

AUTONOMOUS CARD DEALER Electrical & Computer Engineering

Adam Naboulsi, Rohit Chalamala, Ralph Balita

MAY 1st 2023

The Team

Rohit Chalamala Computer Engineering

Adam Naboulsi Electrical Engineering

Ralph Balita Computer Engineering

Introduction

ELECTRICAL & COMPUTER ENGINEERING

Problem/Objectives

Problems / Objectives

- Players in casual games are subject to cheating.
- Sometimes players are not in the mood to deal or shuffle.

Solution

- Automate shuffling and dealing without human intervention.
- Design a smart device, capable of facilitating card games.

Features

- 1. Game Modes
 - Poker
 - Rummy
 - Uno
 - Literature
 - Even Deal
- 2. Max # of Players: 8
- 3. Automated Shuffling and Dealing
- 4. Button Control & Real Time Feedback

Subsystems

Power:

- Regulate 9V battery down to a stable 6V, 5V, and 3.3V.

Motor:

- Two servos for dealing and rotating device.
- Two DC shuffling motors One motor driver to control.

User Interface:

- Hex (7Seg) Display to show status of game.
- 4 buttons for user control.

Sensing:

Ultrasonic Sensor to determine distance from user.

Original Schematic

ELECTRICAL & COMPUTER ENGINEERING

1

Power Subsystem

Added an extra Voltage Regulator. Regulated down from 18V instead of 9V.

Motor Subsystem Replaced Dealing Servo motor with a DC motor.

User Interface Subsystem

Changed the 7-Segment Display to an LCD.

Sensing Subsystem

No changes made.

Microcontroller Subsystem Used a NUCLEO-F411RE Development Board. Breadboarded the PCB components.

Updated Block Diagram and Physical Design

Power and Motor Block Requirement Overview

Power Subsystem

- Stable, regulated voltage from 18V to 13.5±0.5V, 6.5±0.5V, 5.5±0.5V, 3.8±0.5V.
- Support up to 2.5A of current; Short-circuit protection.

Motor Subsystem

- Shuffle cards in riffle fashion
- Shuffling motors output >40oz-in of torque.
- Deal servo motor outputs >55.54 oz-in of torque.
- Rotation Servo motor outputs >60 oz-in of torque.
- Rotation Servo motor rotates at least 180 degrees in various increments.

Sensing Subsystem

- Accurate readings from ultrasonic.
- Get readings from at least 0.5 meters away.
- Ultrasonic takes distance measurements in a range of 10-15 degrees wide.
- Collect and send readings to microcontroller through trig/echo on 5V

User Interface Subsystem

- Indicate # of players (1-8) and change game mode through button control.
- Communicate data from buttons to microcontroller and LCD.

ELECTRICAL & COMPUTER ENGINEERING

Verifications

We want a stable and regulated voltage from 18.0V to 13.5±0.5V, 6.5±0.5V, 5.5±0.5V, 3.8±0.5V.

Voltage Regulator Intended Output	Resistor Value Used (R2)	Output Testing
13.5±0.5V	220Ω	13.39V
6.5±0.5V	880Ω	6.14V
5.5±0.5V	760Ω	5.47V
3.8±0.5V	430Ω	3.43V

Must have the capability to rotate at least 180 degrees in increments of 11.25, 12.9, 15, 18, 22.5, 30, 45, and 90 degrees (1-8 players) clockwise in a controlled manner.

Expected	11.25	12.9	15.0	18.0	22.5	30.0	45.0	90.0
Observed	11.00	13.0	16.0	18.0	22.0	30.0	46.0	90.0

* = C_{in} is required if regulator is located an appreciable distance from power supply filter. ** = C_0 is not needed for stability, however, it does improve transient response.

$$V_{out} = 1.25 V \left(1 + \frac{R_2}{R_1}\right) + I_{Adj} R_2$$

Accomplishments & Challenges

ELECTRICAL & COMPUTER ENGINEERING

Successes

Taking User Input and Display

Buttons capable of changing the state of the machine and user input settings. Seen clearly via the Liquid Crystal Display (LCD)

Shuffling

Pseudo-random riffle shuffling mechanism

Rotating Base Servo Motor capable of controlled 180 deg rotation

Dealing and Sensing

Dealing Mechanism capable of dispensing cards when player is scanned

Challenges and Solutions

Ι

Challenges & Solutions

- Unable to get the PCB working
- Power drains from the batteries very quickly
- Inaccurate readings from the Ultrasonic sensor
- Imprecise rotation from the servo motor
- Shuffling isn't as even as we want it to be
- Dealing is difficult when only a few cards remain

Conclusions

Reflection

We are happy with what we have achieved, and we feel that we've all learned a lot.

Improvements

- Moving our design onto a working PCB
- Using a Lidar sensor as opposed to an Ultrasonic
- Using a better voltage supply such as a wall plug in
- Better motors for more control of shuffling, dealing, and rotation
- Adding an arm lever or a weight on cards.

Future Work

The Future of Automated Card Dealing

- Improved Player Recognition
- Card Game Gaming Console
- Dealer Tracking
- Customize Game Modes directly onto the device

Society with an Autonomous Card Dealer

Ethical Considerations

Main purpose of this project is to prevent cheating and make card games fair.

IEEE Code of Ethics

- Ensuring health and safety of our users
- Frequently met with the Machine Shop to make sure no mechanical hazards surface.
- Actively sought advice from expertise and loved constructive criticism on our project.
- Proper teamwork etiquette was in place.
- Scheduled weekly meetings during the semester to discuss any violations of the code of ethics.

Thank you for attending our presentation! Questions?

rohitc2@illinois.edu, adamjn3@illinois.edu, rbalita2@illinois.edu

ELECTRICAL & COMPUTER ENGINEERING