

# **Distributed Species Tracker**

Electrical & Computer Engineering ECE 445 - SP 23

Group 10

April 26th, 2023



# Introduction

#### Team Members

#### Jonathan Yuen [CompE]

- PCB Design
- Power Management Subsystem

#### Ryan Day [CompE]

- Firmware Development
- PCB Design
- Networking Subsystem

#### Max Shepherd [CompE]

- Software Development
- Image Classification Subsystem

# Objective

#### **Invasive and Endangered Species Tracking**

- Remove overhead of tracking invasive species
- Aid in conservation efforts for study of endangered species
- Identify areas where species of interest have trafficked



# Functionality and Build

#### **High Level Requirements**

Data redundancy - We should be able to demonstrate that data gathered on any arbitrary node is reflected on the rest of the nodes in the network.

<u>Accuracy</u> - The system should be able to identify the presence of an animal with the infrared sensor and classify the animal we are monitoring with an accuracy of 70% or higher.

<u>Power Ability</u> - The system should be able to power a node with a 3.7V LiPo battery and charge the battery via solar energy.



| Distributed | Specie | es Trac | ker |
|-------------|--------|---------|-----|
| Distingator | opeen  |         |     |

Node 1 Sightings:

Node 2 Sightings:

• Node: 2, Animal Identified: human, GPS: (40.115278deg, -88.228367deg, 237.744m), Timestamp: 34467

• Node: 1, Animal Identified: human, GPS: (40.115278deg, -88.228367deg, 237.744m), Timestamp: 55946

Node: 1, Animal Identified: human, GPS: (40.115278deg, -88.228367deg, 237.744m), Timestamp: 110370

• Node: 2, Animal Identified: human, GPS: (40.115278deg, -88.228367deg, 237.744m), Timestamp: 79456

• Node: 2, Animal Identified: human, GPS: (40.115278deg, -88.228367deg, 237.744m), Timestamp: 209456

Node 3 Sightings:

Node: 3, Animal Identified: human, GPS: (40.115278deg, -88.228367deg, 237.744m), Timestamp: 42298
 Nade: 3, Animal Identified: human, GPS: (40.115278deg, -88.228367deg, 237.744m), Timestamp: 124526

Node: 3, Animal Identified: human, GPS: (40.115278deg, -88.228367deg, 237.744m), Timestamp: 124539



-\_-\_ Data

Power

# PCB Design





# Networking Subsystem

- Modulation scheme : LoRa
  - Spread spectrum
  - $\circ$   $\,$  Long range / low power  $\,$
  - Unrestricted 915 MHz range
  - Forward Error Correcting
  - Configurable spreading factor
- SPI communication with MCU
- Dipole whip antenna researched for best VSWR



# **ESP32** Software

- Parallelized receive and package/send threads
- Safe transmission over speed tradeoff
- Route Discovery
- Data stored locally and published if

necessary



#### LoRa Data

- Successful message exchange at 1km with spreading factor (SF) of 12
- Expected relationship between SF/coding rate configurations and max distance

| Spreading<br>Factor | Coding Rate | Max Distance<br>(m) | RSSI (dBm) | SNR (dB) |
|---------------------|-------------|---------------------|------------|----------|
| 7                   | 4/5         | 350                 | -127       | -16      |
| 9                   | 4/5         | 861                 | -137       | -15      |
| 12                  | 4/5         | At least 1000m      | -144       | -20      |
| 7                   | 4/8         | 342                 | -119       | -13      |
| 9                   | 4/8         | 850                 | -139       | -15      |
| 12                  | 4/8         | At least 1000m      | -141       | -19      |







- Jetson image processing / handshaking was the biggest contributor to latency
- Consistent, fast picture-to-send latency

| Trial # | Detection-to-Send Latency (ms) | Picture-to-Send Latency (ms) |
|---------|--------------------------------|------------------------------|
| 1       | 2014                           | 4                            |
| 2       | 2234                           | 5                            |
| 3       | 1988                           | 3                            |
| 4       | 2055                           | 2                            |
| 5       | 2304                           | 3                            |
| 6       | 2111                           | 3                            |
| 7       | 2008                           | 4                            |
| 8       | 2047                           | 5                            |
| 9       | 1976                           | 3                            |
| 10      | 2289                           | 4                            |

# Image Processing Submodule





- Consists of Nvidia Jetson and USB Camera
- Notifies the MCU if the desired species is in frame or not
- Changes from original
  - Using external processor for inference
  - Using a two-wire output as opposed to
    SPI

# Classification

Ι

- Classification is done using object detection
- The model is SSD (single-shot detector) with a mobilenet backbone, a lightweight and fast model
- Model can detect up to 100 different classes of objects, and count how many of each object there are
- Final accuracy was 94% in the lab





#### Power Management Subsystem

#### **Solar Charging Circuit**









#### **5V Boost Converter Circuit**



Ι

- Scrapped the GPS module
- Replaced Jetson-to-MCU SPI connection with custom communication protocol
- Redundant 3.3V linear regulators
- Fine-pitched 5V boost converter
- MCU flash issues

# Next Steps



#### **Recommendations For Further Work**

- Consolidate image processing to the MCU, reducing power consumption, size, and complexity
- Implement more robust failure detection and recovery
- Interactive map UI
- Weatherproof physical design
- Switch-Mode MPPT charging circuit

# Conclusion

#### **Accomplishments**

- Functioning proof of concept design meeting most high level requirements
- Solar charging capabilities
- High accuracy image classification
- Dashboard
- PCB Design
- MCU Software
- RF theory and practice

#### Takeaways

- Use more well-documented chips
- Use hand-solderable IC's
- Importance of IEEE and ACM Code of Ethics
- Plan ahead
- Hardware is difficult to debug



# The Grainger College of Engineering

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN