are going to use the HTTPClient library for HTTP
requests to the web-app. By doing this, we can have a connection with our user interface
web-app and send requests over between the two for communication. If the WiFi.h library does
not work, another option is to use the espressif board package, which should generate the same
result. We can test this simply by outputting signals from our mobile device to turn on and off
LEDs on a breadboard. To test this for our system, we can enter the parameters and see if our
slave system waters the plant at the specific times inputted. Problems with wifi/bluetooth
connection is secure communication where data needs to be protected from tampering. The
solution to this is to Initially have the ESP32 act as an Access Point where it behaves like a WiFi
network, like a router, and we can connect our laptop to it. This mode allows us to set our own
encrypted SSID and password directly on the ESP32 instead of locally on someone's laptop,
which can easily be breached. We then switch the ESP32 to Station mode which will allow it to
send and receive data to and from the user interface. We store the WiFi credentials onto our
ESP32 because the chip already has an encrypted EEPROM on it, which provides non-volatile
data memory that is highly secure and can easily encrypt sensitive data.



Requirements Verification

● Can be launched successfully locally
on a Web-App with intended
UI-Subsystem and working backend.

○ UI-Subsystem loads up and
user can click on buttons

○ Once user submits
parameters, the data will be
saved

● A webpage with the intended arguments
and buttons to add plants and configuration
settings should pop up, ensuring frontend
works properly

● To ensure backend functionality, users
should click on configured settings. If the
setting loads in properly, then backend
functionality works. If nothing happens, the
backend server is not running properly

● Can communicate via bluetooth/WiFi
with the control subsystem.

○ Confirm that the LED on the
ESP32 lights up

● A webpage with the intended arguments
and buttons to add plants and configuration
settings should pop up, ensuring frontend
works properly

● User clicks on “Test WiFi” button

● Can take in user parameters and
communicate them to the control unit.

○ Exact same parameters show
up as a data type in graphql
server when query button is
pressed

● A webpage with the intended arguments
and buttons to add plants and configuration
settings should pop up, ensuring frontend
works properly

● To ensure saved configuration settings
functionality, user clicks on “add new plant”
button then fills in the four parameters: plant
name, water usage, watering hours, and the
minimum moisture level

● User clicks “save” button
● To ensure proper functionality, the solenoid

should allow water to flow to the specific
plant only at the specific watering hours.
Confirm that this is true as no water should
be allocated outside these times.

● Can receive plant moisture and water
usage information from the master
control unit and display it in a legible
manner to the user.

○ The expected parameters
show up on UI-Subsystem

● A webpage with the intended arguments
and buttons to add plants and configuration
settings should pop up, ensuring frontend
works properly

● User clicks on “add new plant” button then
fills in the four parameters: plant name,
water usage, watering hours, and the
minimum moisture level

● User attaches moisture sensor to the top of
the soil of the plant

● On the UI-Subsystem, a reading of the plant
moisture and water usage information is
displayed as “LOW/MED/HIGH” indicating
moisture level and the water usage in liters.
Confirm that these values show up and the
parameter does not show up as empty



2.2.2 Control Subsystem:

This subsystem is a microcontroller which acts as the master control of the system. It will
communicate via bluetooth/WiFi with the UI subsystem to take in the user’s parameters. Also, it
will receive wired data from the moisture sensing subsystems which encodes the state of each
plant’s two sensors. Using the information from the state of the plant and the restrictions from
the user’s inputs on whether watering is allowed or not, it will send out a signal to open or close
the valve for each individual plant. Master to slave wired communication will follow a basic
Read/Write protocol. The master will cycle through every address in the system and will first
have the Write signal low and perform SPI communication with the slave and make its
determination of whether to open or close that slave’s valve. Then it will raise the Write signal as
well as output the open/close signal on the specified wire for a set amount of time before cycling
to the next address.

A detailed explanation of the master-slave communication protocol can be found in Appendix 1.

Requirements Verification

1. When the master pcb is in the
WIFI_CONFIG mode upon first
startup, the master will act as an
access point for the user to input
WIFI credentials.
a. AP Name: PLANT_SYS
b. BLUE LED = WIFI_CONFIG

● turn on system, press reset, grab your phone
and search for open WIFI networks

● connect to the Access Point (AP) named
PLANT_SYS with password: config23

● Follow URL: url_placeholder on your phone to
interact with the system

● a prompt will appear to turn on and off an
onboard Blue LED to verify connection. There
will also be two textboxes to enter the name of
your WIFI network and WIFI password.

● press enter to save password

2. wifi credentials are saved for the
main system to connect t o WIFI
a. PLANT_SYS = DNE
b. Green LED = WIFI Connected

● confirm that your network connection to
PLANT_SYS no longer exists

● a Green LED will be turned on to confirm a
successful WIFI connection

● The MCU can connect to the
main UI system and relay plant
information

○ Website Status GET request
shows Active

○ POST request appears on
front end

● plants added to the system will show up on the
front end, only if a plant exists

● data sent to the front end will cycle through by
addresses and can be printed out in terminal for
testing

● configuration details will be pulled and saved
from the front end

● confirm by printing received data from UI



● The MCU can cycle addresses
for each moisture sensing
subsystem

○ HEX LED connected to the
main board shows addresses
cycling from
0-USER_PLANT_COUNT

● After initiating the irrigation system, a 7 segment
LED will show the current address in the cycle.

● ensure the changing addresses are increasing
over time and cycling values

● The system can perform serial
communication between the
moisture sensing subsystems
and control subsystem.

○ Users can see different
moisture levels appear on the
UI subsystem when a moisture
sensor is moved between dry
and wet soil.

● after connecting at least 1 moisture sensing
subsystem and indicate the number of slave
boards connected

● confirm the MCU is cycling through the number
of moisture sensing subsystems provided by
user

● confirm moisture sensor data is being accepted
and matches the appropriate moisture sensing
subsystem (have 1 dry and 1 water to debug,
dry or wet drain sensor) using the UI subsystem

● The MCU can send control signals
to the moisture sensing subsystem
○ The user defines a plant’s

minimal moisture level to be
at the mid range value,
placing the sensor in dry soil
results in the plant’s valve
opening, placing the sensor
in water results in the valve
closing.

● add a plant on the UI subsystem to be at a mid
range value

● place the moisture sensor in a dry pot of soil or
in the air to confirm ‘dryness’, and the valve will
open

● place the moisture sensor in water or hydrated
soil, the valve will close

2.2.3 Moisture Sensing Subsystem:

This subsystem will be replicated n times for n plants and contains the sensors and valve for its
individual plant. It will have a sensor at the bottom of the plant to detect whether water is
draining through the bottom of the plant or not, and it will have a moisture sensor within the top
few inches of the plant’s soil. It will contain the solenoid valve which is positioned to
allow/disallow water flow to the plant. It will contain digital logic to implement the correct
control/communication of the system. At a high level, it will have its unique address saved on
chip and will compare with the address data lines to determine if it is being communicated with
by the master or not. If it is, and the Write signal is low, it will allow data from its two sensors to
be transmitted via SPI protocol to the Control Subsystem. If the Write signal is high, it will store
the valve control signal value into a flip flop. The output of this flip flop is used as the control of
whether the solenoid valve is open or closed.



Requirements Verification

● The moisture sensing subsystem can
communicate data to the master
control unit within +/- 10% accuracy

○ Data which appears on the UI
subsystem for the status of
each plant is within +/- 10% of
a voltmeter reading of the
plant’ sensor output

● Use system in normal operation with
moisture sensors in plant soil.

● Use a voltmeter with negative probe
at a plant’s top level moisture sensor’s
ground pin and positive on the
sensor’s output pin.

● Read the voltmeter’s measurement.
● Compare with the value on the UI

subsystem for the plant in question
and ensure the value is within +/-
10%.

● Each moisture sensing subsystem
operates independently and is not
influenced by other plants.

○ Switching between dry and
wet environments on one plant
opens and closes that plant’s
valve while not affecting the
valve of any other plants.

● Use system in normal operation with
moisture sensors in plant soil.

● Select one moisture sensing
subsystem, use the UI subsystem to
set the minimum moisture level to the
mid-range value.

● Alternate placing the moisture sensor
in question between a pot of
completely dry soil and a container of
water.

● This specific unit should have its valve
open when in the dry soil and close
while in the water; the other units
should not be affected by this
switching.



2.2.5 Tolerance Analysis

The most critical component of our system is getting accurate moisture data from the plants to
the master control subsystem. If we are not getting reasonably correct data, our control
decisions may be often incorrect and thus the system may operate seemingly randomly. We will
aim to have the data received by the microcontroller to have less than 10% error from the actual
value read by the sensor.
Our sensors and our 8 bit ADC will both run on a 3.3V supply voltage. However, online reading
suggests that the max output of the sensor will be 80% of Vcc = 3.3V * .8 = 2.64V. So our
analog sensor output will have an operating range of 0 - 2.64V.
Our 8 bit DAC sourced at 3.3V will detect levels every 3.3V / (2^8) = 0.129V step. Sampling an
analog signal with an 8 bit DAC introduces quantization error while going from the “infinite
precision” analog signal to the 8 bit precision DAC. Effectively, our DAC will map input [0,
0.129V) to 0V, [.129, .258V) to 0.129V, etc. The quantization error can be considered the actual
analog signal minus the voltage it is mapped to. Thus, we can see that the max quantization
error is one voltage step- here, 0.129V (ie, worst case is the actual signal is o[n] +
0.128999999V which gets mapped to o[n] where o[n] is the output of the DAC). Our max error in
the signal will therefore be .129V / 2.64V = 0.0489 = 4.89%, comfortably within our desired 10%
error margin for communication of the moisture data.



2.3 Cost and Schedule

2.3.1 Cost Analysis:

Budget Spreadsheet

2.3.2 Schedule

Week Task Person Due

9/25 1. add initial references
2. update schedule once dev boards are

ordered
3. define slave design elements
4. define master design elements
5. initial pcb designs
6. buy parts / finish parts list
7. start a safety manual

1. Carlos
2. ALL
3. John
4. John
5. Carlos
6. ALL
7. Carlos

Design Review Sign-up closes
Design Document 11:59p

10/2 1. prototype backend
2. Code wifi within microcontroller
3. prototype moisture sensor + valve
4. refine pcb designs

1. Carlos
2. Kevin
3. John
4. ALL

Design Review 8:00a - 6:00p
PCB Review 4:00p - 6:00p

10/9 1. submit first pcb designs
a. master and slave

2. update safety manual

1. ALL
2. ALL

1st Round PCBway Orders 4:45pm
Teamwork Evaluation I 11:59p

10/16 1. review/refine pcb designs
2. Validate slave hardware design

1. ALL
2. John

2nd Round PCBway Orders 4:45pm

10/23 1. last chance to review/refine pcb designs 1. ALL 3rd Round PCBway Orders 4:45pm
Individual progress reports 11:59pm

10/30 1. Frontend UI
2. Backend
3. Program ESP32 for WiFi
4. Implement communication protocol

1. Kevin
2. Carlos, Kevin
3. Carlos, Kevin
4. John

11/6 1. Program ESP32 for WiFi 1. Carlos, Kevin

11/13
(Mock
Demo)

https://docs.google.com/spreadsheets/d/18BXoUai3LJ4gYoI9z1EPZOp7zNsG0p30YP1WHFbKF6Y/edit#gid=0
https://courses.engr.illinois.edu/ece445/pace/signup.asp
https://courses.engr.illinois.edu/ece445/guidelines/design-document.asp
https://courses.engr.illinois.edu/ece445/guidelines/design-review.asp
https://courses.engr.illinois.edu/ece445/guidelines/board-review.asp
https://courses.engr.illinois.edu/ece445/lab/order-a-pcb.asp
https://courses.engr.illinois.edu/ece445/guidelines/teamwork.asp
https://courses.engr.illinois.edu/ece445/lab/order-a-pcb.asp
https://courses.engr.illinois.edu/ece445/lab/order-a-pcb.asp
https://courses.engr.illinois.edu/ece445/guidelines/individual-progress-report.asp


11/20
(Fall
Break)

11/27
(Final
Demo)

12/4
(Final
Presen
tation)

Kevin: Frontend UI, Backend, Coding ESP32 using Arduino for WiFi
John: Slave hardware design, master-slave communication protocol design
Carlos: ESP32 onboard Configuration, Backend, PCB design

3 Ethics and Safety
Safety Standards: Following the IEEE guideline on the safety of our project, it is designed to be
easy to use and compatible. It is safe to use and will not have the ability to cause property
damage (IEEE Code of Ethics 7.8.9) [1]. Any high voltage components will be properly sealed
to protect against the elements, to ensure user safety and prevent property damage. Informing
the user how to use the device properly will be crucial to ensure safety and functionality.

Water Usage Regulations: In compliance with state regulations (e.g., Illinois watering
restrictions), implementing features in our project to help prevent excessive water usage during
specific times and seasons. Any rules or regulations on a state and local will be encouraged in
the system (ACM 2.3) [2]. The user will be notified of these restrictions via push notification.

❖ Illinois: No watering is allowed between 10 a.m. - 4 p.m. in all areas during the period
from May 15 through September 15. [3]

❖ Champaign Water Restriction levels (Voluntary,Mandatory,Emergency) will be monitored
and notify users to limit water use. [4]

Intellectual Property and Attribution:When developing unique Wi-Fi technology, it's important
to credit others' work appropriately and ensure that our project respects existing patents and
intellectual property rights. Properly citing and respecting the work of others helps maintain
ethical standards (ACM Code 1.5). [2]

Privacy Concerns: Ensuring the privacy of users' data and information transmitted over the
Wi-Fi network is crucial. Following privacy standards of ACM Code 1.6 [2], each user has a right
to privacy and privacy standards will be followed to ensure information accessible via the



internet is protected. This will be done by safeguarding any of the user’s personal information by
following industry level privacy practices in our code.

4 Citations
[1] "IEEE Code of Ethics." IEEE (Institute of Electrical and Electronics Engineers).
https://ieee.org/about/corporate/governance/p7-8.html

[2] "ACM Code of Ethics and Professional Conduct." ACM (Association for Computing
Machinery). 2018. https://www.acm.org/code-of-ethics

[3] “Naturescape Blog: Regional Water Restrictions.” Naturescape Blog | Regional Water
Restrictions. 2015.
www.naturescapedesigninc.com/regional-watering-restrictions.html#:~:text=It%20is%20unlawful
%20for%20any,plants%2C%20or%20any%20other%20vegetation

[4] “Model Water Use Restriction Ordinance.” Champaign County Regional Planning
Commission, CCRPC , 2013,
https://ccrpc.org/documents/model-water-use-restriction-ordinance/

Appendix 1

In the effort to make the system as scalable as possible, we will be using digital
hardware to control the slaves instead of a microcontroller per slave. To implement this, we will
be using a custom communication protocol outlined below. The system will operate by using
digital logic to implement the following pseudocode for each slave:

if (address == myAddress):
if (Write == 0):

myChipSelect <- 1
if (Write == 1):

myValveState <- Open Valve

The chip select signal will be used to initiate communication between the master and slave via
SPI communication protocol. Since we want to actually perform reads from two different
channels (the top level moisture sensor and the drain sensor) during our overall read operation,
each read operation will contain a brief “untoggle” where the control unit sets the address to a
reserved non-operational value (ie 1111) which will ensure all slaves chip select signals are 0.
The address will then be set back to the slave’s actual address and a new SPI conversation will

https://ieee.org/about/corporate/governance/p7-8.html
https://www.acm.org/code-of-ethics
http://www.naturescapedesigninc.com/regional-watering-restrictions.html#:~:text=It%20is%20unlawful%20for%20any,plants%2C%20or%20any%20other%20vegetation
http://www.naturescapedesigninc.com/regional-watering-restrictions.html#:~:text=It%20is%20unlawful%20for%20any,plants%2C%20or%20any%20other%20vegetation
https://ccrpc.org/documents/model-water-use-restriction-ordinance/


be had, this time with Data In instructing the ADC to output data from the second channel. This
was not shown on the waveform as it would require going down to the SPI clock level and get
needlessly messy.
The valve state will be stored in a Flip Flop clocked by the AND of the address comparator and
Write signal, so it will update when the master is writing to the particular slave and hold its value
constant otherwise.
The master will be responsible for raising and lowering the Write signal, cycling through the
slaves’ addresses, performing SPI communication protocol, reading the data on the buses when
the Write signal is low, using the bus data and the user’s inputs to make a decision on opening
or closing the particular slave’s valve, and outputting that decision when the Write signal is high.
We will have to take care of the specific timings of when the master cycles, reads information,
and outputs information after consideration of the worst case set-up and hold times of the digital
hardware. A high-level waveform is shown on the next page.

Credit to Aliaksei Chapyzhenka (github: https://github.com/drom) for the waveform creator.

https://github.com/drom


Slave digital logic overview




