

Glove For Programmable Prosthetic Hand

Electrical & Computer Engineering

Ryan Metzger, Quang Nguyen, Sohil Pokharna Team 55 May 3rd, 2022

Overview

- 1. Problem
- 2. Solution
- 3. Project Demo
- 4. Hardware Design
- 5. Software Design
- 6. Creating the Demo
- 7. Verifications
- 8. Conclusions

Budget prosthetic limbs offer basic level of control but lack finer control, this can be solved with a quality robotic hand but involves a much higher cost.

Our Solution

Using a hardware/software solution to measure organic hand positions and translate measurements to hand movements.

Project Demo

Hardware Design

Product Realization

PCB Design

Hand PCB x 1 : Mounted on back of hand

Finger PCB x 4 : Mounted on back of Pointer, Middle, Ring, Pinky

Manufactured PCB

Circuit Sub-Systems

Battery Solution (LiPo)

Powers system in mirroring mode for ~40 Hours theoretically

Discharge: 3.0V cutoff at room temperature.

Charges from External Charger

Operates higher than Schottky (0.175 V) + LDO Dropout (0.1 V) for most of discharge range

Software Design

Why this Micro?

- Uses Low Power Bluetooth
- Has Libraries that lets us use Arduino IDE
- ADC's allow high impedance sensors
- Low cost
- Built in antenna

Flow Chart Adafruit

Flow Chart Arduino

Creating the Demo

Constructing the Hand

Constructing the Hand

Constructing the Hand

Controlling The Hand

Verifications

Power Supply Verification

LDO Output Measurements

Vout = 3.2993V (3.3V nominal)

Vripple = 47mV pk2pk < 1%

System Battery Life

Energy Equations

$$Energy_{Battery} = Energy_{passive} + Energy_{BLE}$$

$$Energy_{passive} = Power_{passive} * time$$

$$Energy_{BLE} = Power_{BLE} * (T_{packet} * \frac{time}{T_{rate}})$$

 T_{rate} = 60ms time between transmissions

 T_{packet} = 200us time transmitting each packet

$$E_{battery}$$
= 11,000J

Power Calculations

	Battery Voltage(V)	Battery Current	Power(mW)
Idle	4.168	19.12	79.69
Mirroring	4.168	35.2	146.71

Passive(mW)	80
BLE(mW)	67

Solving for time we can power glove for approximately 38 hours.

LDO loses regulation closer to **30 Hours**.

Glove to Robotic Hand Accuracy

	Pos 1		Pos 2		Pos 3		Pos 4	
	Organic Finger	Robotic Finger	Organic Finger	Robotic Finger	Organic Finger	Robotic Finger	Organic Finger	Robotic Finger
Thumb	0°	0°	60°	65°	120°	115°	170°	130°
Pointer	0°	0°	60°	55°	120°	115°	170°	145°
Middle	0°	0°	60°	55°	120°	105°	170°	150°
Ring	0°	0°	60°	50°	120°	125°	170°	135°
Pinky	0°	0°	60°	60°	120°	115°	170°	135°

Frequency for Bluetooth

Frequency Measurement with Oscilloscope

- Probed battery current
- Saw current changed periodically
- Period was 16.5 Hz

Frequency Measurement with timer

- Adafruit Bluetooth app
- Saw number of packets transferred in 20 seconds
- Divided seconds by number of packets
- Got 16.5 Hz

Conclusion

Achieved our High Level Requirements

- Detect each of the 5 fingers' movement and move the digital/physical robotic hand appropriately
- We can detect 8 unique gestures (minimum requirement was for 4)
- Must have the ability to move to 3 preset positions and mirroring mode

Next Steps

- Design our own Robotic Hand
- Get Pre-recorded mode to work
- Fabricate a better sensing glove
- Get the buzzer to work

Thank you! Questions?

Appendix

Bluetooth

We Used Bluetooth Low Energy

- •A wireless communication protocol that allows for data transfer between devices.
- •Two types of devices: peripheral device (sender) central device (receiver).
- •The peripheral device: service with characteristics, which advertise the data under the characteristic.
- •The central device: connects to specific services and characteristics in order to receive the data it needs.

Prototyping Breadboard Used to Mimic PCB and Glove

Notes

- Bring demo to front of slides
- Schematic is too detailed
- Font is too small block diagram (make picture bigger)
- Overall drop more details the audience didn't do the project
- For schematics fonts too small
- Introduce one subsystem by one subsystem
- Show more testing results
 - Use tables graphs oscopes
- Show challenges how you got past it
- Future plans of project
- Focus more on delivery and final demo instead of specks
- Bring demo here to show it can grasp some objects
- Have a video where it can grab stuff
- Branding and marketing office for Grainger/ entire school go to box UIUC branded
- Better body language during presenting
- HAVE AN AGENDA SLIDE FIRST

