

Team 39 Soil Moisture Controller (Pitched Project) ECE 445 – Spring 2023

First Yingyord, Isabel Alviar, Ren Yi Ooi

May 1, 2023

Introduction

Problem Solution Objectives and High-Level Requirements

GRAINGER ENGINEERING

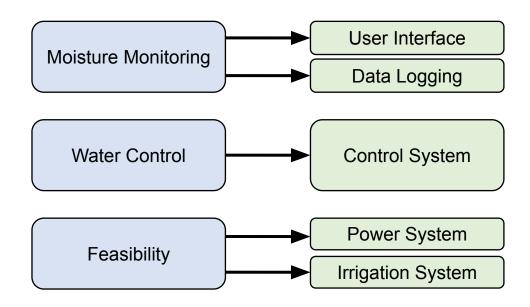
Introduction

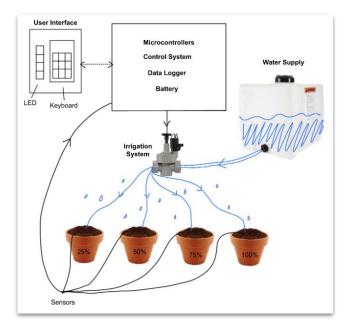
Problems faced by the U.S. Department of Agriculture (USDA)

Therefore, there needs to be a **more precise method** to measure and maintain the soil moisture

- Biggest limiting factor for gains in agricultural productivity is the ability to provide sufficient moisture in the soil for the growth of crops
- Currently, the measurement of soil moisture content in pots are performed manually with individuals monitoring the moisture level based on weight, or the use of gravimetric sensors
- Difficult to measure **exact proportion** of increase in plant mass to change in soil moisture content

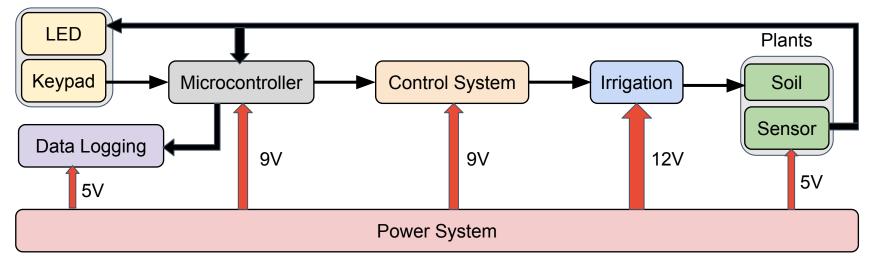
conditions in these pots using soil moisture sensors.





Introduction

Solution



Block Diagram

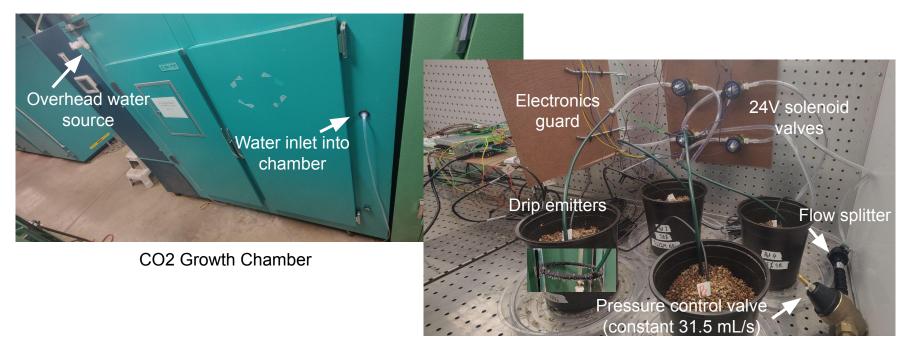
User Interface

Objectives / High Level Requirements

The moisture sensors should be able to **detect the current level of moisture in the soil** and the moisture level **data should be logged** on an SD card and **displayed** on an LED bar graph **every 6 hours**

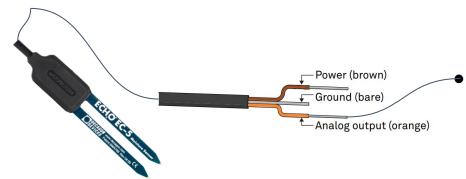
The system should be able to **provide irrigation** when the **moisture level falls beyond a set threshold** level as inputted using a keypad by the user

The system should be **scalable to four different pots** and the **moisture level maintained** at 100%, 75%, 50%, and 25% in each of the respective pots


Design

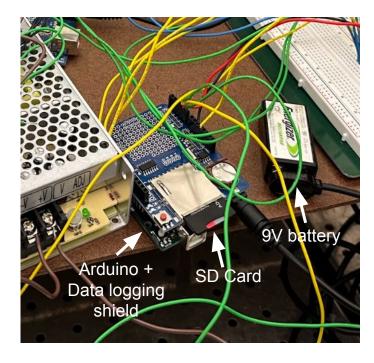
Irrigation Subsystem Data Logging Subsystem User Interface Subsystem Power Subsystem Controller Subsystem PCB Design

Irrigation Subsystem - Setup in Edward R. Madigan Laboratory



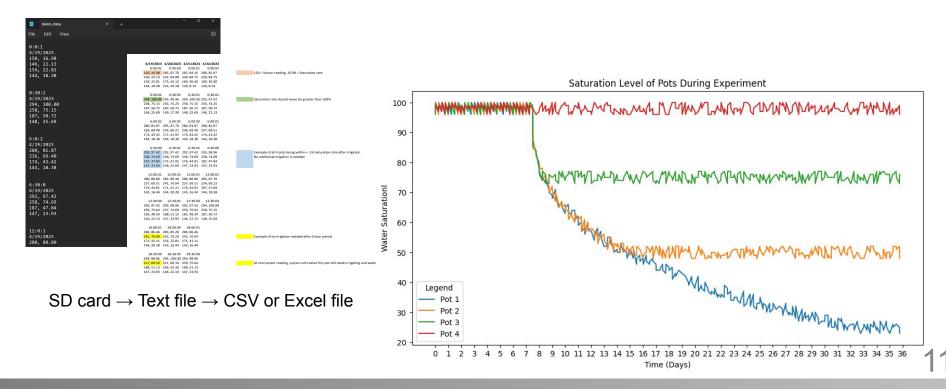
Irrigation Subsystem - Soil and ECH20 EC-5 Moisture Sensors

- Prepared **2 types of soil** 5mM and 0.625mM
 - Sand/clay mixture, water flows through it relatively fast
- Created **soil specific formulas** to determine:
 - \circ VWC \rightarrow Saturation rate (SR)
 - $\circ \quad \text{SR} \rightarrow \text{time valve should be open}$

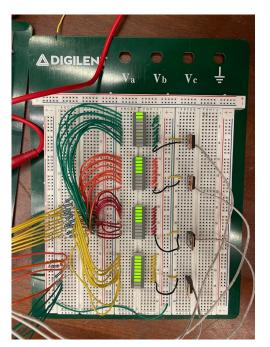


- Output value is the **volumetric water** content (VWC)
 - Sensor produces an output voltage based on the soil's dielectric constant

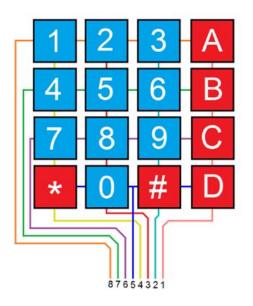
Data Logging Subsystem - Overview

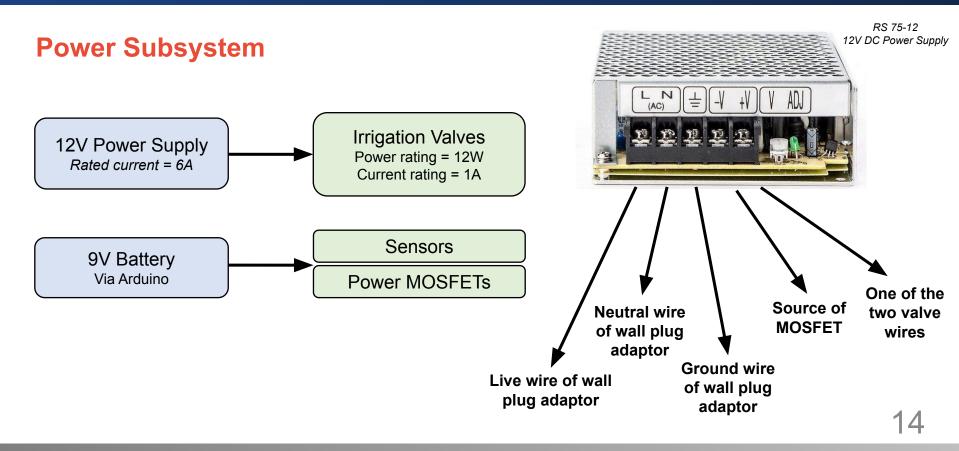

At 12am, 6am, 12pm, 6pm:

- 1. Check sensors and log data on SD card
- 2. Irrigate and wait 30 minutes for water to settle
- 3. Check sensors and log data again. See if a little more irrigation is necessary. If so, irrigate again.
- 4. Wait 5 1/2 hours
- 5. Repeat

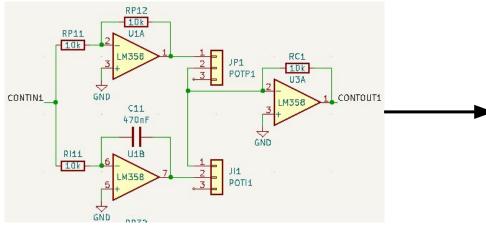

Data Logging Subsystem - Data Collection Examples

User Interface Subsystem – 10-Segment LED Bar Graph

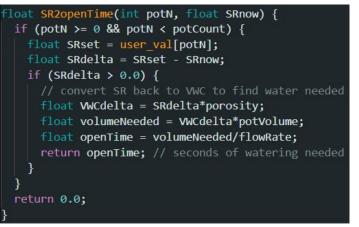

- Shows the soil moisture level as detected by the sensors in each pot
- Use of power MOSFETs (IRF520) consist of transistors to switch between each 10-segment LED bar graph by turning them on and off sequentially
 - If this switch were to be made very rapidly, it would allow the user to see all four 10-segment LED bar graphs together



User Interface Subsystem – 4x4 Keypad


- Allow user to input the desired soil moisture level
 - Compact size of the keypad would be beneficial in a greenhouse setting
- **Pull** each of the four **columns** (pins 1-4) either **low or high** one at a time, and then **poll** the states of the four **rows** (pins 5-8)
 - Depending on the states of the columns, the microcontroller can tell which button is pressed

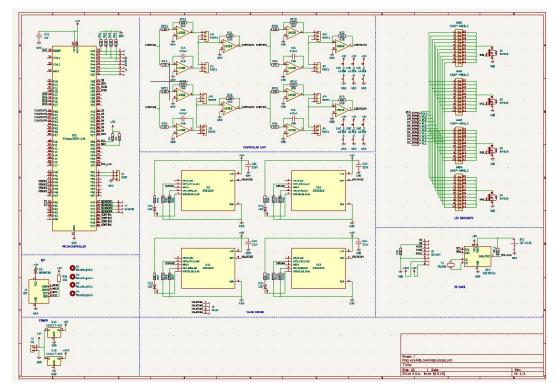
Design


Controller Subsystem

Proportional-Integral controller

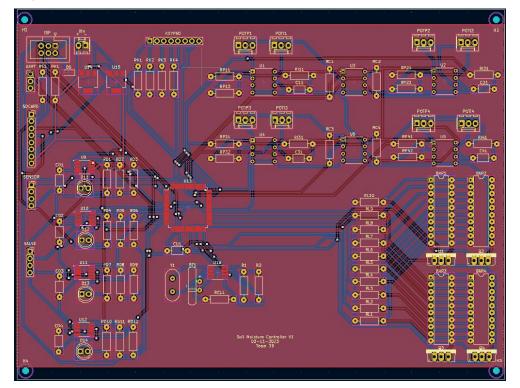
Limitations

- Each pot can only be watered for **at most four times a day**.
- The **opening time** of each valve is controlled instead of the flow rate.
- The opening time is independent of the soil concentration.



Constant rate control

Design


PCB Design – Schematic

Design

PCB Design – Layout

Conclusion

Successes Challenges Future Work

ELECTRICAL & COMPUTER ENGINEERING

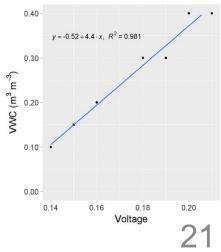
GRAINGER ENGINEERING

Successes

Prototype is implemented and tested successfully inside the experiment's growth chamber

All high level requirements were met

Each subsystem works well with each other as expected


Challenges

Changes in requirements

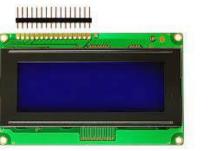
- o Various changes affected the scope and design of the project entirely to fit the specific requirements
- o These changes also include restrictions onto the original design

Communication

- o Different expectations and deadlines between both groups
- o Constant updates on meeting times and project issues

Conclusion

Future Work


- Extension to 40 pots
 - Current design only built for **4 different pots** 0
 - **Scalability** to any number of pots required one PCB for each pot 0

User Display

- Comprehensive display of exact moisture level in each pot 0
- LCD screen 0

Calibration to Different Substrate Types

- Current calibration curve only developed for solution with 20 mM 0 NO3- and a solution with 5 mM NO3-
- Greater range of calibration curves can be developed for various 0 substrate types

Thank You!

Questions?

First Yingyord – phuriy2 Isabel Alviar – ialviar2 Ren Yi Ooi – rooi2

Appendix

Power Supply Subsystem

RS-75-12 Power Supply

- 12V DC
- Rated Current = 6A
- https://www.meanwellusa.com/upload/pdf/RS-75/RS-75-spec.pdf

Irrigation Valves (each)

- 12W Power Rating
- 12V DC 🗆 1A Current Rating
- https://www.amazon.com/Electric-Solenoid-Normally-Solid-U-S/dp/B00APDN PXG/ref=sr_1_3?hvadid=580918680175&hvdev=c&hvlocphy=9022186&hvn etw=g&hvqmt=e&hvrand=127161800066773369&hvtargid=kwd-3300453272 73&hydadcr=26618_11681396&keywords=1%2F4+solenoid+valve+12v&qid =1680226210&sr=8-3

Arduino

Capable of outputting 3.3V and 5V through its linear regulator

Sensors

- Minimum supply voltage of 2.5V DC at 10mA
- Maximum supply voltage of 3.6V DC at 10mA
- <u>https://www.metergroup.com/en/meter-environment/products/ech20-ec-5-soil</u> -moisture-sensor?sbrc=128FtFdfCwAj0hXgwQNcO-g%3D%3D%24CBeLrgD 2AHEEuWT2pd8M3Q%3D%3D

MOSFETs

- Power MOSFET: IRFZ44N
- Gate threshold voltage of between 1V 2V
- <u>https://www.infineon.com/dgdl/irlz44npbf.pdf?fileId=5546d462533600a40</u> 153567217c32725

9V Battery (Rechargeable)

- Energizer
- Nominal Voltage = 8.4V
- Full Capacity Charge within 5 hours
- https://www.digikey.com/en/products/detail/energizer-battery-company/N H22NBP/4477695

Op-Amps

- LM358P
- Supply voltage = between 3V 36V
- https://www.ti.com/lit/ds/symlink/lm358.pdf?HQS=dis-dk-null-digikeymod e-dsf-pf-null-wwe&ts=1681900226395&ref_url=https%253A%252F%252 Fwww.ti.com%252Fgeneral%252Fdocs%252Fsuppproductinfo.tsp%253 FdistId%253D10%2526gotoUrl%253Dhttps%253A%252F%252Fwww.ti. com%252Flit%252Fgpn%252Flm358

Other connections

- V+ goes to one of the valve wires
- V- goes to Source of MOSFET
- The other valve wire goes to Drain of MOSFET
- Gate of MOSFET goes to Arduino

Source of MOSFET goes to ground