
ChipCaddy: A Home Poker Game Solution

ECE 445 Design Document

__

Project #16

Marvin Camras, Anish Rajesh, Justin Wang

Professor: Olga Mironenko

TA: Nikhil Arora

Introduction
Problem

According to a market research study published by Zion Market Research, the demand

analysis of Global Trading Card Game Market size & share revenue was valued at $6.39 Bn in

2022 and is estimated to grow about $11.57 Bn by 2030 [3]. Although gambling has its pitfalls, it

has become one of the world’s most predominant pastimes and as a result created a market of

equal size. Whether at a casino or in less organized settings, games like poker, roulette, and

blackjack bring individuals together all over the world in social settings allowing them to build

rapport, have fun, and have a chance at making a profit. As the market for card games increases,

so does the need for accurate, secure, and efficient home game systems. Current home games are

set up with a simple set of chips, cards, and players, resulting in large amounts of time wasted

counting, sorting, and dealing chips. Casinos are well equipped with the endowment to purchase

top-end counting mechanisms such as RFID poker chips or table-embedded chip counting

mechanisms, but these machines cost thousands of dollars on average and are not suited for the

casual home game.

Games such as Omaha are pot-limited, meaning the max bet players can make is the

amount of chips currently in the pot. With the current home game system, players must hand

count the amount of chips currently in the pot, as well as manually sort and dispense chips after

each and every hand. This results in not only a large amount of time wasted, but also makes it

easy for players to steal chips and miscount the current value of the pot.

In addition to this, calling players all-in values requires manually counting each stack of

chips by hand, which can lead to incorrect values and a lot of wasted time. Online games have an

automatic display of each player's stack, resulting in almost 3 times faster gameplay according to

Upswing Poker [3].

Solution

In an effort to promote ease of play, and maximum efficiency in the number of hands

played, we have come up with a solution featuring a combination of sensors, motors, and internal

logic to sort poker chips and display the current value of the pot for all players. After a hand, the

chips will be inserted as a stack into a rotating tunnel. The tunnel will have a color sensor at its

base, as well as a slit for the chip to be shot out of using a motor. The color sensor will relay the

color of the chip to the microcontroller, which will handle the logic and display the current pot

value on an LCD display based on the respective colors. As soon as the color of the chip is

detected, the tunnel will rotate to a designed container for that color. As the chip is ejected, the

microcontroller will keep track of the chip color ejected, and the total number of chips ejected to

make sure none are lost. When the winner of a pot is determined, the pot winner will retrieve

their chips from the containers and hit the reset button so the pot count on the LCD display resets

to 0 for the next hand. In the rare case of a split pot, the user will be able to press a button that

displays the respective color denominations for each split of the pot. The microcontroller will be

responsible for the logic portion and will sit on a PCB that is also used to power our contraption.

The device will also use a series of buttons to take in user information regarding big blind, small

blind, and buy in values.

Our solution will greatly increase the efficiency and enjoyment of a regular home poker

game. Rather than wasting valuable time counting pots, distributing plastic chips, and arranging

chips in neat color coordinated towers, players can focus on having fun and playing.

Visual Aid

We will be utilizing a CNC rotating base from the machine shop for our project. This

metal base features a 360 degree servo motor bolted in, allowing us to have a robust design

without having to 3D print the device’s foundation.

Fig. X - Simple visual aid of our device

When the unsorted chips are placed into the entry funnel the color sensor uses infrared

technology to sense the color of the bottom chip. The STM32 microcontroller will then rotate the

device to point towards the respective color bin. Once facing the bin, the linear actuator will push

the bottom chip through a slit in the funnel (big enough for only one chip at a time) into its

respective bin. The LCD display will then append the count of the pot based on the color of the

chip. This process repeats until the color sensor detects that there are no more chips left in the

funnel. In the case of a split pot, the user will be able to press the button next to the display.

High Level Requirements

In order for our project to be deemed a success, it must meet the following requirements:

1. The device should append the count within 5 seconds of the chip being read by the

color sensor.

2. Upon ejecting all chips from our contraption, the winner of the pot will be able to reset

the pot count to 0.

3. In the case of split or chop pots the user will be able to manually choose the number of

ways the pot will be split, and the respective color denominations (White- $0.25,

Red- $0.50, Green- $1, Black- $2) for these divisions will be shown on the LCD

display.

4. The device will keep a tally of the number of chips counted, and the number of chips

counted for each color. It will then ensure the sum of the number of each colored chip

matches the total number of chips and display a warning on the LCD if not.

Design
Block Diagram

Fig. X - Block diagram of our device with all subsystems

Our high level block diagram features all the subsystems and components that will be

featured in our design. The design is powered by a standard 9V battery. This battery will be

stepped-down to 3.3V and 6V power with voltage regulation on our PCB. The 6V power will

then be used to power the STM32 microcontroller and our servo motors. The STM32 will serve

as the brains behind our design, handling all the computation and telling the motors how much to

rotate based on what color the TCS3200 color sensor sends. Based on what the sensor subsystem

sends to the control subsystem, the motors will place the correct color chip in its respective bin.

The control unit will then send the correct value of the pot to our LCD display through I2C serial

communication. Once the hand is over, the user will be able to interact with the UI subsystem

through two buttons, one for chopping the pot - which will send the correct value of the split

onto the LCD display - and one for resetting the value of the pot back to 0.

Physical Design

Fig. X - Fusion 360 CAD model of our device

The device will be CNC cut with help from the machine shop. The rotating base will be

retrofitted from a previous semesters project. The chip bins will be ~ 39mm in diameter, which is

roughly the standard size for commercial poker chips. A PCB featuring the STM32

microcontroller will be placed directly under the enclosure, along with a linear actuator and the

IR color sensor. Due to the IR technology utilized by the sensor, it does not matter that there is a

low level of light in the funnel. The chips will be placed into the funnel, and the color sensor will

then send the color signal to the MCU. The device will then rotate so that the opening of the

funnel is facing the correct color bin, and the linear actuator will then shoot the chip into its

correct bin.

Subsystems

Power Subsystem:

Fig. X - KiCAD schematic of our power subsystem

Our device will be initially powered with a replaceable 9V battery. This design choice

was made to avoid any need to plug into a socket, as our device is made to be a modular

extension of a home poker game. The need to find an outlet and avoid tripping over a large wire

is something we wanted to avoid with our design. The electrical components in our design will

require 6V (motor subsystem) and 3.3V (UI subsystem, control subsystem, and sensing

subsystem) power, so we will need to utilize voltage regulators to step down from our initial 9V

input. The 3.3V regulator was a straightforward design choice - the AZ1117 linear voltage

regulator features a fixed 3.3V output. We decided to use the LT1117 linear voltage regulator

which serves as a direct alternative to the AZ1117. We utilized the design recommended in the

device’s datasheet as pictured below.

Fig. X - AZ1117C voltage regulator example from ECE 445 Wiki

Next was designing the voltage regulator for our 6V power buses. This was slightly more

complicated than that of the 3.3V as there was no fixed regulator available. We utilized the

LM350 adjustable regulator due to the extensive documentation available online. To determine

the exact value of resistors needed for the design we turned to the datasheet again.

Fig. X - LM350-ADJ datasheet example schematic

Our design will require a 3V step down from our 9V input. We utilized the equation

featured on the datasheet to calculate the value of R2 required for our design.

VOUT = 6 = 1.25 (1 +)𝑅2
121

Solving for R2 gives us 910 ohms. This completes the schematic for our 6V power bus.

This will be used to connect to our motor subsystem, which will be controlled by our STM32

microcontroller through PWM to be able to rotate the chips to their correct bin and dispense

them. We then verified our design through an LTSpice simulation that is pictured below. As we

can see, the input is a 9V battery and the output signals are at 3.3V (blue signal) and 6V (red

signal). For our motor components we will be using a 360 degree continuous servo motor for

rotating the base and a linear actuator to perform the pushing motion on the chip. Both of these

parts require a rather high maximum current draw (both over 500mA) so to be on the safe side

and to ensure that we supply enough current without overheating the voltage regulators we will

need two LM350s to do the job. Although one LM350 can supply 3A of current, since we are

stepping down 3V for the motors (9 => 6), the power will be too high for one regulator and it

will overheat. To solve this, we will have to generate two separate 6V power buses in order to

ensure the operation of our motors without overheating.

Fig. X - LTSpice operating point simulation of our KiCAD schematic

Requirements Verification

1. LT1117 Voltage Regulator provides 3.3 +/-

0.5% V Output. Each LM350 Voltage

Regulator provides a 6 +/- 0.5% V Output.

1. Use a multimeter and measure the

voltage at both of the output nodes of

the voltage regulators to verify that

they are supplying within 0.5 % of 3.3

and 6 V.

2. Use the multimeter to measure the

voltage at inputs of each device to

verify that the voltage supply is being

supplied correctly as well as to make

sure that we have a stable connection

between the Regulator and the

devices.

3. Tabulate all of the measured values to

ensure that each voltage output is

accounted for as well as each input to

the various devices.

1. LT1117 Voltage Regulator supports at least

75 mA of current. Each LM350 Voltage

Regulator supports a minimum of 2.5 A.

1. Use a multimeter at the output nodes

to measure the output current at each

of the voltage regulators.

1. LT1117 Voltage Regulator stays under its

maximum junction temperature of 150° C.

Each LM350 Voltage Regulator stays under

its maximum junction temperature of 125 ° C.

1. Take an infrared thermometer and

measure the surface temperature of the

three linear voltage regulators and

ensure that the temperatures are under

125 ° C (150 ° C for the LT1117).

Control Subsystem

Fig. X - Control subsystem KiCAD schematic

The control unit is the most important part of our design, and it is paramount that we

make sure we get the design correct. We decided on the STM32 microcontroller for our design.

We originally selected the ESP32 MCU, but pivoted from this design choice due to the fact that

we did not need the extensive Bluetooth and Wifi capabilities of this chip. The STM32 has

extensive resources available, and features an intuitive IDE through STM32duino that

compliments our group members' Arduino experience.

Featured above is the schematic for our microcontroller. The microcontroller will

interface with all of our other subsystems, so it is important to understand the relationship

between them all.

The control unit directly controls the motors in our design. The servo motor in the base of

our device was repurposed from a previous semesters group, and can directly accept a 6V input.

This will bypass the need for an H-bridge, and the motor can be directly connected to the pins of

the microcontroller, which will then use PWM to tell the motor how much to rotate based on the

color input it receives from the sensing subsystem. The dispensing motor will be connected to

the microcontroller through a motor driver in order to regulate the amount of voltage it receives.

The sensing subsystem features a TCS3200 infrared color sensor. This is featured through

a general connector in our PCB schematic. The TCS3200 will then interface with the

microcontroller and tell the MCU what color is being detected.

The UI subsystem features two buttons - one for resetting the count and one for split pots

- and an LCD display. The buttons are connected directly to the GPIO pins of the MCU, and

when the button is pressed the MCU will perform the necessary calculation and display the result

onto the LCD screen.

In the design of our device, which employs a combination of motors and an IR color

sensor to efficiently sort chips into their color-specific bins, we have chosen to incorporate a

crystal oscillator for critical clock timing. This is featured to the left of our schematic. This

decision is driven by the imperative need for precision timing to coordinate the intricate sorting

process. The crystal oscillator ensures that the STM32 microcontroller, at the heart of our device,

receives highly accurate and stable clock signals, allowing for precise synchronization of motor

movements and real-time data acquisition from the IR color sensor. Additionally, the oscillator's

exceptional frequency stability, even in the face of environmental variations, guarantees

consistent and error-free operation, ultimately enhancing the reliability and efficiency of our chip

sorting system.

The other components in our schematic come directly from the STM32 example

schematic from the ECE 445 Wiki site. The USB module will be used to program our MCU.

Fig. X - Example schematic from ECE 445 Wiki page

Requirements Verification

1. Microcontroller is able to analyze data that

is received from the TCS3200 Color Sensor.

MCU then uses this data to rotate the base

motor and push out the chips once we are

directed to the correct bin.

1. Once the MCU knows the color on the chip

that we are dispensing, we can then confirm

the operation of the motors visually by

verifying that first, the base motor rotates the

pusher in the correct direction and after that,

the pusher motor should dispense the

correctly identified chip into the bin.

The order of this operation within the MCU

must be as follows:

Analyze the Color => Rotate Base Motor =>

Shoot the chip out into the bin using the

pusher motor.

2. Microcontroller is able to perform the logic

required to count the pot, and organize the

colors as expected.

1. We can verify accurate calculations and

communication with the LCD display by

manually counting the value of chips in an

inserted stack and seeing if that number is

relayed to the display after sorting. We can

then test the divisions the same way, do the

calculations by hand and see if the LCD

display matches that value after hitting the

split pot button.

2. Verifying that the colors are assigned to the

correct bins can be verified visually.

3. Ensure that we are receiving a 3.3 +/- 0.1 V

supply into the MCU.

1. Use a voltmeter at the Vdd input pin to

ensure that we are getting a 3.3 V supply into

the MCU. Perform the measurement while

sorting and dispensing a full chip stack to

ensure that we have a stable voltage supply

throughout the full operation.

Sensing Subsystem

Fig. X - TCS3200 Color Sensor KiCAD schematic

The sensing component of our senior design project will be accomplished through the

TCS3200 color sensor.

Fig. X - Circuit schematic of the TCS3200 color sensor

The TCS3200 color sensor operates using an array of photodiodes with color filters (red,

green, blue, and clear) and an integrated white LED light source. When the LED illuminates an

object, the photodiodes detect the intensity of specific color components and convert this into

square wave frequencies. These frequencies, proportional to the color intensity, are then counted

by our STM32 to determine the object's color. By adjusting the integration time, the sensor's

sensitivity can be optimized for various lighting conditions. This will be invaluable for our

design as the color sensor will be placed in a dim environment under a stack of chips. The MCU

will then accept the color input and tell the motors to rotate and dispense accordingly.

Requirements Verification

1. The microcontroller receives the right

RGB value corresponding to the chip

that is inserted, based on information

relayed from the TCS3200 sensor. (As

long as the read value is closer to the

corresponding color than the color of

another chip it is acceptable).

1. Insert the maximum amount of chips

the contraption supports , of varying

colors.

2. Using serial debugging, record the

values received by the microcontroller

that corresponds to the TCS3200,

ensuring that each value is closest to

that of the respective color. E.g. if the

RGB value for red is 320, the read

value is 300, and all other colors are

further away from 300 it is acceptable.

3. Record 2 trials detailed by steps 1 and

2 and record the color of the chips,

what their expected RGB values were,

and what they actually were.

Note: Serial Debugging refers to hooking the

STM32 up to a computer using the

corresponding TX and RX hardware pins and

running an emulation software such as PuTTY

or Arduino Serial Monitor.

1. The TCS3200 sensor receives between

3.3 +/ 0.5% V from the power

subsystem.

1. Insert a singular chip into the

contraption.

2. Power only the sensor and use a

voltmeter to measure the voltage

supply to the sensor.

3. Repeat steps 1 and 2 for all four

colors, and record data in a table.

Motor Subsystem

Fig. X - Motor subsystem KiCAD schematic

The motor subsystem is responsible for the movement of our device. The design will

feature one motor in the base of the device and one linear actuator at the base of the funnel to

dispense chips into their respective bins. The above KiCAD schematic describes our design. The

servo motor at the base can accept 6V input, and thus will not require a motor driver to connect

directly to the microcontroller. The servo will be connected directly to the GPIO pins of the

MCU and will accept information on how much to rotate based on the color that the sensing

subsystem detects.

The “pushing” motor will require a motor driver as it cannot directly accept its 3.3V

operating voltage directly from the MCU. We selected the L293D motor driver as it has

extensive documentation and has been used by previous groups in the past with success. The

L293D is a 16-pin Motor Driver IC which can control a set of two DC motors simultaneously in

any direction. The L293D is designed to provide bidirectional drive currents of up to 600 mA

(per channel) at voltages from 4.5 V to 36 V. The bidirectionality of the driver will allow us to

have 360 degree control of our motors and let us optimize sorting time by programming logic for

the motor to take the shortest circular path from color to color. We will be using a linear actuator

to push the chips out at the end of the funnel. The linear actuator will be connected from the

general connector pins that are connected at the end of our motor driver.

Requirements Verification

1. Both motors receive 6 +/- 0.5% Volts

from the power subsystem.

1. Insert three chips into the contraption.

Make sure the three chips have at least

one adjacent rotation and one 180

degree rotation.

2. Apply a voltmeter to both motor

connections and record the values in a

table for all the chip ejections.

User Interface Subsystem

Fig. X - User Interface KiCAD schematic

The user interface subsystem is the user's direct interface with the device. The LCD

display is connected to the MCU directly - the pin assignments were based on existing designs

from EasyEDA, featured below.

Fig. X - EasyEDA LCD-1602 pin assignments

We selected this LCD display due to its history of use in Arduino and other MCU

projects, and due to its ability to display a large amount of text which will be needed in our

design when displaying pot values.

The buttons will allow the user to directly input commands into the MCU. Both buttons

will directly connect to the GPIO pins of the MCU. When the button is pressed, the MCU will

send data to the LCD display to show. We could implement some kind of debouncing circuit to

our buttons to prevent any noise, but since our buttons will only be used once per hand we

decided against including this in our design.

Requirements Verification

1. The remote microcontroller must be

able to detect the press of the ‘reset’

button in at most a second of the press

or less.

1. Using serial debugging, record the

value received by the microcontroller

when the ‘reset’ button has not been

pressed.

2. Next, press and hold the ‘reset’ button.

Using serial debugging, record the

value received by the microcontroller,

and ensure it is different from the

value when unpressed. This should

occur in at most a second, a stopwatch

can be utilized to ensure this.

3. Finally, release the ‘reset’ button.

Record the value received by the

microcontroller using serial

debugging. Ensure that this value is

the same as the original unpressed

value.

4. Organize all recorded values in a table.

Note: Refer to the sensing subsystem section

for information regarding serial debugging.

2. The remote microcontroller must be

able to detect the status of the ‘chop’

button in at most a second of the press.

1. Using serial debugging, record the

value received by the microcontroller

when the ‘chop’ button has not been

pressed.

2. Next, press and hold the ‘chop’ button.

Using serial debugging, record the

value received by the microcontroller,

and ensure it is the same as the value

when unpressed (or previous value for

+1 iterations).

3. Next, release the ‘chop’ button. Using

serial debugging, record the value

received by the microcontroller, and

ensure it has changed from the

unpressed default value.This should

occur in at most a second, a stopwatch

can be utilized to ensure this.

4. Continue performing steps 2 and 3 for

three more iterations, ensuring that the

value received by the microcontroller

changes only upon the release of the

‘chop’ button using serial debugging.

On the second of these two iterations,

the value received by the

microcontroller should match that of

the default unpressed value of the

‘chop’ button. (Our device

accommodates up to a 3 way chop

with the button allowing you to cycle

between no chop, 2 way chop, and 3

way chop).

5. Finally, while the microcontroller is

loaded with the signal for a 2-way

chop, press and hold the ‘reset’ button.

Using serial debugging, verify that the

microcontroller returns to the

unpressed value of the ‘chop’ button

and that this value is the same even

after releasing the reset button.

6. Organize all recorded values in a table

3. The pot count on the LCD Display should

read ‘0’ upon the press, hold, and subsequent

release of the ‘reset’ button in a second or

less.

1. Put any number of chips through the

contraption’s tunnel, such that the

LCD display does not display a ‘0’ pot

count value. Next, press and hold the

‘reset’ button. The value on the LCD

display should read ‘0’, and should

continue to read ‘0’ after the ‘reset’

button is released. The LCD display

should update to ‘0’ pot count in a

second or less of pressing the reset

button, a stopwatch can be used to

check this.

4. The LCD display should display the

number of ways the pot is being chopped, and

the respective color denominations. If the pot

cannot be evenly chopped it will display the

color denominations for the greater split, or

the greater two splits. Along with the

difference between this split and the least

valued split. (If one half is one white chip

more than the other, it will say some variation

of ‘+1 White Chip’).

1. Put a number of chips through the

contraption’s tunnel that cannot be

divided by two or three evenly using

the available chip values.

2. Press and Hold the ‘chop’ button.

Ensure that the LCD display shows a 2

way chop, the color denominations for

the greater half of the split, and the

difference from the lower split in at

most 2 seconds of the button press.

3. Release the ‘chop’ button, ensuring

that the LCD display shows the same

information as the previous step.

4. Perform steps 2 and 3 two more times,

ensuring that the LCD display updates

to reflect that of a 3 way chop on the

first iteration. On the second iteration,

the display should show the same

information as it did prior to the first

iteration of step 2- just the pot count

and the color denominations for 1

winner.

5. Perform 1 final iteration of steps 2 and

3 such that the LCD display shows the

information for a 2-way chop once

again.

6. Press and hold the ‘reset’ button, and

ensure that the LCD display only

displays the pot count of ‘0’ within at

most 2 seconds of releasing the button.

5. The LCD display will display ‘COMM

ERROR’ in at most 5 seconds if the

microcontroller detects a connection failure.

1. Load a build of the microcontroller

firmware where the connection failure

is set to high. Ensure that the display

shows an error message in at most 5

seconds of the firmware being loaded

in.

6. The LCD display and the microcontroller

should reflect expected changes in at most 2

seconds of the user hitting a button.

1. Insert any number of chips into the

tunnel of the contraption.

2. Press and hold the ‘reset’ button,

ensuring that the value on the display

and the value read by the

microcontroller using serial debugging

is updated in at most 2 seconds of the

user hitting pressing the button.

3. Add one more chip.

4. Press and release the ‘chop’ button,

ensuring that the LCD display and the

value read by the microcontroller

using serial debugging is updated in at

most 2 seconds.

7. The LCD display appends the pot count,

according to the monetary value associated

with the chip that is inserted.

1. Insert the maximum amount of chips

the contraption supports, of varying

colors.

2. Ensure that this display shows the

right monetary value corresponding to

each chip that gets organized, and that

the final sum is the correct value that

was inserted at the start. The correct

pot count should be displayed within 2

seconds of the last chip being

dispensed to its correct bin.

Tolerance Analysis

Part (Operating at 3.3V) Max Current Draw at 3.3V Comments

STM32F103C8T6 (MCU) 50.3 mA External clock(2), all

peripherals enabled

@72 MHz, Ta = 105 ° C

TCS3200 (Color Sensor) 2 mA Power-on mode

NHD-0216HZ-FSW-FBW-33

V3C (LCD Display)

3 mA Max Supply Current

Total Max Current Drawn 55.3 mA < 800 mA (Max

Supply Current for

LT1117-3.3V)

Variable Value Comment

Tj 150 ° C Maximum Junction

Temperature for LT1117

Voltage Regulators

Iout 55.3 mA Max Current Draw of

Components @3.3V

Vin 9 V 9 V battery voltage

Vout 3.3 V 3.3 V to power above

components

Θjc 15° C/W Thermal Resistance, Junction

to Case, for LT1117-3.3V

Θca 45° C/W 59 °C/W is the max Junction

to Ambient thermal resistance

listed on Data Sheet

Ta

​

30° C Assuming warm board

Calculating Tj = 48.9126 ° C < 150 ° C. LT1117-3.3V Regulator will suffice.

Using 2x LM350 for each 6 V output. This will give us a 3 A max current output for each motor.

Part (Operating at 6V) Max Current Draw Comments

1x Servo Motor (Base) 600 mA Claims to draw a maximum

of 200mA (but we are going

to allocate 600 mA just to be

safe) current for a 6V

Continuous Rotation Servo

(#900-00008)

1x Linear Actuator (Pusher) 550 mA @6V 550 mA max current draw at

a 6 V input for the

PQ12-63-6-S Linear

Actuator.

Total 600mA < 3 A (Base Motor)

550 mA < 3 A (Linear

Actuator)

Max Current draw for both 6

V components are under the

3A threshold that the LM350

can output.

Variable Value Comments

Tj 125 ° C Maximum Junction

Temperature for LM350

Voltage Regulators

Iout 600 mA , 550mA Max Current Draw of each

Component (one for each

regulator) @6V

Vin 9 V 9 V battery input voltage

Vout 6 V 6 V to power the above

components.

Θjc 1.5° C/W Thermal Resistance, Junction

to Case, for LM350.

Θca 33.5 ° C/W 35 °C/W is the max Junction

to Ambient thermal resistance

listed on Data Sheet (NDS)

Ta

​

30° C Assuming warm board

Calculating Tj = 87.75 ° C (Regulator for Linear Actuator), 93° C (Regulator for Motor) <

125 ° C. LM350 Regulator will suffice.

Cost and Schedule

Cost Analysis

Per the University of Illinois Urbana-Champaign’s Website, the average electrical-engineer’s

starting salary is in the ballpark of $85,000 which can be divided to $40/hr. Therefore, $40/hr

*2.5 * 60 * 3 Members = $18,000. According to the machine shop our project was quoted for 40

man hours at a rate of $56/hr, so the cost of the machine shop work would be $56/hr * 40 hrs =

$2240. Next we can add the cost of parts to the cost of labor, and get a total of $20,386.19.

Description Manufacturer Quantity Price Link

LM350 Voltage

Regulator

Digikey 2x $2.02000 *2=

$4.04

https://www.digik

ey.com/en/product

s/detail/texas-instr

uments/LM350T-

NOPB/8901

LT1117CST#PBF-

ND

Voltage Regulator

Digikey 1x $6.18000 https://www.digik

ey.com/en/product

s/detail/analog-de

vices-inc/LT1117

CST-PBF/890204

Continuous

Rotation Servo

(#900-00008

Digikey 1x $19.95 https://www.digik

ey.com/en/product

s/detail/parallax-in

c/900-00008/1774

454

PQ12-63-6-S

Linear Actuator

Digikey 1x $85.00 https://www.digik

ey.com/en/product

s/detail/actuonix-

motion-devices-in

c/PQ12-63-6-S/12

317306

STM32F103C8

T6 (MCU)

Digikey 1x $6.42 https://www.digik

ey.com/en/product

s/detail/stmicroele

ctronics/STM32F

103C8T6/164633

8

TCS3200 (Color

Sensor)

Digikey 1x $7.90 https://www.digik

ey.com/en/product

s/detail/dfrobot/S

EN0101/6588457

NHD-0216HZ-F

SW-FBW-33V3

C (LCD

Display)

Digikey 1x $13.00 https://www.digik

ey.com/en/product

s/detail/newhaven

-display-intl/NHD

-0216HZ-FSW-F

BW-33V3C/2773

591

10u Cap Digikey 1x $0.24000 https://www.digik

ey.com/en/product

s/detail/kemet/C3

22C104M5U5TA

7301/3725993

22u Cap Digikey 1x $0.40000 https://www.digik

ey.com/en/product

s/detail/cal-chip-el

ectronics-inc/GM

C32Z5U226Z16N

T/14288400

9 V Battery Digikey 1x $2.460 https://www.digik

ey.com/en/product

s/detail/duracell-in

dustrial-operations

-inc/9V-MN1604/

13280363

910 Ohm Resistor Digikey 2x $0.20 https://www.digik

ey.com/en/product

s/detail/yageo/CF

R-25JB-52-910R/

3749

240 Ohm Resistor Digikey 2x $0.20 https://www.digik

ey.com/en/product

s/detail/yageo/CF

R-25JB-52-240R/

1342

1 u Cap Digikey 2x $0.20 https://www.digik

ey.com/en/product

s/detail/kemet/C0

402C105K9PAC7

867/1090778

Total Cost of

Materials

$146.19

Schedule

We will assign our schedules to that of the course. The three group members will mostly

work on the same tasks.

Week of Justin Marvin Anish

9/25 Finish design
document, finalize
BOM, begin PCB

design

Finish design
document, finalize
BOM, begin PCB

design

Finish design
document, finalize
BOM, begin PCB

design

10/2 Have design review,
finalize CAD and

machine shop
conversations, begin

calibrating
components on

breadboard

Have design review,
finalize CAD and

machine shop
conversations, begin

calibrating
components on

breadboard

Have design review,
finalize CAD and

machine shop
conversations, begin

calibrating
components on

breadboard

10/9 Finalize PCB design,
order from PCBWay,
complete teamwork

evaluation

Finalize PCB design,
order from PCBWay,
complete teamwork

evaluation

Finalize PCB design,
order from PCBWay,
complete teamwork

evaluation

10/16 Second round of
PCBWay orders,

continue calibrating
on breadboard

Second round of
PCBWay orders,

continue calibrating
on breadboard

Second round of
PCBWay orders,

continue calibrating
on breadboard

10/23 Complete individual
progress report,

continue breadboard
calibration

Complete individual
progress report,

continue breadboard
calibration

Complete individual
progress report,

continue breadboard
calibration

10/30 Receive PCB, begin
soldering and

assembling design

Receive PCB, begin
soldering and

assembling design

Receive PCB, begin
soldering and

assembling design

11/6 Finish calibration and
finish assembling

design

Finish calibration and
finish assembling

design

Finish calibration and
finish assembling

design

11/13 Mock demo, prepare
final presentation

Mock demo, prepare
final presentation

Mock demo, prepare
final presentation

11/20 Fall break - continue
working on design
and presentation

Fall break - continue
working on design
and presentation

Fall break - continue
working on design
and presentation

11/27 Final demo Final demo Final demo

12/4 Final presentation Final presentation Final presentation

Discussion of Ethics and Safety
Ethically, as a project that relates to money and the distribution of monetary equivalent

chips, it is very important that we maintain an accurate count of chip value. Any error in the

logic and sorting of the chips could result in an unfair financial loss to a player, which can

compromise the entire game. The premise of our solution is to eliminate intentional and

unintentional errors in home poker games, while increasing the efficiency of the game itself

which adheres to Section I.1 of the IEEE code of ethics: “to hold paramount the safety, health,

and welfare of the public”[1]. Since, our solution also attempts to eliminate manipulating

pots, as described by our 4th high level requirement, it also supports Section I.4 of the IEEE

code of ethics being “to avoid unlawful conduct in professional activities”[1]. This also means it

is of the utmost importance that our microcontroller unit is not compromised to ensure the

security of the game. Although it may not seem immediately relevant, our project will collect

user data and data about the value of the pot. Even this seemingly harmless data can raise privacy

concerns, so it is essential to adhere to IEEE and ACM guidelines concerning data privacy. As

students, it would be difficult to code our microcontroller in a way that makes it immune to

hacking or interference. The best we can do to combat interference is by making our logic as

simple as possible. Since our solution targets the home-game setting, we can say almost

definitely that we will be able to provide a solution that is “usably secure” per ACM ethics

guideline 2.9.

From a safety standpoint, any mechanism that uses motors and electrical components

presents a safety hazard. Our device will feature a solid enclosure around the motors and moving

parts in order to prevent any hair, jewelry, or loose clothing items from getting stuck in the

motors and causing harm. In addition to this, our design will feature insulation around any wires

and loose electrical components to prevent any harmful contact.

It is also important to abide by the strict IEEE and ACM guidelines against plagiarism

[3]. Although there are a number of chip sorting mechanisms available on the market today, none

of them are directly targeted for home games. This is reflected in the cost of the device. As our

product features proprietary hardware and software - targeting a brand new demographic - we

can safely avoid any plagiarism.

Finally, any product that supplements gambling is subject to review from a number of

gambling governing bodies. The Illinois Gaming Board is the governing body in the state of

Illinois, and controls a regulatory and tax collection for gaming in the state. Although regulations

will be less stringent due to the home game target demographic, any gambling product will be

subject to review before being commercially available to the public.

Citations

[1] “IEEE code of Ethics,” IEEE,

https://www.ieee.org/about/corporate/governance/p7-8.html (accessed Sep. 14, 2023).

[2] R. Fee, “6 reasons why live poker is easier than online poker,” Upswing Poker,

https://upswingpoker.com/live-poker-vs-online-poker-easier/ (accessed Sep. 14, 2023).

[3] Zion Market Research, “Trading card game market size, share and demand 2030,” Zion

Market Research, https://www.zionmarketresearch.com/report/trading-card-game-market

(accessed Sep. 14, 2023).

Datasheets:

https://www.ti.com/lit/ds/symlink/l293.pdf

https://www.ti.com/lit/ds/symlink/l293.pdf

