# **ECEB Submetering System**

Ву

Houji Zhou Sophia Marhoul Vincent Nguyen

Design Document for ECE 445, Senior Design, Fall 2023

TA: Tianxiang Zheng

13 September 2023

Project No. 39

# Contents

| 1. Introduction      | .1 |
|----------------------|----|
| 2. Design            | .2 |
| 3. Cost and Schedule | .5 |
| 3.1 Cost Analysis    | .5 |
| 3.2 Schedule         | .6 |
| 4. Ethics and Safety | .7 |
| 5. Citations         | .8 |

# 1. Introduction

**Problem:** The ECEB is a Platinum LEED certified building, powered by rooftop solar panels. To continually improve energy efficiency, it is necessary to further optimize power consumption. This can be done if building management has detailed power data, tracked over significant periods of time, to analyze trends in usage and opportunities to reduce idle consumption.

**Solution:** Our solution is to create power meters that can accurately measure power, voltage, and current of individual rooms within ECEB and upload this data to a database for future analysis and monitoring.

## Visual Aid:



#### **High-level requirements list:**

- Sample a single-phase input for its voltage and current.
- The microcontroller will process the voltage and current samples to calculate apparent and real power. These data points are stored onto an SD card and to a cloud database.
- The device will display the instantaneous voltage and current as well as the real and apparent power.

# 2. Design

## **Block Diagram**



#### Subsystem Overview:

The sensor unit will be used to monitor the voltage and current of a single-phase input. The sensors will take initial readings which will be filtered through a secondary circuit to convert the sensor outputs into a range that is readable by the microprocessor.

The power system is composed of a rechargeable battery and a set of regulators. The battery can provide at least 24 hours of continuous power to the monitoring unit (the main box which takes readings, stores data, and communicates with the external database) without being connected to an external power source. The regulators will adjust the base battery voltage into appropriate DC voltages, namely 3.3V.

The primary onboard processing component is the microcontroller, which will collect voltage and current data from sensors, calculate the real-time power according to the voltage and current, and store the voltage, current, and real and apparent power with time stamps to the SD card. The microcontroller (ESP32) will also be able to upload collected data to a cloud database through WiFi.

The cloud storage will continue to receive data from the ESP32 and will keep that data at most for 5 years for analysis purposes.

The local LCD display would show the real-time voltage, current, and power from the single-phase input.

## **Physical Design**

The sensing unit will be constructed inside a grounded box, with an input and output port through which mains power should be connected. The box will be dimensioned such that it can be mounted on a wall or placed on a rack, but the transformers and battery will make the unit relatively heavy, so a rack of some sort is recommended.

## **Subsystem Requirements**

## Power Supply System:

The power system, composed of a 3.7V 5.2Ah Li-Ion battery and a 3.3V linear regulator will provide consistent power at 3.3V for all digital and analog components.

| Requirements                                                                                                                                                                                                                                                            | Verification                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| A rechargeable battery that can power the metering unit without being charged for at least 24 hours, with a margin of 15%.                                                                                                                                              | The metering unit will be left on without being connected to power, and requests for data will be made at 2 hour intervals until the battery dies. |
| Power regulators must provide 3.3V DC power<br>to each sensor, the microcontroller, the SD card,<br>and the local display, such that the pull up<br>circuits in the sensors have a +1.65 V bias and<br>the microcontroller I/O pins have outputs<br>between 0 and 3.3V. | Use Keysight multimeters as voltmeters to test<br>that the SD card and ESP32 have an input voltage<br>of no more than 3.3V.                        |

#### Sensor Unit:

The sensor unit needs to be able to observe 208V peak-to-peak AC voltage and 400 amps of current without significantly impeding power at the load. This will be achieved via a current transformer and a voltage transformer, which will also isolate the sensing unit from mains power.

| Requirements                                     | Verification                                    |
|--------------------------------------------------|-------------------------------------------------|
| The power delivered at the load is reduced no    | An ammeter and voltmeter will be used to        |
| more than 0.5% in comparison to the              | measure the current and voltage above the meter |
| unmetered value.                                 | and below the meter, such that the power        |
|                                                  | consumption of the meter in comparison to the   |
|                                                  | load can be calculated.                         |
| The voltage at the voltage sensor's analog input | A multimeter or voltmeter will be connected in  |
| pin scales proportionally to the measured        | parallel with the source such that it can be    |
| voltage, such that measured voltage is no more   | compared to the measured voltage for inputs 0V- |
| than 3% off from actual voltage.                 | 208V.                                           |
| The current at the current sensor's analog input | A multimeter or ammeter will be connected in    |
| pin scales proportionally to the measured        | series with the source such that it can be      |
| current, such that measured current is no more   | compared to the measured current for inputs     |
| than 1% off from actual current.                 | between 0A- 400A.                               |

## **Onboard Processing:**

The ESP32 processes the input measurements to produce power calculations. This data will then be sent to various sources: a cloud database, SD card, and the local LCD display.

| Requirements                                   | Verification                                       |
|------------------------------------------------|----------------------------------------------------|
| Calculate real and apparent power within 4% of | Observe the real power from the source using a     |
| the actual value based on sampled              | wattmeter and calculate the apparent power from    |
| measurements from the voltage and current      | the RMS voltage and current, which can be          |
| sensor.                                        | observed by placing a voltmeter in parallel and an |
|                                                | ammeter in series with the load.                   |
| Offload measurements onto the SD card from     | Insert SD card into a computer and verify the      |
| the ESP32 flash memory once per second.        | information and timestamps are 0.1 second          |
|                                                | intervals.                                         |
| Upload the voltage, current, and power         | Check if the database has datapoints that display  |
| measurements to the Azure Cosmos database      | 0.1 second intervals.                              |
| every 15 minutes using WiFi and the MQTT       |                                                    |
| Protocol.                                      |                                                    |
| Present real-time measurements on the LCD      | The LCD Display accurately shows the voltage,      |
| Display.                                       | current, and power measurements.                   |

## **Tolerance Analysis:**

Power system

• The battery should provide 24 hours of continuous power to the metering unit with a tolerance of 15%.

## Sensor unit

• The phase voltage measured by the meter at the interconnection point will be no more than 3% above or below the RMS voltage indicated by a lab bench voltmeter.

- The phase current measured by our meter at the interconnection point will be within 1% of the RMS current indicated by a lab bench ammeter.
- The single-phase power measurement will be within 4% of the lab bench wattmeter reading.

## **Onboard Data Processing**

- The ESP32 supports communication through WiFi with 20 Mbit/s
- The ESP32 uses the SPI communication protocol to read the SD card that requires at least 10 Mbits/s
- There is a risk on the SD card storage module on board. Because it stores all the data collected and the data source when the web server requests data from the device. If the SD card doesn't work properly, the system can't either load data into the storage nor send data to the web server.

## Uploading data to web server via WiFi

There is a connection risk when streaming data from the ESP32 to the web server. Since the
device will be in active building with multiple connections occurring simultaneously, we may
face connection issues and have unsuccessful data transfer. We will handle connection issues
by communicating with the cloud services where we will get confirmation receipts of received
data to the cloud and attempt an internet reconnection request if we do not receive a
confirmation receipt within 30 seconds.

# 3. Cost and Schedule

## 3.1 Cost Analysis

## Labor

Assuming an approximate average salary of an ECE graduate of \$40/hour, each team member cost comes to (\$40/hour) x 2.5 (overhead factor) x 8 hours/week x 11 weeks = \$8800.

Since we have 3 team members and won't be utilizing any machine shop labor, our total labor cost comes to  $8800 \times 3 = 26,400$ .

## Parts

| Description                     | Cost  | Quantity | Part #            | Manufacturer      | Link                           |
|---------------------------------|-------|----------|-------------------|-------------------|--------------------------------|
| ESP32 Processor                 | 2.50  | 1        | SP32-WROOM-32E-N4 | Expressif Systems | link                           |
| I2C LCD Display                 | 8.95  | 1        | CN0295D           | SunFounder        | link                           |
| Micro SD Card Module            | 5.20  | 1        | DFR0229           | DFRobot           | link                           |
| Micro SD Card                   | 7.55  | 1        | TF64GKT*3         | KOOTION           |                                |
| 208V/24V Voltage<br>Transformer | 19.43 | 1        | ТСТ40-05Е07АВ     | Triad Magnetics   | voltage<br>transformer<br>link |

| 400A/5A Current        | 26.00  | 1 | CTF-5RL-0400   | AcuAmp          | <u>current</u> |
|------------------------|--------|---|----------------|-----------------|----------------|
| Transformer            |        |   |                |                 | transformer    |
|                        |        |   |                |                 | link           |
| 10Ω 50W Resistor       | 4.10   | 1 | KAL50FB10R0    | Stackpole       |                |
|                        |        |   |                | Electronics Inc |                |
| 3.7V Lithium Ion       | 26.99  | 1 | 31001          | Tenergy         | battery link   |
| Battery                |        |   |                |                 |                |
| 1A Smart Charger for   | 29.99  | 1 | 01281          | Tenergy         | charger link   |
| Li-Ion/Polymer Battery |        |   |                |                 |                |
| Pack                   |        |   |                |                 |                |
| 3.3V Linear Regulator  | 0      | 1 | AZ1117CD-      | ECE Supply Shop | linear         |
|                        |        |   | 3.3TRG1DITR-ND | (Diodes         | regulator      |
|                        |        |   |                | Incorporated)   | link           |
| Total Parts Cost       | 157.70 |   |                |                 |                |

## **Grand Total Cost**

Labor Cost + Part Cost = \$26,400 + \$157.70 = \$26.557.70

Summing up all the costs, we get a total cost of \$26.557.70 to make this project possible.

## 3.2 Schedule

| Week  | Sophia                                                                                  | Vincent                                                                                                     | Houji                                                                                                                           | Everyone                                                                                                           |
|-------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 9/25  | Research methods to<br>measure single phase<br>power and research<br>local power supply | Familiarize with<br>ESP32 by uploading<br>and running code                                                  | Get familiar with SD<br>card module and how<br>to connect it with<br>ESP32                                                      | Design Document<br>finalized                                                                                       |
| 10/2  | Order components.<br>Design PCB and<br>construct early versions<br>of sensor circuits.  | Write program to<br>allow ESP32 to<br>upload mock data to<br>database via WiFi                              | Construct the PCB<br>design with Sophia<br>and start programing<br>the data transferring<br>between ESP32 and<br>SD card module | Create prototype<br>on breadboard,<br>verify and<br>program measure<br>calculations, PCB<br>Design<br>Finalization |
| 10/9  | Develop calibrations for<br>sensors.<br>Verify PCB Design                               | Write program that<br>shows<br>measurements on an<br>LCD Display and<br>design a housing unit<br>for device | Finish and send order<br>of PCB                                                                                                 | PCB Ordering                                                                                                       |
| 10/16 | Contribute to<br>theoretical design of<br>code.                                         | 3D print housing unit                                                                                       | Testing SD card reading and writing.                                                                                            |                                                                                                                    |

| 10/23 | Construct, test, and   | Ensure PCB is        | Solder parts on PCB.    | PCB ordering              |
|-------|------------------------|----------------------|-------------------------|---------------------------|
|       | debug sensor circuits. | functional and order | Test and debug the      | backup                    |
|       | Continue refining      | backup if needed.    | on-board                |                           |
|       | parameters for sensor  |                      | performance.            |                           |
|       | inputs.                |                      |                         |                           |
| 10/30 | Responsible for        | Responsible for      | Responsible for         | Final Project             |
|       | technical explanations | diagrams and some    | technical explanations  | Document                  |
|       | regarding power        | programming          | regarding on-board      | finalized.                |
|       | measurements.          | explanations.        | data handling.          |                           |
| 11/6  | Execute tests          | Create testing       | Verify test results are | Final Testing             |
|       |                        | guidelines.          | accurate                |                           |
| 11/13 | Practice presenting    | Practice presenting  | Practice present SD     | Mock Demo                 |
|       | voltage and current    | database, display,   | card, data calculation, |                           |
|       | measurement methods    | and housing unit.    | and PCB design.         |                           |
|       | and PCB Design.        |                      |                         |                           |
| 11/20 | Fall Break             | Fall Break           | Fall Break              | Fall Break                |
| 11/27 | Present voltage and    | Present database,    | Present SD card, data   | Final Demo                |
|       | current measurement    | display, and housing | calculation, and PCB    |                           |
|       | methods and PCB        | unit.                | design.                 |                           |
|       | Design.                |                      |                         |                           |
| 12/4  | Present voltage and    | Present database,    | Present SD card, data   | <b>Final Presentation</b> |
|       | current measurement    | display, and housing | calculation, and PCB    |                           |
|       | methods and PCB        | unit.                | design.                 |                           |
|       | Design.                |                      |                         |                           |

# 4. Ethics and Safety

The data being handled by our meter is not personal in nature, and will be posted in a public location, so we will not need to account for data privacy in our design. The primary safety risk is that of shock from single-phase power. To protect the safety and health of the public, we will ground the outside of our metering box and electrically isolate the interior. We will also label it clearly as a high voltage device.

We do not know of any conflicts of interest at play, and certainly do not anticipate unlawful conduct.

We will review our work with others to ensure its accuracy, carefully track testing data to ensure honesty in our claims and make every effort to credit any reference we use in developing this device. This device is a technical project which will improve our competence in power sensing, data gathering, and database management.

# 5. Citations

- [1] X. Wu, X. Shen and T. Wang, "ECE 445 Submetering the ECEB," May 2020. [Online]. Available: https://courses.engr.illinois.edu/ece445/getfile.asp?id=16751. [Accessed 28 September 2023].
- [2] A. D. Dominguez-Garcia, "Lecture Notes on Power System Analysis and Control," University of Illinois at Urbana Champaign, Urbana, 2023.
- [3] Wicked, "GPIO max input/output current," Esspressif, 16 Jun 2021. [Online]. Available: https://www.esp32.com/viewtopic.php?t=21482. [Accessed 28 Sep 2023].
- [4] "How to Select the Right Linear Voltage Regulator ICs for Modern Day Circuit Designs," Components 101, 16 Jun 2020. [Online]. Available: https://components101.com/articles/how-to-select-rightvoltage-regulator-ic-for-your-design. [Accessed 28 Sep 2023].
- [5] The Grainger College of Engineering, "Salary Averages," 2023. [Online]. Available: https://ece.illinois.edu/admissions/why-ece/salary-averages. [Accessed 28 Sep 2023].
- [6] IEEE Board of Directors, "IEEE Code of Ethics," IEEE, 2020.