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Abstract
This report dictates the process that we as a team took in order to complete our senior

design project. Inside this report, you should find important diagrams and pictures that
showcase each of our unique features and the requirements for the user if they ever want to
recreate this project.
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1. Introduction

1.1. Problem
One of the biggest issues frequent travelers have to face is the issue of portability. Items that
are carried by travelers cannot consume too much space, weigh too much, and should not
compromise on quality. One target area that has been identified by Hewlett-Packard Inc. (HP
Inc.) is within the commercial printer industry, where printers have remained relatively
unchanged over time with respect to other technologies that have already shifted toward more
portable means. HP Inc. has proposed for us to create a proof-of-concept portable printer that
will allow them to stay competitive in the printer industry.

1.2. Solution
Our solution to this challenge is to create a portable thermal printer, meeting criteria of being
efficient and fast, as well as being able to function wirelessly by connecting to a server that
users can upload to for printing. We will implement this solution through four subsystems as
follows: the Wireless Subsystem, Imaging Subsystem, Board Subsystem, and Power
Subsystem. These subsystems and their connections are illustrated in Figure 1.

Figure 1: High-level block diagram.
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1.3. High-Level Requirements
In our proposal, we outlined and met the following high-level requirements during our final
demonstration and verifications:

1. The system is portable, in which the device can receive data from users wirelessly and
accurately while only taking up a small footprint of fewer than 12 inches by 12 inches.

2. The start-to-end time between a user upload to the completion of a job should take no
more than 20 seconds, making it fast for the user.

3. The device itself should be powered entirely by batteries, having a worst-case battery life
operating time of at least 1.5 hours.
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2. Design

2.1. Wireless Subsystem

2.1.1. Overview
The Wireless Subsystem is responsible for allowing a user high-level access to the printer,
where they can connect through the internet to the printing server to upload (POST) an image in
the PNG, JPG, and/or JPEG format to the print queue. The backend server is designed using
the Python Flask framework and has a simple, easy-to-use frontend interface designed with
HTML/CSS.

Upon a successful user upload, the server launches a new thread to establish a TCP socket
connection with the ESP32 MCU. On this thread, the ESP32 will connect to the server, the
server sends the byte-level image data to the MCU until all the image data has been received
by the MCU, and the thread terminates after this step. If the MCU does not initially connect, the
thread blocks until the MCU is ready to accept the connection. The original thread continues to
run the server, allowing system responsiveness even while waiting for ongoing jobs in the print
queue. The control flow can be seen in Figure 2.

Figure 2: Server control flow diagram.
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In addition, we consider the ESP32 MCU to be part of the wireless subsystem due to the part it
plays by interacting wirelessly with the server, although it is physically soldered to the PCB on
the printer system itself and is responsible for the printer control flow.

2.1.2. Design Decisions
The primary design decision we had for the Wireless Subsystem is that it would be fast, allowing
an image of up to 10 MB to be uploaded to the server in under five seconds. In addition to being
fast, we also wanted it to be lightweight, and that is one of the main benefits of choosing a
backend framework such as the Flask framework in Python. There are very few overhead
features while allowing for relatively fast development, and we are also well versed in
programming using Python in general, thus making this framework ideal for our needs. In
addition, creating the server code allows us to turn any computer we have, such as someone’s
laptop, into a local server to communicate with the rest of the system.

An alternative option for developing the server that was initially considered was the Django
framework, but after attempting to create the server it was deemed to be too difficult to work with
for a small-scale project, despite having a much richer set of backend features that Flask does
not offer. In addition, we chose to host the server locally to reduce the costs of the project, as
using a commercial cloud services provider such as Amazon Web Services and Google Cloud
Platform all require continuous funding to maintain, and once again, considering the scope of
this project we do not have any large scale implementation requirements that a local server
cannot handle.

One major change we had to accommodate was changing the MCU entirely, from the ESP12F
to the ESP32. The reason for this was that the FPGA trigger pin we used on the ESP8266-12F,
GPIO2, was documented to pulse high on startup, which was unexpected behavior until we
realized that it was causing us problems dealing with the FPGA, and we did not have additional
stable and reprogrammable pins to replace this with. In addition, the ESP32 has far more
memory than the ESP12F, making it better suited for storing relatively large quantities of image
data.

We downscaled images larger than 65,536 pixels because the FPGA SRAM is limited to 65,536
bytes and the MCU RAM is limited to around 100,000 contiguous bytes. To preserve image
details, we chose to approximate the optimal downscaled width and height through binary
search.
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2.3. Imaging Subsystem

2.3.1. Overview
The Imaging Subsystem transforms the input image into a bitmap with image width wb and
image height hb to print out. It encapsulates the FPGA and the thermal printer. There are
communication lines between this subsystem and the MCU since we want the input image sent
from the MCU to the FPGA, the processed image sent from the FPGA to the MCU, and the
bitmapped image sent from the MCU to the printer.

When the MCU receives the input image through the Wireless Subsystem, it uses SPI protocol
to transfer the image data to the FPGA. And to communicate with the printer, the MCU uses
hardware serial UART to send over a bitmap formatted as in Figure 3 [11]. The bitmap is a
buffer of bytes interpreted with hb rows and wb columns. Each byte d(i) in the bitmap covers at
most 8 pixels, where the MSB is the leftmost pixel and the LSB is the rightmost pixel. A pixel is
black if its bit value is 1 and a pixel is white if its bit value is 0. Each row has

𝑛 = ⌈
𝑤

𝑏

8 ⌉                                                                                                                                                  (2. 3. 1) 

bitmap bytes. Intuitively, this is fitting each row of wb bytes to the necessary amount of bitmap
bytes. Extra pixels in byte dn (if wb is not a multiple of 8) are white pixels.

Figure 3: Bitmap structure as input to printer.

2.3.1.1. FPGA Description
The FPGA used in this project is the DE10-Lite, as we already have familiarity using the board
from previous coursework and programming using SystemVerilog. Looking at the general
algorithm in Figure 4 for the Floyd-Steinberg dithering algorithm, we understand that there are
many inefficiencies we can target using digital hardware to speed up this process.
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Figure 4: Floyd-Steinberg dithering algorithm pseudo-code [5].

The first observation is that a software model would have to parse through each section of the
array individually, and in this software model, there are four adjacent pixels that need to be
modified, meaning there would be at least four states of the software reading and writing to the
memory. Additionally, the software model stores the current pixel into a new variable of oldpixel
rather than just using the current pixel value directly, as well as saving the closest palette color
into a new variable.

With respect to our hardware implementation, due to the issues that occur with memory
bandwidth and the amount of data that could be accessed at a time, we opted for a dual-port
SRAM that can access two pieces of memory at a time. As for the first part of the algorithm
implemented on hardware, we compress many of the steps together in order to cut the original
5-cycle process into only 2 cycles of computation.

As shown in Figure 5, we are able to pipeline our SRAM accesses and get a speedup multiplier
of 3.2x (16 cycles / 5 cycles). This allows for the already-accelerated hardware implementation
to be even faster.

Figure 5: FPGA architecture implementation.
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2.3.2. Design Decisions
Initially, we chose to use SPI instead of I2C as the communication protocol between the MCU
and FPGA. If we optimized the communication, we would have faster transfers because SPI is
full-duplex while I2C is half-duplex [10]. With SPI, we enable the MCU to send and receive data
at the same time.

The method we use to transfer the input image from the MCU to the FPGA is correct in that data
passes through each step correctly. The method is outlined in Figure 6. Step 1 involves
transferring metadata about the image. Namely, the FPGA needs to know the width of each row
to process the image correctly, so we send two bytes to configure the 16-bit width value.
We also use a header byte to reset the FPGA registers as well as two more bytes to configure
the 16-bit height value. Finally, the last header signals the FPGA to start storing data. If we had
more time, we would try to optimize it to fewer SPI clock cycles by combining steps 2 and 3. We
could modify the design to send a variable amount of bytes through SPI, but this would take
time and add some more complexity.

Figure 6: Communication protocol in the Imaging Subsystem.
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2.4. Board Subsystem

2.4.1. Overview
The Board Subsystem offers users the ability to interact with the entire system. For this, we use
the FPGA’s switches to map a switch configuration to an algorithm the Imaging Subsystem will
follow. This subsystem also offers diagnostic information about the current job. Namely, there is
a 128 by 32 pixel LCD that displays the current state of the job.

2.4.2. Design Decisions
We chose to use the FPGA’s switches over using a switch box because they were not in use.
With ten switches, we could theoretically implement 210 algorithms.

We chose to implement four algorithms called Floyd-Steinberg dithering, thresholding, Sierra
dithering, and an alternative Floyd-Steinberg dithering as in Figure 7 because they are all similar
in structure. Only the numbers are different [6], so we implement this as a multiplexer in Verilog.
If we had more time, we would add additional similar algorithms.

Figure 7: FPGA switches mappings to algorithms.

We chose to display four states on the LCD: “Ready”, “Processing”, “Printing”, and “Completed”.
They should offer sufficient information about the printing status, covering when a user can
upload an image to print (“Ready”), when the Imaging Subsystem is processing the image or
transmitting data (“Processing”), when the thermal printer is printing the imager (“Printing”), and
when the entire printing job is finished (“Completed”). Should the printer fail to print due to lack
of paper, its LED would turn on, so a “Failed” state is not necessary. And if the MCU cannot
connect to the server or internet, no state would be displayed.

We used an LCD that uses I2C protocol so that we did not have to handle SPI with multiple
slaves, which may cause timing issues or complexity.
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2.5. Power Subsystem

2.5.1. Overview
This subsystem is responsible for power regulation and delivery for the rest of the subsystems
to function, with the exception of the Wireless Subsystem server. To power the DE10-Lite FPGA
using external power, we need a stable 5 V DC power supply [7], and the ESP32 MCU requires
a DC voltage range between 3.0-3.6 V [3] throughout the operation. The LCD controller
(SSD1306) also requires an operating voltage between 1.65-3.3 V for operation [2].

Figure 8: Recommended 5 V application circuit [4] for AP63356.

We use a high-capacity lithium polymer battery rated at 7.4 V, 2000 mAh to power the printer
system. This subsystem is extremely important due to the nature of the electronics (notably the
MCU and FPGA) we are handling and entrusting to the battery to operate for sustained periods.
We create an application circuit on the PCB similar to the one provided above to obtain a
continuous 5 V output that we can safely power the FPGA with. By powering the FPGA, we
have access to an onboard 3.3 V DC line (explained below) that we can use to directly power
the MCU and LCD, both of which are relatively light load on the FPGA’s 3.3 V line. We also
connect the printer guts input voltage lines to the battery itself, as the printer allows a wide
range between 5-9 V for successful operation, and it draws no power while no data comes in.

The battery also comes with a safety circuit that disconnects the battery once its voltage is
detected to be below or above a certain threshold, preventing potential damage to the cells. The
threshold for a battery of this type is expected to be 6.4 V (consisting of two 3.7 V cells), which
means we anticipate being able to use all 2000 mAh above the A63356 input voltage range
before the batteries stop providing power.

2.5.2. Design Decisions
We decided to use lithium polymer battery packs with built-in charging/discharging protection
because Professor Gruev recommended them for safety purposes. These batteries have a
built-in safety circuit in order to ensure that they do not go beyond certain thresholds. Given this,
we did experience firsthand that the batteries are able to malfunction if the ends are shorted,
and they will not work as intended and start smoking once you connect them to a working
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application circuit. We also decided to choose 7.4 V batteries specifically with a high current
output capacity.

For the buck converter, we chose a buck converter that was well documented and would be
able to step down a relatively high DC voltage battery to 5 V. The AP63365 fits this criterion due
to its low cost and plentiful documentation on its usage. This buck converter is able to take in
any input voltage ranging from 6 V up to 32 V, which gives it a very high voltage ceiling on the
input voltage - making it very flexible for our needs, and with the proper application circuit it
outputs a steady DC 5 V that could be used to power the FPGA.

We decided to not use an additional buck converter to step down the 5 V that would be feeding
into the FPGA since the FPGA has a buck converter onboard already that is capable of stepping
down voltage by itself to a regulated 3.3 V output line, which is the right voltage we need to
power the microcontroller. The 3.3 V output by the FPGA is also rated to output up to 3 A, which
is about 5x the absolute maximum current required by the microcontroller and allows for a lot of
flexibility.
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3. Design Verification

3.1. Wireless Subsystem

Let tupload be the time taken to upload the expected image.

We make assumptions to bound tupload to below 5 seconds. Namely, we use IllinoisNet as the
network the server operates on and each user has a 50% chance of actively using bandwidth.
Assuming 100 people are connected to a local IllinoisNet access point at 240 Mb/s with fair
bandwidth allocation per active user, we allow a tolerance of up to 14 other active users for a 10
MB image to be uploaded within 5 seconds. The probability of simultaneous active users
exceeding 14 at any given moment is

𝑃 =
𝑘=0

14

∑ 100
𝑘( ) (0. 5)𝑘(0. 5)(100−𝑘)                                                                                                                    (3. 1. 1)

where k steps through all possible numbers of simultaneous active users from 0 to 14. The final

probability computed is . We have recorded some sample upload times in Table 11. 183 × 10−29

to demonstrate some common case application results.

Table 1: Sample upload times.

Image Type Image Size (kB) Number of Devices
Concurrently Connected to

Server

Upload Time (s)

JPG 32.0 3 0.0009999

JPG 1602.4 3 0.005952

PNG 412.1 3 0.001757

JPG 77.1 3 0.0009966

JPG 22.7 3 0.001949

JPEG 212.2 3 0.001304

Under these assumptions and the result of equation (3.1.1), we can upper bound the expected
time needed for a user to upload their image by

𝔼[𝑡
𝑢𝑝𝑙𝑜𝑎𝑑

] ≤ 4. 99 𝑠 × (1 − 1. 183 × 10−29) + 5 𝑠 × (1. 183 × 10−29)                                     (3. 1. 2)

where we upper bound the time taken to upload an image when IllinoisNet is not busy by 4.99
seconds and the time taken to upload an image when IllinoisNet is busy but functional by 5
seconds. The expectation is that tupload is bounded by 4.99 seconds.
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3.2. Imaging Subsystem
In order to verify that the FPGA algorithm was correct before even connecting to the printer, we
wanted to feed in some data and detect if the pipeline was able to process data correctly. This
was done by writing a separate verification testbench module to accompany the FPGA image
processing modules. The TestBench allowed for the processing unit to act as a DUT. There
were some initial issues with reading and writing as well as attempting to parallelize memory
accesses and computation, but eventually, the end result proved that we were able to modify an
initial image to be processed through the Floyd-Steinberg algorithm as shown in Figure 9.

Figure 9: Verification of image data through FPGA pipeline.

Additionally, the Imaging Subsystem manages to process an imaging algorithm faster than
software when the image size is large.

Note that we only have the software process the necessary number of pixels, while the FPGA
iterates through all 65,536 pixels, shown in Figure 6.

We had the MCU perform Floyd-Steinberg dithering on images, where we recorded the time
spent performing the function with timing function millis() and other times in Table 2.

Since we had the MCU and FPGA send data back and forth, we have to consider the time taken
for the communication protocols to finish. The time taken to transfer the full image data back
and forth is
(6 ℎ𝑒𝑎𝑑𝑒𝑟 𝑏𝑦𝑡𝑒𝑠 + 2 × 65536 𝑝𝑖𝑥𝑒𝑙 𝑏𝑦𝑡𝑒𝑠) × 8 𝑏𝑖𝑡𝑠

1 𝑏𝑦𝑡𝑒 × 1 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒
1 𝑏𝑖𝑡 × 1 𝑠

20×106 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠
           (3. 2. 1)

where the final result is 52.4132 ms.

The time taken for the FPGA to process the full image data is
𝑡

𝐹𝑃𝐺𝐴
≤ 65536 𝑝𝑖𝑥𝑒𝑙𝑠 × 8 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠

1 𝑝𝑖𝑥𝑒𝑙 × 1 𝑠

50×106 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠
                                                                      (3. 2. 2)
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where the final result is 10.48576 ms.

Table 2: Comparison of MCU process time to Imaging Subsystem process time.

Image Size

(Width by height in
pixels)

MCU measured
mean time

(ms)

FPGA calculated time

tFPGA

(ms)

SPI protocol time

tSPI

(ms)

8 by 8 (total of 64) ≈ 0 10.48576 52.4132

64 by 16 (total of 1,024) 12.1 10.48576 52.4132

64 by 64 (total of 4,096) 48.5 10.48576 52.4132

x by y (Total of 65,536) 779.2 10.48576 52.4132

In conclusion, the software implementation is faster than the Imaging Subsystem for small
images only. For image sizes above around 5,500 pixels, the Imaging Subsystem is faster.

The printing times compose the time it takes for the printer to shift up a dot and the time it takes
for the MCU to send over all of the bitmap data through serial UART.

The printer shifts up all dots in
𝑡

𝑣
= 30000ℎ

𝑏
 µ𝑠                                                                                                                                                 (3. 2. 3)

where hb is the height of the input image in pixels.

The MCU sends over all of the bitmap data in

𝑡
ℎ

=
𝑤

𝑏
ℎ

𝑏
 𝑏𝑦𝑡𝑒𝑠

8 𝑏𝑦𝑡𝑒𝑠
1 𝑏𝑖𝑡𝑚𝑎𝑝 𝑏𝑦𝑡𝑒

×
11 𝑏𝑖𝑡𝑠 × 1000000 µ𝑠 + 9600 𝑏𝑖𝑡𝑠/𝑠

2

9600 𝑏𝑖𝑡𝑠/𝑠                                                       (3. 2. 4)

where wb and hb are the width and height of the input image respectively in pixels, state bits add
three bits per byte, a tolerance of a second is used to bound each byte, and the MCU uses a
baud rate of 9600 bits/s. If the input image is maximal at 65,536 bytes, th is approximately 9.53
seconds, which is a valid upper bound.

Combining equations (3.1.2), (3.2.1), (3.2.2), (3.2.3), and (3.2.4), we approximate the total time
that a job takes and find that jobs with “short” input images with hb less than 183 pixels can be
completed within approximately 20 seconds as the corresponding print time would be bounded
by about 15 seconds.
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3.3. Board Subsystem

During our final demonstration, we showed that the LCD was very responsive and helped the
user pinpoint what stage the job was at, depicted in Figure 10, Figure 11, and Figure 12. The
video demonstration [14] shows the LCD’s responsiveness as well.

Figure 10: “Ready” status string displayed.

Figure 11: “Printing” status string displayed.

Figure 12: “Completed” status string displayed.

We implemented multiple algorithms by using the switch combination as a selector in a
multiplexer, where the inputs are the final pixel values based on the algorithm implementation.
We showcased the algorithms during the final demonstration as well.
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3.4. Power Subsystem
To check for the functionality of the power subsystem, we first tested if it could step down the
7.4 V from a power supply that could limit its current. This way if there were any issues with the
power that came out of the battery, we would know that as it was different from the stable power
supply. Upon the first test, it appeared the power subsystem was capable of regulating its
voltage and power at a steady pace. Its voltage was a constant 5.05 V which is enough for the
FPGA. The next thing to do was to test if the voltage coming out of the battery was enough for
the buck converter. At first, it appeared that it was capable of powering the entire project,
however, we did notice that there was some dimming that occurred when the printer and
everything were running in sync. Overall, it did not appear that there was any difference in the
print quality when we plugged the system into the wall versus having it be portable.

The voltages for all of the components in our system are shown in Table 3.
Table 3: Average measured voltages of components.

Component Name Voltage relative to GND

Printer 7.5 V

FPGA 5.05 V

Microcontroller 3.3 V

LCD 3.3 V

Battery 8.1 V (when full)

We fall short of the high-level requirement of lasting over 1.5 hours in our final design, and we
can model this mathematically using the assumption used in the Power Subsystem that the
cutoff voltage for a single 7.4 V lithium polymer battery in our system is 6.4 V (when each cell
measures 3.2 V), and therefore can power the entire printer system until (printer within 5.0-9.0 V
range and AP65336 within 6.0-32.0 V) it reaches this cutoff and all 2000 mAh of energy have
been consumed.

As an absolute lower bound estimate on the battery life, let us assume an upper bound on the
maximum current consumption of the printer system. The printer itself peaks at 2.0 A of current
draw throughout printing, the FPGA requires 500 mA maximum for whole board operation, and
the FPGA 3.3 V line powers the LCD and ESP32 MCU. The LCD requires an average of 20 mA,
and the ESP32 requires 100 mA for WiFi receive and an additional 240 mA for WiFi
transmission/scan at its greatest range setting, but we assume the current for these are
provided by the FPGA under its 500 mA usage. If the fully charged battery needs to supply all
these components simultaneously without stopping, we can solve for the battery life as follows:

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐿𝑖𝑓𝑒 =  2000 𝑚𝐴ℎ ÷  (2. 0 𝐴 + 0 . 50 𝐴) =  0. 80 ℎ𝑜𝑢𝑟𝑠                                          (3. 4. 1)
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While our printer system is indeed operated solely by batteries, this lower bound on the battery
life falls well short of our initial expectation of 1.5 hours in our proposal, as we had originally
combined the total energy (2000 mAh per battery x 2 battery) from the two batteries we had
ordered, but we were only able to use one of the batteries in our final design due to a battery
failure. This does not mean the printer can operate for 1.5 hours under optimal conditions, or
even standard use, rather, this is following our high level requirement exactly per specification of
“worst-case battery life operating time of at least 1.5 hours”, as outlined in equation (3.4.1).
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4. Costs

4.1. Parts
Table 4: Parts costs list.

Item Name Item Amount Item Unit Price Item Total Price Did not use
My.ECE funds?

USB C PD
Boards

1 $9.99 $9.99

LED Green 10 $0.13 $1.28

LED Red 10 $0.13 $1.28

ESP32 MCU 2 $3.95 $7.90

ESP32 MCU
Breakout Boards

Pack of 5 $19.99 $19.99 ✓

ESP8266-12F
MCU

Pack of 5 $9.88 $9.88

ESP8266-12F
MCU Breakout

Pack of 5 $12.99 $12.99 ✓

AP63356 Buck
Converter

3 $0.87 $2.61

22 kΩ Resistor 30 $0.02 $0.63

MMBT222A BJT 10 $0.11 $1.15

CP2104 USB
UART Bridge

3 $2.91 $8.73

93.1 kΩ Resistor 10 $0.04 $0.36

10 µF Capacitor 10 $0.07 $0.67

22 µF Capacitor 10 $0.08 $0.84

6.8 µH Inductor 3 $1.15 $3.45

100 kΩ Resistor 100 $0.04 $3.80

4.7 µF Capacitor 50 $0.02 $1.05

USB A Female 2 $1.33 $2.66
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220 kΩ Resistor 5 $0.12 $0.60

47 pF Capacitor 10 $0.08 $0.84

Adafruit Thermal
Printer

1 $49.99 $49.99

7.4 V RC Battery Pack of 2 $19.99 $19.99

1 µF Capacitor 50 $0.04 $1.78

0.1 µF Capacitor 10 $0.04 $0.44

10 V, 3 A
Schottky Diodes

4 $0.50 $2.00

Orange LEDs 10 $0.05 $0.46

STUSB4500
USB Chip

2 $3.49 $6.98

10 kΩ Resistor 100 $0.01 $1.15

2.2 kΩ Resistor 100 $0.01 $1.15

1 kΩ Resistor 100 $0.03 $2.97

Tactile SMD
Switches

10 $0.32 $3.21

Zener Diodes for
ESD

10 $0.41 $4.08

USB C
Connector

3 $0.81 $2.43

I2C OLED LCD Pack of 2 $7.99 $7.99 ✓

DE10-Lite FPGA 1 $0.00 $0.00 ✓

Total N/A $147.58 $195.32 N/A
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4.2. Labor
The amount of time spent on the project varies depending on the portion.

According to the Grainger College of Engineering, the average starting salary for an electrical
engineering graduate is $80,296 [13], so if we take this number and assume they have a
52-week year and work 40 hours a week, we can determine the average hourly salary to be
$38.60.

Table 5: Estimated labor costs at $38.60/h.

Person(s) Task Hours Spent

Gally PCB Design 50

Jason SPI Controller + MCU
program

60

Gally Floyd-Steinberg Accelerator 50

Kevin
Jason

Web Server 80 combined

Jason
Gally
Kevin

MCU Design 25 combined

Kevin Soldering 15

Gally
Jason
Kevin

Writing and Bookkeeping 150 combined

Total N/A 430

Based on Table 5, we expect the total labor costs to be
$38.60

ℎ × 430 ℎ × 2. 5 = $41, 495
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5. Conclusions

5.1. Accomplishments
We were able to present a functional, relatively fast printer system that is portable in that it fits
within a small box. During the final demonstration, arbitrary users connected to IllinoisNet were
able to upload arbitrary images of format JPG, PNG, or JPEG to the server, which were printed
out on thermal paper shortly after. Although we cannot mathematically guarantee meeting the
high level requirement of having a worst-case system battery life of 1.5 hours, we certainly meet
the requirements of taking up a footprint less than 12 inches by 12 inches and spending under
20 seconds for a job, and above all we assert that our design is functional in operation as a
printer should be.

5.2. Ethical Considerations
Our project aims to create a convenient and speedy printing solution for consumers. As such,
we must ensure that the design of the printer system is safe for users to handle and interact with
on a consistent basis. While many of the components listed are found in everyday objects and
are consumer-grade, there are some components that may pose risks in their usage. According
to the IEEE Code of Ethics I.1 [1], we must remain transparent with our design process and
disclose the factors that might endanger the public and/or environment.

One concern is the use of battery packs. These batteries are lithium-ion rechargeable batteries,
which, due to their energy density, makes them susceptible to explosion when in contact with
high temperatures or manufacturing defects. This was demonstrated in the Samsung Note 7
smartphone case study [8], where the battery packs caught on fire due to a defect in the phone
design that allowed the battery leads to touch and short circuit. We followed the safety manual
[12] for guidance.

5.3. What We Learned
We should decide what components to use before we actually start physically attaching them in
the lab. We wasted a lot of time and money attempting to migrate our old MCU to the new one.
The smallest of changes may require an overhaul of the entire project.

Additionally, we should be extremely wary of shorts, wires, and batteries. This caused one of our
laptops to break and one of the batteries that came in the case to explode.

Lastly, engineering is hard but rewarding!
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Appendix A. Requirement and Verification Tables
Table 6: Wireless Subsystem RV table.

Requirement Verification
● Connected users can upload an image

successfully quickly to the server.
● Images will need to be delivered to the

server within 5 seconds of upload to
reduce the amount of overall delay for
the user.

● Starting with activating the server, at
the time of user upload, we will
manually check the time using a
stopwatch (i.e., with a cellphone) to
determine that the data was received
on the server within 5 seconds.

● Upon a successful user upload, the
image that is delivered to the server
should appear in the host computer’s
local storage, as in the directory that
the server code is active on. This will
allow us to verify that the necessary
data has been received in full within
the given time and that the custom
API is successful in this requirement.

● We will repeat this for many
scenarios, such as having multiple
users on the server simultaneously,
varying image sizes and resolutions,
and at different distances from the
host computer.

● The ESP32-WROOM microcontroller
requires 3.0-3.6 V continuously from
the power subsystem for operation.

● Ensure the power system is active
without having the MCU soldered in
place. We will use an oscilloscope to
measure the voltage across the Vin
and GND pins on the breakout PCB to
ensure that the voltage range is safe
for the MCU operation.

● Record the voltages throughout many
different points of operation of the
battery life to ensure that the Vin does
not fluctuate outside of the 3-3.3
range. Any higher than 3.6 V will
damage the MCU.

● The ESP32-WROOM microcontroller
can receive asynchronous image data
from a WebSocket client.

● The server sends the image data as
bytes to the MCU through a TCP
connection.
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Table 7: Imaging Subsystem RV table.

Requirement Verification
● Processing an image with

the FPGA should be faster
than processing it with the
microcontroller.

● We will run a timing test between the
microcontroller (software) and the FPGA
(hardware). By doing this, we will be able to
clock the time it takes to process the image
using the FPGA and the amount of time it takes
to process the image using the microcontroller.
The FPGA time should be relatively faster than
the MCU’s implementation of the image
processing to demonstrate hardware
acceleration.

o The MCU records timings with the
millis() function, which returns
milliseconds elapsed.

o Then we will be able to figure out the
time on the FPGA by multiplying the
inverse clock (50 MHz) by the amount of
clock cycles needed to process each
pixel by the amount of pixels in the
image.

● The FPGA should be able to
function by itself as soon as
it is turned on without
having to be flashed again
by an external source –
simulating a commercial
printer.

● Upon the plugging in of all the components, we
should check to see if the original FPGA ROM is
loaded into the FPGA. If it is not (the LEDs are
not blinking rapidly), then we would know that
the FPGA has successfully loaded in our correct
.pof file (loaded to flash ROM).

● The temperature of the
surface of the enclosed
system (with the imaging
subsystem) must not
exceed 120°F.

● The temperature of the printer system as a
whole is important for user safety, in which it
cannot exceed a recommended temperature
limit of 120°F [9] for handling.

● During the startup, idle, and active printing
stages of operation we will measure the
temperature of many surfaces of the printer
enclosure using an infrared thermometer.

● We will record the temperatures of critical
regions like the printer. The printer has a built-in
function to print out a test page that has the
internal temperature displayed on it.
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Table 8: Board Subsystem RV table.

Requirement Verification
● The diagnostic LCD must be highly

responsive if the system status
changes.

● Start at a known system state where
the diagnostic LCD is outputting a
steady state.

● Change the system state by changing
the state. At this point, start recording
time elapsed on a stopwatch.

● Stop the stopwatch when the
diagnostic LCD updates its display to
the correct status.

● Record the start-stop readings and
the time taken. Repeat for all possible
system status changes.

● The “algorithms” switches controls the
image processing algorithm that the
FPGA uses.

● Start with all switches in the OFF
position. Set the switches to a valid
algorithm mapping.

● We will write a TestBench file that
allows us to analyze the value per bit
after the FPGA processes the image.

● Since the algorithms are deterministic,
we can verify the final image with a
C++ script that performs the same
algorithm on the same image.

● At startup, the diagnostic LCD status
should read “Ready” before printing.

● Check that there is enough paper in
the printer beforehand, and that the
system is idle (i.e., just starting up).

● Power the system on by plugging in
the battery pack to power and ground.

● The microcontroller should be
programmed to display “Ready” on
the LCD once connected to the
internet and server WebSocket.

● While the system is on, start a printing
job with the paper loaded. The status
displayed should be “Completed”
when the thermal paper finishes
printing (the image is visible on paper
and there are no printing noises).

● Check that there is enough paper in
the printer beforehand, and that the
system is idle (i.e., just starting up).

● Power the system on by plugging in
the battery pack to power and ground.

● Upload any valid image to the server.
● Upon completion of the printing job,

we will manually verify if the LCD
displays the word “Completed”.
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Table 9: Power Subsystem RV table.

Requirement Verification
● This subsystem must generate

sufficient power to the entire
subsystem.

● We will measure the voltages across other
components with a multimeter (insert the
leads into the pin and ground). The voltage
ranges accepted for verification are:

o ESP32-WROOM MCU 3.0 - 3.3 V
o Thermal printer

5.0 - 9.0 V
o FPGA

5.0 V ± 5%
o LCD

3.3 V ± 5%
● The subsystem is safe in that it

does not exceed the hard limit
of 20 W.

● While the system is active, ensure that
there is no power overage by measuring the
voltage across each component and the
current through each component. It should
not exceed our cap of 20 W.

● The subsystem must be able to
provide power to the entire
system for 1.5 hours from full
charge without recharging
during this time.

● Verify that the batteries are fully charged by
measuring the voltage drop across it with a
multimeter or oscilloscope. This voltage
drop should be at least 7.4 V. If not, then
charge the batteries until this condition is
true.

● Start a stopwatch as a user starts the first
job since the system turned on by uploading
an image to the local server.

● Have the user constantly upload images as
the printing jobs are completed.

● If the stopwatch records 1.5 hours and the
system is still active, this requirement has
been verified. Otherwise, this requirement
has failed.
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Appendix B. PCB Design

Figure 13: MCU PCB.
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Figure 14: USB C PD PCB.

Figure 15: Board Subsystem of MCU board.
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Figure 16: Power Subsystem of MCU board.
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Figure 17: Female headers to and from the FPGA on MCU board.
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