
i

Directional Impact Sensing Helmet (DISH)
ECE 445 Final Report

Team 5: Patrick Sear, Saathvik Narra, Ryan Josephson

Professor: Viktor Gruev

TA: Ugur Akcal

Spring 2023

ii

Abstract
The purpose of this document is to highlight the progress, successes, and failures of the Directional

Impact Sensing Helmet (DISH). Within, discussions on design processes, design details, control

sequences, and procedures can be found.

iii

Contents

1 Introduction 1

1.1 Problem 1

1.2 Solution 1

1.3 Visual Aid 2

1.4 High-Level Requirements 2

2 Design 3

2.1 Block Diagram 3

2.2 Power Subsystem 3

2.2.1 Overview 3

2.2.2 Design Procedure 4

2.2.3 Design Details 4

2.2.4 Requirements and Verification 5

2.3 Control Subsystem 5

2.3.1 Overview 5

2.3.2 Design Procedure 7

2.3.3 Design Details 7

2.3.4 Requirements and Verification 9

2.4 Data Reception and Visualization Subsystem 10

2.4.1 Overview 10

2.4.2 Design Procedure 10

2.4.3 Design Details 11

2.4.4 Requirements and Verification 11

2.5 Physical Design 12

2.5.1 PCB Encasement 12

2.5.2 Helmet Assembly 12

3 Cost & Schedule 14

3.1 Cost Analysis 14

3.1.1 Parts Cost Analysis 14

3.1.2 Hours of development and Labor Costs 14

3.1.3 External Resources 15

3.1.4 Total Costs 15

3.2 Schedule 15

iv

4 Conclusion 16

4.1 Accomplishments and Uncertainties 16

4.2 Future Work and Alternatives 16

4.3 Ethics and Safety 17

5 Citation 19

Appendix A: Power RV 20

Appendix B: Control RV 30

Appendix C: Data Reception and Visualization RV 45

Appendix D: Cost and Schedule Tables 50

1

1 Introduction

The introduction provides the problem statement, describes the solution, displays a visual diagram

about how our solution will work, and explains the system from a high level.

1.1 Problem

In the NFL, many athletes suffer from concussions or other conditions as a result of repetitive,

severe head trauma. These events can lead to long-term effects on the athlete’s health and

significantly contribute to the reduced lifespan of professional football players. The average

professional football player dies younger than age 60 [1], no doubt accelerated by frequent, intense

head trauma. This problem can be helped by making accurate collision data immediately available

to medical personnel for making game-time decisions and helmet manufacturers so that they can

make informed design choices based on real, in-game data.

1.2 Solution

The Directional Impact Sensing Helmet (DISH) is an electronic system that can be attached inside

any existing football helmet. It can determine where on an athlete’s head a collision occurs, as well

as how hard the hit is. The data collected will be quickly available to personnel on the sidelines so

that they can make real-time decisions to ensure the safety of their players. The information will

be visualized for ease of use of the team medical staff so that they can best inspect the player.

The data will also be useful for designing the next generation of helmets. Over the course of a

season, all hits can be tracked and analyzed so that newer models can be tailored precisely to

protect from hits that occur in a real, game-time environment. The helmets could even be designed

differently for each position, prioritizing the most common hits each role receives.

For the DISH to work properly, we can group our project into three modules: power, control, and

data reception and visualization.

2

1.3 Visual Aid

Figure 1: High-Level Overview of DISH System

Upon detecting a collision through signal output from the force sensitive resistor array, the onboard

microcontroller begins transmitting data through the Zigbee module. This data will be received

and passed to the personal computer, in which it will be analyzed and displayed for the user.

1.4 High-Level Requirements

● The helmet must track the location and severity of each collision within <20% error.

● The receiver must know that a dangerous collision has occurred within 5 seconds of the

collision at least 90% of the time.

● The in-helmet system must be able to comfortably fit within a standard football helmet.

3

2 Design

2.1 Block Diagram

Figure 2: Block diagram

2.2 Power Subsystem

2.2.1 Overview

The purpose of the power subsystem is to provide power to the other subsystems. Four different

voltage levels are required in total: 1.8V, 2.5V, 3.3V, and 5.0V. Within the power subsystem is

the battery and the voltage regulators. The power subsystem’s schematic can be seen in Figure 3.

Power

Battery Voltage

Regulator

Control

Microcontro

ller
Force

Sensing
Analog to

Digital

Zigbee

Transmitter

Data Reception and Visualization

Arduino

Receiver

Signal

Decoding

Visualizat

ion

Battery

1.8V

2.5V

3.3V

5.0V

Data (Wired/On

Board)

Data (Wireless)

Analo

g
SPI UART

1.8V

3.3V

5.0V
Zigb

ee

USB PuTT

Y
9V

2.5V

4

Figure 3: Power subsystem schematic

2.2.2 Design Procedure

In designing the power subsystem, we knew we needed to maintain a few voltage rails to supply

power for the other subsystems’ components. So, we first selected the voltage regulators. We

selected SPX1117 voltage regulators, since they all have the same packaging, and we had some

prior experience working with them. Also, according to the datasheet [2], the voltage regulators

have an overlapping input voltage range of 6.4V-10V. For both this reason, as well as the fact that

we need a battery small enough to fit inside a football helmet, a 9V battery was selected as the

main power source, which is to be fed into the voltage regulators. To physically connect the battery

to the PCB, we opted for a PJ-102AH connector, which is a very standard connector that we have

previously used with 9V batteries.

2.2.3 Design Details

As seen in Figure 3, each of the voltage regulators have a 4.7μF capacitor tied from the input

voltage to ground, and a 2.2μF capacitor tied from the output voltage to ground. This is as required

per the datasheet [2]. Also, the battery is connected in such a way that the positive and negative

leads of the battery correspond to the connector in the correct fashion, where the voltage across

Vbat and ground is the battery voltage.

5

2.2.4 Requirements and Verification

The power subsystem must satisfy the following requirements:

1. The battery must supply a constant voltage between 6.4V and 10V and supports up to

350mA of current draw.

2. The 1.8V rail must maintain a voltage between 1.65V and 1.95V at a current of at least

17mA.

3. The 2.5V rail must maintain a voltage between 2.475V and 2.525V at a current of at least

20mA.

4. The 3.3V rail must maintain a voltage between 2.7V and 3.6V at a current of at least

220.5mA.

5. The 5V rail must maintain a voltage between 4.75V and 5.25V at a current of at least

91mA.

For the requirements and verification table and the results of the tests, refer to Appendix A. As

shown in Appendix A, all five of the power subsystem requirements passed. The battery and the

voltage regulators consistently output a voltage in the desired voltage range under the worst-case

current draw.

2.3 Control Subsystem

2.3.1 Overview

The control subsystem oversees taking all the force sensing resistor (FSR) data and seeing if a

collision has occurred. The voltage read across the FSRs in a voltage divider circuit is converted

to digital data using an analog to digital converter (ADC) and is then fed into the microcontroller

(MCU). The microcontroller then, using an algorithm we built, will detect whether a collision has

occurred. If a collision has occurred, the eight FSR data values are sent at the highest collision

moment over the Zigbee to the data reception and visualization subsystem. The schematics for the

MCU and the ADC can be seen in Figure 4 and Figure 5, respectively.

6

Figure 4: ATmega32u4 Schematic

Figure 5: Analog to Digital Converter Schematic

7

2.3.2 Design Procedure

In designing the control subsystem’s hardware, we knew we needed a variety of functionalities

within this subsystem. Firstly, we need to have a way to sense the force of collisions. For this

reason, we opted for force sensing resistors. We can use a voltage divider circuit, which can be an

effective way to read changes in the force applied, since a larger force applied corresponds to a

lower resistance. We have a detachable connector between the FSRs and the connections to the

ADC such that the main module can be removed from the helmet. Since we are trying to collect

as much data as possible through as many sensors as possible, we knew that we had to select a

chip that has as many I/O pins as possible. For this reason, using the ATmega32u4 seems like the

perfect option. To read the data generated by the force sensing resistors and send it wirelessly, we

need to convert it from analog to digital data. However, according to the ATmega32u4’s datasheet

[5], the ATmega32u4 collects its eight analog inputs at distinct times through a multiplexer rather

than reading the values simultaneously. To improve accuracy in the data collected by the force

sensing resistors and ensure the data is all from the same exact moment, we decided that using a

simultaneous sampling analog to digital converter is optimal. The specific part, the

ADS1178IPAPR chip, has eight analog to digital converters, according to its datasheet [3]. Also,

it can communicate via SPI, so communicating with the microcontroller is a straightforward task.

Thirdly, we needed a way to communicate with the wireless receiver. We chose to use Zigbee

because the amount of data needed to be sent wirelessly wasn’t too large and our rate of

transmission is relatively low. We also needed something that had a range greater than forty meters

so we could send a signal from anywhere on much of the football field, which Zigbee can easily

accomplish per the datasheet [4]. Zigbee is designed for internet-of-things applications and is well

suited to applications where one central controller (the receiver module) interacts with many

accessory nodes (each helmet on the field).

Once we had designed the hardware, we had to design the software that would go on the MCU.

This software would be responsible for reading in the sensor data as produced by the ADC via SPI

and determining if the data indicated that a collision had occurred. Once the MCU detects a

collision, it will begin to record all data from the ADC until it detects that the collision has ended.

At this point, the data is processed, packaged, and sent through the Zigbee transmitter to the

receiver. Following the data transmission, the MCU baseline readings for each sensor must be

recalibrated, as the resting reading for each sensor may shift significantly following each collision.

2.3.3 Design Details

Looking at Figure 4, the ATMega32u4 is powered at 3.3V. The USB interface circuit for serial

communication and testing is derived from the datasheet, namely the typical self-powered

application with 3.0V to 3.6V I/O circuit [5]. Also, there is an external clock crystal connected to

the chip. This allows the chip to successfully operate at the 8MHz operating frequency. The RX

and TX signals are connected from the MCU directly to the Zigbee module. The only required

pins for use with the Zigbee module are the power pin of 3.3V, the TX and RX pins to communicate

8

with the microcontroller via UART, and the ground pin. These connections should allow for proper

communication via Zigbee.

When looking at Figure 5, there are many things to observe. First, the ADC chip is fed in each of

the four power rails. The chip itself needs 5V for power. 2.5V is used as a voltage reference for

the analog inputs. The 3.3V rail is used for the I/O, so 3.3V will be the voltage level used to

communicate with the microcontroller. And lastly, the DVDD pin is set to 1.8V to power the

internal digital components of the circuit [3]. The analog inputs are taken from the output of a

voltage divider circuit consisting of one fixed resistor and one force sensing resistor. There are

eight AINP and AINN pins on the ADC, corresponding to the eight positive and negative

differential analog inputs. The voltage divider output is passed through a low-pass filter before

being input to the ADC in order to remove some of the random noise. The filter consists of the

eight Clp and Rlp components shown in Figure 5. The CLK0 pin outputs the MCU’s internal

clock, and the ADC runs off the same clock. All other pins are connected directly to I/O pins of

the microcontroller to be controlled using software.

The microcontroller code control flow can be seen in Figure 6. When the board is powered on, the

MCU is first initialized, where settings for the different protocols are defined, as well as setting

baud rates and creating variables to reduce the amount of machine cycles later code would take to

perform. After the MCU is initialized (and after any Zigbee transmit), the sensors are calibrated,

and we find the resting baseline for the sensors. Sensor data is read via SPI communication

between the ADC and microcontroller. All eight digital outputs are transmitted sequentially to the

designated SPI MISO pin on the MCU. We then take the sensor readings and see if the resting

threshold of a sensor is ever passed by a certain amount, which indicates that a collision has

occurred. If this is not the case, we simply keep reading in sensor values until we detect a collision.

We classify the collision as the time when the sensors are above the resting threshold. Once we

come back down to the resting threshold, the collision is finished, and we store this data and send

the highest detected force over the Zigbee. We then go back to the calibration phase, and we repeat

the process.

9

Figure 6: Microcontroller Control Flow

The ADC digital I/O runs on 3.3V, so we also need to run the MCU on 3.3V such that the I/O

levels are matched. Running the MCU at a higher voltage runs the risk of not properly recognizing

a 3.3V input signal as a logic high. A problem we ran into when running on 3.3V power is that we

occasionally triggered the built-in brown-out protection. Brown-out protection is triggered when

the MCU is powered at too low of a voltage, typically below 2.7V, and is used to prevent damage

to internal components. However, triggering brown-out runs the risk of corrupting the MCU fuses

and potentially bricking the entire system. When using the programmer, we had a Schottky diode

that dropped the voltage power rail to 3V. Due to having fluctuations in voltage, we frequently fell

below 2.7V and triggered the brown-out protection. After enough infractions, the controller fuses

became corrupted, and it was entirely unprogrammable, requiring the use of a new chip.

2.3.4 Requirements and Verification

The control subsystem must satisfy the following requirements:

1. The microcontroller must be able to comprehend data from the analog to digital converter

via SPI over 90% of the time.

2. The microcontroller must be able to correctly identify when a collision occurs with more

than 90% accuracy.

3. The microcontroller must be able to send and receive signals to and from the remote

receiver via the Zigbee transmitter more than 90% of the time.

4. The off-chip simultaneous sampling ADC must be able to measure all signals from the

force sensing resistor array concurrently more than 90% of the time.

5. The Zigbee transmitter must be able to properly send a signal up to 40 meters away.

6. The signal must be able to be sent through the helmet and through adverse conditions with

an accuracy of over 90%.

10

For the requirements and verification table and the results of the tests, refer to Appendix B. As

shown in Appendix B, all six of the control subsystem requirements passed.

2.4 Data Reception and Visualization Subsystem

2.4.1 Overview

The reception and visualization subsystem is critical to the accessibility of the project. The DISH

system is designed to maximize the ease of use and plug-and-play aspect of data collection. By

presenting the data received to the end user in an easily digestible format, the widespread appeal

of the system is increased. A diagram depicting the general operation of the subsystem can be seen

in Figure 7. The reception and visualization subsystem begins at the Arduino receiver. After the

microcontroller receives and decodes the Zigbee packet, it passes the relevant information through

to the Python script via serial communication. The script processes the eight sensor readings into

three-dimensional force data. Finally, the displayed 3-D mesh is updated to display the calculated

force readings.

Figure 7: General operation of Data Reception and Visualization Subsystem

2.4.2 Design Procedure

Earlier on, we considered using a custom PCB as a receiver. This was replaced by an off-the-shelf

SparkFun RedBoard (ATMega328P, Arduino Uno equivalent). Building a custom receiver would

have ultimately been an inefficient use of time and money to perform the trivial tasks of Zigbee

reception and serial transmission. Initial designs also made use of PuTTY, a serial monitor, as a

middleman between the serial communication and Python script. This would have enabled

11

immediate logging of serial data to text files for close record keeping. The serial monitor was also

eliminated in favor of direct communication between the script and serial port. While text file

generation is slower, the script can create post-processing data files rather than saving raw data

only. Direct communication also allows the packet to reach the script faster, therefore alerting the

user faster such that immediate substitutions can be made in game-time.

2.4.3 Design Details

Packet integrity is internally verified by the Zigbee module, so the only purpose of the RedBoard

is to strip packet metadata and output the seventeen bytes of sensor data to the serial port. One byte

is reserved for team and player data, and sixteen bytes correspond to data, where two bytes of data

comes from each of eight sensors. Upon reception by the script, the user is immediately notified

of the collision. At all times, a model head is being displayed for the purpose of data visualization.

At the user’s prompt, the model will be updated for the newly received data with a heatmap, the

center of which indicates the predicted location of the collision. The collision location is predicted

by a weighted average of the three most significant data points in each dimension, as seen in

Equation 1.

 𝑥𝑓 = ∑
𝑓𝑖

∑ 𝑓𝑗
3
𝑗=1

3
𝑖=1 ∗ 𝑥𝑖

(1)

In Equation 1, xf represents the position in one dimension of the predicted average point, so x1, x2,

and x3 represent the positions in the same dimension of each sensor we use as data, and f1, f2, and

f3 represent the force at each of these sensors. This is repeated in all three dimensions to find an

average point. Taking the normal vector of the plane defined by the three sensor points, we move

the average point along the normal until it coincides with a position on the surface of the head.

This final point is where we determine to be the center of the collision. While imperfect, we have

determined this point to be well within the margin for error as defined by our requirements.

2.4.4 Requirements and Verification

The reception and visualization subsystem must satisfy the following requirements:

1. The receiver must receive packets sent with a maximum error rate of 10%.

2. The signal received by the Arduino must be delivered to the serial input exactly as it is seen

by the hardware.

3. The visualizer must be able to identify the impact within 20% of where it occurred.

4. The data must be visualized within 30 seconds of packet reception.

For the requirements and verification table and the results of the tests, refer to Appendix C. As

shown in Appendix C, all six of the data reception and visualization subsystem requirements

passed. The receiver module easily receives and transmits all data without error. Data is visualized

within 15 seconds of packet reception through the script, and the located result is exactly as the

data predicts.

12

2.5 Physical Design

The physical design of the DISH can be seen in Figure 8, which shows the fully assembled helmet.

Figure 8: Assembled DISH

2.5.1 PCB Encasement

As seen in Figure 8, the helmet, when fully assembled, has an encasement fit snugly inside. This

is the encasement for where the PCB resides. With help from the machine shop and by using a

case that they had on hand, it was made possible to create the ideal encasement to house the PCB.

The case, as can be seen in Figure 8, fits where there is no padding by the left ear. The case can

be removed from the FSR array via a connector that connects directly to the board within.

2.5.2 Helmet Assembly

As seen in Figure 8, the force sensing resistors aren’t always visible. They are placed in the space

between the outer shell of the helmet and the internal padding, as seen in Figure 9. This is done so

as much force can be applied as possible to the FSRs. Additionally, on each FSR, there is a spacer

that closes the gap between the pad and the outer shell of the helmet. This is done to ensure the

FSRs are always contacting and will pick up on a force when applied.

13

Figure 9: FSR placement within helmet with spacers

14

3 Cost & Schedule

3.1 Cost Analysis

3.1.1 Parts Cost Analysis

The total cost for parts, as seen in Table D4 in Appendix D, is $209.31. Notably, more parts were

ordered than required. This is done in case parts are damaged during testing or to obtain better

deals.

3.1.2 Hours of development and Labor Costs

Our group consists of two electrical engineers and one computer engineer. The average pay for

electrical engineers with a bachelor's degree is $80,000 and is $100,000 for computer engineers

according to the Grainger College of Engineering [6, 7].

Category

Estimated Hours

Saathvik Ryan Patrick

Circuit Design 0 20 5

Board Layout and Components Check 10 25 20

Full Stack System Monitor 40 4 30

Soldering 6 15 8

Prototype And Debug 60 60 60

Documentation and Logistic 25 30 25

Total Hours 141 154 148

Table 1: Hours of Development

Labor Cost:

 Saathvik: $50 (ℎ𝑜𝑢𝑟𝑙𝑦 𝑟𝑎𝑡𝑒) ⋅ 2.5 ⋅ 141 (𝑡𝑜𝑡𝑎𝑙 ℎ𝑜𝑢𝑟𝑠) = $17625 (2)

 Ryan: $40 (ℎ𝑜𝑢𝑟𝑙𝑦 𝑟𝑎𝑡𝑒) ⋅ 2.5 ⋅ 154 (𝑡𝑜𝑡𝑎𝑙 ℎ𝑜𝑢𝑟𝑠) = $15400 (3)

15

 Patrick: $40 (ℎ𝑜𝑢𝑟𝑙𝑦 𝑟𝑎𝑡𝑒) ⋅ 2.5 ⋅ 148 (𝑡𝑜𝑡𝑎𝑙 ℎ𝑜𝑢𝑟𝑠) = $14800 (4)

Total Labor Cost = $47825

3.1.3 External Resources

● Machine Shop: The machine shop was used to modify a physical enclosure for our project

to encase the electronics. The generic enclosure we got was modified in the workshop to

have holes for power and a hole for connectors to connect force sensors with PCB. It was

estimated modifications to our enclosure took three hours.

● Senior Design Lab Workshop: We needed the lab in order to do soldering and testing using

the oscilloscope, a digital multimeter, DC power supply, and electronic load.

3.1.4 Total Costs

Category Estimated Cost

Parts $260.31

Labor $47825.00

Total $48085.31

Table 2: Total Costs

3.2 Schedule

The full schedule can be seen in Appendix D in Table D2. This schedule was used as a baseline

for planning our work for each week, but modifications were made as appropriate depending on

the progress of the previous week. Work was divided up equally, with each team member taking

a greater share of the work pertaining to their own previous experiences. We also frequently

worked cross-functionally so that development of each subsystem could benefit from an extra

outside perspective and the whole team would be familiar with all parts of the project.

16

4 Conclusion

4.1 Accomplishments and Uncertainties

From the work that we have done, we have found great success in creating the solution to the

problem presented. All our subsystem requirements are met as proven by Appendix A, Appendix

B, and Appendix C. When combined, the subsystem requirements help meet the high-level

requirements. The final project is fully functional and met our goals.

One area of uncertainty is the existence of false positives. On occasion, the system registers a

collision when obviously none occurred. These false positives are certainly better than

experiencing false negatives, as in the application of the DISH, it may be obvious if a collision on

the football field happened or not, so the false positive can be ignored. Also, false positives are

beneficial in the idea that it is better to be safe than sorry; pulling an athlete out of play over

concerns that a collision may have occurred is better than not pulling out the athlete due to a false

negative.

4.2 Future Work and Alternatives

If we were to continue work on this project, we would consider many design alternatives. For the

power subsystem, one possible change is the removal of one of the 2.5V regulators. The main

reason we had two 2.5V regulators was to isolate the analog to digital converter’s voltage reference

from the regulator supplying power to the voltage divider circuit, since a change in the resistance

of the voltage divider circuit could change the current draw of the regulator, causing a fluctuating

voltage, which would also make the reference voltage fluctuate. However, we found out that the

voltage fluctuation was rather minimal. Also, it may have been better to have the fluctuating

voltage on the same rail as the reference, as the fluctuating voltage of the resistor’s rail would be

compared to a mimicked fluctuating reference, rather than comparing the fluctuating voltage of

the resistor’s rail to a constant 2.5V rail.

One design alternative with the control subsystem would be to operate the MCU at 5V. This would

allow the clock of the MCU to operate at 16MHz, which would allow faster machine cycles and

faster commands. Also, we wouldn’t need to change some of the clock division in the software.

One issue with operating the MCU at 5V is that the I/O of the ADC is set at 3.3V. For this reason,

we would need some voltage shifting logic between the chips to allow interfacing of 5V and 3.3V

logic. Also, it is important to note that, if this design alternative were to be implemented, the MCU

would have a larger current draw. Another design alternative we could have done is we could’ve

used an STM chip instead of the ATmega32u4. STM chips have more example code and have

more versatility compared to the ATmega32u4. Also, the ATmega32u4 chip operates at 3.3V, so

the level shifting logic wouldn’t need to be present to interface with the selected ADC.

17

The primary improvement to make in the data reception and visualization subsystem is in collision

localization. With a more extensive set of real-world test data, a superior model could be

constructed. During the semester, we considered training a machine learning model on known

collision data, but the generation of precisely located, reproducible collisions of fixed magnitude

proved too big of an obstacle to this approach. Another improvement to the visualization

subsystem that can be made is a more advanced localization strategy. With more data, we could

construct a spherical interpolation across the (approximately) spherical helmet which should yield

better results within a smaller error margin when identifying collision points.

4.3 Ethics and Safety

Given that this device is designed to be used in a high-impact environment, it is critical that it is

designed with only the highest standard of safety in mind. The IEEE Code of Ethics states that it

is our responsibility “to hold paramount the safety, health, and welfare of the public, to strive to

comply with ethical design” [8]. This is especially relevant since our device will be located within

a helmet, very close to the head of the user.

It is important that the physical footprint of the device is as small as possible so that it will not

pose any extra risk to the wearer. Existing in-helmet devices like quarterback transceiver modules

can serve as a model of safe physical design choices. A small, plastic encasement with additional

padding will help to mitigate any risk presented by the device.

Another area for concern is the network of force sensing resistors placed within the helmet. We

must ensure the addition of our device does not reduce the safety the football helmet already

provides to the user. For this reason, we must ensure all padding is maintained within the helmet.

With this, we must also make sure all cables placed within the helmet pose no safety hazards,

including extra pressure felt on the head and possibly loose cables.

We also must consider the inherent risk of a battery system. We must consider both battery

placement, as well as the durability of the battery. There is a risk of placing a battery so close to

the head and in a heavy contact environment. The batteries must be well encased and have no

possibility of failing in a dangerous way due to a collision. Per OSHA guidelines [9], potential

hazards to lithium batteries include “dropping, crushing, and puncturing,” each of which are

possible within a football game. The device will also be in the bottom corner of the helmet,

somewhere collisions are less frequent, so the circuit and battery will be under reduced stress. We

must also ensure there is minimal risk of our battery exploding, as certain lithium batteries have

this possibility. According to the OSHA [9], to reduce risk to the user, the batteries must be

inspected “for signs of damage, such as bulging/cracking, hissing, leaking, rising temperature, and

smoking before use” in case thermal runoff is imminent.

18

For this reason, we have chosen to use a rechargeable 9V 1300mAh Lithium-Polymer battery.

While not as robust as a LiPO4 or NiMH battery, the Lithium-polymer battery does offer some

advantages over a traditional Lithium-ion battery. The primary difference is that Lithium-polymer

electrolytes are contained in a solid or gel polymer rather than liquid carbonate electrolytes as in a

Lithium-ion battery. This comes with many advantages such as low flammability, mechanical

stability, and zero electrolyte leakage [10]. To expand further upon our design, we would ideally

use a more durable battery chemistry. However, for the scope of this prototype, the safety features

of the Lithium-polymer battery should be more than sufficient.

Due to the nature of working with lithium-based battery systems, we have investigated the proper

safety precautions for maintenance and use of lithium batteries in an electrical system. For more

passive safety precautions, we will be sure to store the battery in dry, cool locations when not in

use. It is equally important that it is maintained in good condition even when not in use. Since it is

a rechargeable battery, we will ensure to remove it from the power source when it is fully charged.

As previously mentioned, the battery has built-in overcharge protection, which should prove to be

a safety bonus as well. Before and after running any experiments in which the battery will be used

to power the DISH circuit, it will be carefully inspected to ensure that there is no cracking, burn

marks or any other sign of external damage. When testing the full system, due to the nature of the

product, it will be essential to not place the battery in any location that may put it at greater risk

than if the helmet system is being used as intended.

Additionally, the testing process for the DISH helmet has potential risks if not executed properly.

Whenever possible, the helmet will be tested with a dummy or model head, not a human head.

While the helmets, of course, are designed to protect from collision, there always exists a risk of

injury. This is especially the case if the wearer is not properly trained or acclimated to the impacts.

These safety precautions will allow for the rapid and safe development of a system with the

potential to create a safer environment for many more athletes in the future.

19

5 Citation

[1] V. T. Nguyen et al., “Mortality Among Professional American-Style Football Players and

Professional American Baseball Players,” JAMA Network Open, vol. 2, no. 5, p.

e194223, May 2019, doi: https://doi.org/10.1001/jamanetworkopen.2019.4223.

[2] MaxLinear, “800mA Low Dropout Voltage Regulator,” SPX1117 datasheet, Sept. 2018,

https://assets.maxlinear.com/web/documents/sipex/datasheets/spx1117.pdf.

[3] Texas Instruments, “Quad/Octal, Simultaneous Sampling, 16-Bit Analog-to-Digital

Converters,” ADS1174/ADS1178 Datasheet, Sept. 2008,

https://www.ti.com/lit/ds/symlink/ads1178.pdf.

[4] Digi, “Digi XBee S2C 802.15.4 RF Modules,” XBee S2C Datasheet,

https://www.digi.com/resources/library/data-sheets/ds_xbee-s2c-802-15-4.

[5] Atmel, “8-bit Microcontroller with 16/32K bytes of ISP Flash and USB Controller,”

ATmega16U4/ATmega32U4 Datasheet, Apr. 2016,

https://ww1.microchip.com/downloads/en/devicedoc/atmel-7766-8-bit-avr-atmega16u4-

32u4_datasheet.pdf.

[6] “Electrical Engineering,” grainger.illinois.edu.

https://grainger.illinois.edu/academics/undergraduate/majors-and-minors/electrical-

engineering.

[7] “Computer Engineering,” grainger.illinois.edu.

https://grainger.illinois.edu/academics/undergraduate/majors-and-minors/computer-

engineering.

[8] “IEEE Code of Ethics,” IEEE.org, 2023,

https://www.ieee.org/about/corporate/governance/p7-8.html.

[9] Occupational Safety and Health Administration, “Preventing Fire and/or Explosion Injury

from Small and Wearable Lithium Battery Powered Devices,” June 2019,

https://www.osha.gov/sites/default/files/publications/shib011819.pdf.

[10] Z. Chen et al., “4-V flexible all-solid-state lithium polymer batteries,” Nano Energy, vol.

64, p. 103986, Oct. 2019, doi: https://doi.org/10.1016/j.nanoen.2019.103986.

https://doi.org/10.1001/jamanetworkopen.2019.4223
https://assets.maxlinear.com/web/documents/sipex/datasheets/spx1117.pdf
https://www.ti.com/lit/ds/symlink/ads1178.pdf
https://www.digi.com/resources/library/data-sheets/ds_xbee-s2c-802-15-4
https://ww1.microchip.com/downloads/en/devicedoc/atmel-7766-8-bit-avr-atmega16u4-32u4_datasheet.pdf
https://ww1.microchip.com/downloads/en/devicedoc/atmel-7766-8-bit-avr-atmega16u4-32u4_datasheet.pdf
https://grainger.illinois.edu/academics/undergraduate/majors-and-minors/electrical-engineering
https://grainger.illinois.edu/academics/undergraduate/majors-and-minors/electrical-engineering
https://grainger.illinois.edu/academics/undergraduate/majors-and-minors/computer-engineering
https://grainger.illinois.edu/academics/undergraduate/majors-and-minors/computer-engineering
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.osha.gov/sites/default/files/publications/shib011819.pdf
https://doi.org/10.1016/j.nanoen.2019.103986

20

Appendix A: Power RV

The power subsystem RV table can be seen in Table A1.

Requirements Verification

● The battery must supply a

constant voltage between

6.4V and 10V and supports

up to 350mA of current

draw.

● Connect wires to the cathode and anode of the

battery. Do not solder the wires onto the battery;

use a connector.

● Connect the wires to an electronic load.

● Connect a digital multimeter across the battery in

voltage-read mode.

● Set the electronic load to operate as a load of

350mA.

● Verify that the voltage read across the battery is

between 6.4V and 10V while supplying at least

350mA to the electronic load.

● The 1.8V rail must

maintain a voltage between

1.65V and 1.95V at a

current of at least 17mA.

● Solder a wire on each of the pins of the 1.8V

SPX1117 chip. Connect the proper operating

capacitors on the input and output nodes.

● Connect a power supply across the input voltage

and the ground pins.

● Connect a digital load across the output voltage

and the ground pins, set to a resistance of 115Ω or

less to draw at least 17mA.

● Connect a digital multimeter in voltage-read mode

across the output voltage and the ground pins.

● Set the power supply to 9V and power it on.

● Verify that the voltage read across the resistive

load falls between 1.65V and 1.95V and that the

current supplied by the power source is greater

than or equal to 17mA.

● The 2.5V rail must

maintain a voltage between

2.475V and 2.525V at a

current of at least 20mA.

● Solder a wire on each of the pins of the 2.5V

SPX1117 chip. Connect the proper operating

capacitors on the input and output nodes.

● Connect a power supply across the input voltage

and the ground pins.

● Connect a digital load across the output voltage

and the ground pins, set to a resistance of 127Ω or

less to draw at least 20mA.

● Connect a digital multimeter in voltage-read mode

across the output voltage and the ground pins.

● Set the power supply to 9V and power it on.

21

● Verify that the voltage read across the resistive

load falls between 2.475V and 2.525V and that

the current supplied by the power source is greater

than or equal to 20mA.

● The 3.3V rail must

maintain a voltage between

2.7V and 3.6V at a current

of at least 220.5mA.

● Solder the 3.3V SPX1117 chip to one of the extra

PCBs. Solder the proper operating capacitors on

the input and output nodes as well.

● Solder a wire on each of the pins of the 3.3V

SPX1117 chip.

● Connect a power supply across the input voltage

and the ground pins.

● Connect a digital load across the output voltage

and the ground pins, set to a resistance of 16.5Ω

or less to draw at least 220.5mA.

● Connect a digital multimeter in voltage-read mode

across the output voltage and the ground pins.

● Set the power supply to 9V and power it on.

● Verify that the voltage read across the resistive

load falls between 2.7V and 3.6V and that the

current supplied by the power source is greater

than or equal to 220.5mA.

● The 5V rail must maintain

a voltage between 4.75V

and 5.25V at a current of at

least 91mA.

● Solder a wire on each of the pins of the 5V

SPX1117 chip. Connect the proper operating

capacitors on the input and output nodes.

● Connect a power supply across the input voltage

and the ground pins.

● Connect a digital load across the output voltage

and the ground pins, set to a resistance of 57Ω or

more to draw at least 91mA.

● Connect a digital multimeter in voltage-read mode

across the output voltage and the ground pins.

● Set the power supply to 9V and power it on.

● Verify that the voltage read across the resistive

load falls between 4.75V and 5.25V and that the

current supplied by the power source is greater

than or equal to 91mA.

Table A1: Power Subsystem RV Table

The remainder of Appendix A denotes the testing procedures performed to verify each test, as well

as the direct results of each test.

For each test done with an LDO (except for the 3.3V regulator, more on that later), the required

components had leads soldered to wires such that testing can be done more easily. The required

22

capacitors were also applied at the proper locations. The breadboarded setup can be seen in Figure

A1.

Figure A1: Breadboarded setup of LDO voltage regulator testing.

23

Requirement: The battery must supply a constant voltage between 6.4V and 10V and supports up

to 350mA of current draw.

Result: PASS

First, the battery was charged up until the green light turned on, indicating it was fully charged.

Next, the 9V battery was connected to a connector that allows breadboard or alligator clip

connections. The electronic load was then turned on such that it drew 350mA. Next, the battery

was connected to the electronic load, and a multimeter was connected across the battery. The

electronic load was then turned on. To get the right current, constant resistance mode was used to

play it safe, and slowly increase the current. This setup can be seen in Figure A2.

Figure A2: Setup for the battery test.

The results of this test can be seen in Figure A3.

24

Figure A3: Battery test readings. Top left is electronic load readings. Top right is the battery

voltage. Bottom left is electronic load resistance. Bottom right is the testing setup.

As seen in Figure A3, this setup worked for a load of 25Ω, which drew 360mA. This test appears

to be a success. As a further test, we allowed the battery to remain at this power draw for a few

minutes, not measuring the time. We ensured it works for at least a few minutes at this current

draw. It was operational for about 5 minutes and remained around 8.58V with no fluctuation. This

is well within the allowed voltage range, and the battery drew more than the expected maximum

current. One thing of note is that the battery voltage was around 8.6V rather than advertised 9V.

This is likely due to the large power draw; however, it is probably fine. With the results shown in

Figure A3, this test passed.

25

Requirement: The 1.8V rail must maintain a voltage between 1.65V and 1.95V at a current of at

least 17mA.

Result: PASS

The digital load was first turned on to constant resistance mode with 115Ω. The 1.8V regulator

was then connected to the power supply set to 9V, which was then turned on. The overall setup

can be seen in Figure A1. The results for the 1.8V regulator can be seen in Figure A4.

Figure A4: 1.8V regulator testing readings. The top left is the electronic load readings. The top

right is the power source readings. The bottom left is the electronic load resistance. The bottom

right is the voltage read across the Vout and ground pins of the SPX1117.

As seen in Figure A4, all levels were within the desired ranges. It supported 20mA, which means

a lower current of 17mA can also be supported. This signifies a success, and the result of this test

is a pass.

26

Requirement: The 2.5V rail must maintain a voltage between 2.475V and 2.525V at a current of

at least 20mA.

Result: PASS

The digital load was first turned on to constant resistance mode with 127Ω. The 2.5V regulator

was then connected to the power supply set to 9V, which was then turned on. The overall setup

can be seen in Figure A1. The results of the 2.5V regulator test can be seen in Figure A5.

Figure A5: 2.5V regulator readings. The top left is the electronic load readings. The top right is

the power source readings. The bottom left is the electronic load resistance. The bottom right is

the voltage read across the Vout and ground pins of the SPX1117.

As seen in Figure A5, all the values were within the required ranges. The system supported 23mA,

which is greater than the 20mA requirement. This indicates a successful test, and the result of this

test is a pass.

27

Requirement: The 3.3V rail must maintain a voltage between 2.7V and 3.6V, at a current of at

least 220.5mA.

Result: PASS

First, the electronic load was turned on to 16.5Ω. The 3.3V regulator was then connected to the

power supply set to 9V, which was then turned on. The setup used for this test was initially the

same one as shown in Figure A1. It successfully supplied 0.202A from the power supply, and

0.22A from the digital load. However, one of these had too low of current. So, the resistance was

decreased to 15Ω to increase the current draw. This worked for a second, but then the current

started dropping rapidly. The 3.3V LDO chip began to overheat. This indicates a failure in the

initial testing. The system was operational at lower currents, at around say, 100mA, but failed at

higher currents. The most likely reason as to why this test failed was because the LDO was

suspended in the air, and the 46degC/W is likely calculated when the regulator is soldered to pads

on a PCB.

So, this test was retried by soldering the 3.3V SPX1117 chip to one of the extra PCBs, along with

SMD versions of the capacitors. A wire was connected to each pin on the board directly as well;

this allowed for better thermal dispersion in the metal of the board compared to the air.

Attached to the board, with the electronic load set to 14.9Ω (to get 0.221A from power supply),

the test is reperformed. This new setup can be seen in Figure A6.

Figure A6: The renovated 3.3V regulator testing setup.

The results of this test can be seen in Figure A7.

28

Figure A7: 3.3V regulator readings. The top left is the electronic load readings. The top right is

the power source readings. The bottom left is the electronic load resistance. The bottom right is

the voltage read across the Vout and ground pins of the SPX1117.

As seen in Figure A7, the voltages and currents were within their desired ranges. Also, the

regulator was able to maintain this power draw for a sustained period. This testing was successful,

and the result is a pass.

29

Requirement: The 5V rail must maintain a voltage between 4.75V and 5.25V at a current of at

least 91mA.

Result: PASS

The digital load was first turned on to constant resistance mode with 57Ω. The 5V regulator was

then connected to the power supply set to 9V, which was then turned on. The overall setup can be

seen in Figure A1. The results from this test can be seen in Figure A8.

Figure A8: 5V regulator readings. The top left is the electronic load values. The top right is the

power source. The bottom left is the resistance the electronic load was set to. The bottom right is

the reading across the Vout and ground pins of the SPX1117.

As seen in Figure A8, the voltage measured in the digital load was 4.97V and the current measured

in the power supply was 91mA. The digital multimeter measured an output of 4.95V. The digital

load measured a load of 120mA. These are all within the desired ranges, signifying a success. The

result of this testing is a pass.

30

Appendix B: Control RV

The control subsystem RV table can be seen in Table B1.

Requirements Verification

● The microcontroller must

be able to comprehend data

from the analog to digital

converter via SPI over 90%

of the time.

● Construct a completed DISH without putting the

circuit inside the helmet or plugging in the force

sensing resistor array connector.

● Program the microcontroller to communicate with

the ADC via SPI to read the data from all eight

data channels, and to print the data to the serial

monitor.

● Connect the board to a power supply using the

connector. Plug the USB connector into the board

and to a computer with the Arduino IDE opened

and the serial monitor opened.

● Turn on the power supply to 9V and set the port

in the Arduino IDE to the port being used by the

DISH.

● Verify that data is being shown in the serial

monitor. The digital values represented in each

channel should be around hex 7FFF, or decimal

32768. Verify the data is shown at a frequency

greater than 90% of the time.

● The microcontroller must

be able to correctly identify

when a collision occurs

with more than 90%

accuracy.

● With a fully constructed DISH helmet, connect a

power supply to the board using the connector.

Connect a USB cable to the DISH and to a

computer with the Arduino IDE opened and the

serial monitor opened.

● Program the microcontroller to operate as a

completed DISH system, but instead of sending

the data via Zigbee, to return the data in the serial

monitor with a notification that a collision occurs.

● Ensure something is inside the helmet to apply a

force on the other side of the FSRs. With a

hammer, tap where one of the force sensing

resistors are on the outside of the helmet.

● Referring to the serial monitor, verify that when

the helmet is hit, 90% of the time, the collision is

detected, and a notification is shown in the serial

monitor.

31

● The microcontroller must

be able to send and receive

signals to and from the

remote receiver via the

Zigbee transmitter more

than 90% of the time.

● Fully construct a DISH helmet. There is no need

to connect the force sensing resistor array for this

testing.

● Connect the other Zigbee module to an Arduino

and a laptop.

● Program the microcontroller to send a known-test

signal periodically via Zigbee. Program the

Zigbee-Arduino setup to receive the Zigbee signal

and print it to the Arduino console.

● Send a test signal from the DISH to the Zigbee-

Arduino receiver.

● Verify that the intended Zigbee signal matches the

data shown in the Arduino console.

● The off-chip simultaneous

sampling ADC must be

able to measure all signals

from the force sensing

resistor array concurrently

more than 90% of the time.

● Fully construct a DISH helmet. Do not connect

the force sensing resistor array for this testing.

● Program the microcontroller to read the data from

the analog to digital converter normally, except

have it print all data to the serial monitor.

● Connect a power supply to the DISH using the

connector. Connect the DISH to a computer with

the Arduino IDE opened with the serial monitor

opened.

● Power on the power supply to 9V. Select the port

being used by the DISH.

● Verify that data is being shown in the serial

monitor, and that the data shown is visible to be

from each of the eight channels. With this test, it

is expected that the digital values represented in

each channel should be around hex 7FFF, or

decimal 32768. Verify the data is shown from all

eight channels at a frequency greater than 90% of

the time.

● The Zigbee transmitter

must be able to properly

send a signal up to 40

meters away.

● Connect each of the Zigbee modules to an

Arduino and a laptop.

● Create Arduino code for one Zigbee-Arduino

setup to act as a transmitter and the other to act as

a receiver.

● Send a test signal from the transmitter to the

receiver at a close range to ensure proper

operation of the transmission.

● Move the Zigbee-Arduino setups such that they

are exactly 40m away. Measure this distance

using a tape measure, or a similar tool.

● Test the test signal once more, and verify that the

32

transmitted signal is received.

● The signal must be able to

be sent through the helmet

and through adverse

conditions with an

accuracy of over 90%.

● Connect each of the Zigbee modules to an

Arduino and a laptop.

● Create Arduino code for one Zigbee-Arduino

setup to act as a transmitter and the other to act as

a receiver.

● Send a test signal from the transmitter to the

receiver at a close range in open air to ensure

proper operation of the transmission.

● Place a water bottle divider between the Zigbee-

Arduino setups to simulate rain.

● Test the signal again and verify that the

transmitted signal is received.

● Move one Zigbee-Arduino setup behind a wall.

● Test the signal once more and verify that the

transmitted signal is received.

Table B1: Control Subsystem RV Table

The remainder of Appendix B denotes the testing procedures performed to verify each test, as well

as the direct results of each test.

Throughout testing requirements #5 and #6, the hexadecimal test signal to be transmitted is:

7E016111111064697368656C6D123456789ABE

The payload of this packet is:

0x64 0x69 0x73 0x68 0x65 0x6C 0x6D 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A

The first byte is for player number and team identification, and then every two bytes after

represents one sensor values’ data, starting from sensor 1 to sensor 8.

33

Requirement: The microcontroller must be able to comprehend data from the analog to digital

converter via SPI over 90% of the time.

Result: PASS

For this test, the DISH was programmed to read the data from the ADC, and then after each read,

it would print the data to the Arduino’s serial monitor. Data channels 2-8 were set floating, while

a 10kΩ potentiometer was placed at data channel 1. The setup can be seen in Figure B1.

Figure B1: ADC and SPI communication test setup.

As seen in Figure B2, the ADC was able to read changing resistances from channel 1, while

channels 2-8 were held constant for the most part.

34

Figure B2: The top image is when the potentiometer is set to a low resistance. The bottom image

is when the potentiometer is set to a high resistance.

Because the data shown in Figure B2 is variable as the potentiometer is changed, and the rate of

successful reading is 100%, the result of this test is a pass.

35

Requirement: The microcontroller must be able to correctly identify when a collision occurs with

more than 90% accuracy.

Result: PASS

A video of proper operation can be seen at the following link:

https://www.youtube.com/embed/zYbCbe7iI3s

As proven by the fact that the DISH is fully operational, the result of this subsystem requirement

is a pass.

https://www.youtube.com/embed/zYbCbe7iI3s

36

Requirement: The microcontroller must be able to send and receive signals to and from the remote

receiver via the Zigbee transmitter more than 90% of the time.

Result: PASS

For this test, the DISH was set up and connected to the force sensing resistor array. This testing

setup can be seen in Figure B3.

Figure B3: Zigbee transmission capabilities setup.

The data both sent and received is visible in Figure B4.

37

Figure B4: The top image is the data transmitted from the transmitter. The bottom image is the

data received by the receiver.

As seen in Figure B4, the data is properly transmitted, as the packets received by the receiver line

up with those sent from the transmitter. The result of this test is a pass.

38

Requirement: The off-chip simultaneous sampling ADC must be able to measure all signals from

the force sensing resistor array concurrently more than 90% of the time.

Result: PASS

For this test, the PCB was programmed with the proper code to operate as intended. On collision,

the processor was programmed to print out the data to be selected where the real, transmitted data

is found. From the data seen in Figure B5, it can be seen that all of the force sensing resistors in

the array are measured concurrently.

Figure B5: Simultaneous data collected from the FSR array using the ADC.

As seen in Figure B5, the data is measured as intended. Because of this, the result of this test is a

pass.

39

Requirement: The Zigbee transmitter must be able to properly send a signal up to 40 meters away.

Result: PASS

For this test, the sender and receiver were placed a significant distance apart to test for accuracy at

large distances. For this test, the long corridor in the ECEB was used, namely, the corridor

comprising corridors C2000, C2001, and C2002. Each Arduino-Zigbee setup was placed on either

end. As seen in Figure B6, the setups are separated by a large distance. This distance is measured

to be greater than 40 meters, so if this test passes, the 40 meter requirement will also pass, as any

distance shorter than the tested distance must also pass as well.

Figure B6: The image on the left is from the transmitter’s point of view, where the red circle

shows where the receiver is. The image on the right is from the receiver’s point of view, where

the red circle shows where the transmitter is.

Figure B7 shows the data transmitted and received during the 40 meter distance test.

40

Figure B7: 40m test data. The top image shows the transmitter’s serial monitor, showing what is

sent. The bottom image shows what is received by the receiver. It can be seen that the data

packets are correctly transmitted, as the packets in the boxes match.

As seen in Figure B7, the data is properly sent over this distance larger than 40 meters. This says

that the setup is operational at this 40 meter benchmark, signifying a successful test. The result of

this test is a pass.

41

Requirement: The signal must be able to be sent through the helmet and through adverse

conditions with an accuracy of over 90%.

Result: PASS

The first test that was performed was a test through the wall. For this, one Zigbee-Arduino combo

was set up as a sender, the other was set up as a receiver. The sender was in ECEB room 2070 at

workstation N, and the receiver was in ECEB room 2072, as seen in Figure B8.

Figure B8: The left image shows the transmitter set up in room 2072. The right image shows the

receiver set up in room 2070. This is the overall setup of the wall test.

When both setups are turned on, the correct test signal is both sent and received, as seen in Figure

B9.

42

Figure B9: The top image shows the transmitter, which is printing the packets to be sent in the

wall test. The bottom image shows the receiver, which is printing the packets that are received in

the wall test. The packets line up, as the packets in the boxes match.

As seen in Figure B9, there are no errors in the packets transmitted, so this portion of the test

passes.

43

Next, the water bottle test is performed. This setup is shown in Figure B10, where the sender and

receiver are placed in close proximity with a wall of water bottles acting as a separator.

Figure B10: Water bottle test setup.

The results from this test are shown in Figure B11.

44

Figure B11: The top image shows the packets to be sent from the transmitter in the water bottle

test. The bottom image shows the packets received by the receiver in the water bottle test. It can

be seen that these line up correctly, as the packets in the boxes match.

As seen in Figure B11, the packets are properly transmitted through the wall of water bottles. This

portion of the test passes as well.

Because both the wall test and the water bottle test were successful, this requirement can be

considered verified. The result of this test is a pass.

45

Appendix C: Data Reception and Visualization RV

The data reception and visualization subsystem RV table can be seen in Table C1.

Requirements Verification

● The receiver must receive

packets sent with a

maximum error rate of

10%.

● Connect each of the Zigbee modules to an

Arduino and a laptop.

● Create Arduino code for one Zigbee-Arduino

setup to act as a transmitter and the other to act as

a receiver.

● Program the transmitter to send a fixed series of

packets in the standard Zigbee format, and the

receiver to print the received packets to the serial

monitor.

● Compare the transmitted and received signals,

verifying that the error rate is less than 10%.

● The signal received by the

Arduino must be delivered

to the serial input exactly

as it is seen by the

hardware.

● Connect an Arduino to a computer. Program it to

send fixed packets to the computer over the serial

port.

● Create a Python script that takes the data from the

Arduino and displays it.

● Read the data saved by the Python script..

● Verify that the data is exactly the same as the data

that was programmed into the Arduino.

● The visualizer must be able

to identify the impact

within 20% of where it

occurred.

● Set up the visualizer code to operate off of an

internal input rather than the Arduino receiver.

● Give the visualizer simulated force data that

would return a recognizable output, namely

between three sensors.

● Begin the visualizing software and have it

visualize the simulated data.

● Ensure that the calculated impact location is

within 20% of the expected location.

● The data must be

visualized within 30

seconds of packet

reception.

● Set up the Arduino receiver to send fixed packets

to the visualization code. Program it to turn on an

LED when it sends the data to the COM port.

● Plug in the Arduino. Start a timer when the LED

turns on.

● Run the visualization software when the data has

been transmitted.

● Ensure that all times between data reception and

displaying on the screen are less than 30s.

Table C1: Reception and Visualization Subsystem RV Table

46

The remainder of Appendix C denotes the testing procedures performed to verify each test, as well

as the direct results of each test.

Requirement: The receiver must receive packets sent with a maximum error rate of 10%.

Result: PASS

Other tests indicate there are no errors in packet reception. Additionally, the completed product

demonstrates no packet losses. Hence, the result of this requirement is a pass.

47

Requirement: The signal received by the Arduino must be delivered to the serial input exactly as

it is seen by the hardware.

Result: PASS

For this test, an Arduino was plugged into a computer, and a script in Python, which is the language

being used to port data from the COM port connected to the Arduino with the visualizing software,

was written. The Arduino is programmed to continually send data to the serial monitor, with the

following code written in the loop() function:

Serial.println(i);

i++;

delay(500);

The purpose of this code is to print to the COM port a number, which increases by one, every half-

second. The Python script contains the following code to read the data from the COM port:

ser = serial.Serial(‘COM5, 9600)

for i in range(20):

 id = int(ser.readline().decode().rstrip())

 print(id)

ser.close()

The purpose of this code is to read the data in the COM port, and print out the first twenty data

points received. As seen in Figure C1, the data is properly received.

Figure C1: The left image is the data being sent from the Arduino. The right image is the data as

received by the COM port in the Python script.

As seen in Figure C1, the data from the Arduino, which is the same hardware as the receiver, can

successfully send its data to the computer’s serial input and makes its way to the Python script via

the COM port. The result of this test is a pass.

48

Requirement: The visualizer must be able to identify the impact within 20% of where it occurred.

Result: PASS

For this test, the visualization software was opened and run. Simulated data was then given to the

visualization software. In the case of the data given to generate Figure C2, the data was equal force

between three sensors.

Figure C2: Visualization of hypothetical sensor data. For an equal force reading on sensors 1, 3,

and 7, the collision is predicted to be in the center of the three white points.

As seen in Figure C2, the visualizer recognized that the packet has equal forces at three of the

sensors, which would correspond to a hit in the center of the arrangement. Because the visualizer

can properly visualize data it is given, the result of this test is a pass.

49

Requirement: The data must be visualized within 30 seconds of packet reception.

Result: PASS

For this test, an Arduino was connected to the computer with the visualization software. It was

programmed to turn on an LED, and then send the data to the visualization software on the

computer via serial communication. The visualization software then rendered the collision heat

map, as seen in Figure C3. This entire process was captured with a video.

Figure C3: Visualized data from received packets.

As seen in Figure C3, the packets visualized the heat map successfully. Also, as seen in Figure

C4, the video recording the LED turning on and then the rendering of the heat map was 15 seconds,

which is less than 30 seconds.

Figure C4: Time elapsed for rendering the data was 15 seconds.

Because the time elapsed for rendering the visualization was less than 30 seconds, the result of this

test is a pass.

50

Appendix D: Cost and Schedule Tables

The parts purchased and the costs associated with those are seen in Table D1. The week-to-week

schedule can be seen in Table D2.

Description Part Number Unit Price Quantity Cost for Quantity

ADC ADS1178 $18.95 2 $37.90

Microcontroller ATmega32U4 $5.68 2 $11.36

XBee Transmitter Zigbee Modules - 802.15.4

XBee, S2C, 2.4GHz Through-

hole,PCB ant

$22.95 2 $66.20

1.8V regulator SPX1117M3-L-1-8/TR $0.53 3 $1.59

2.5V regulator SPX1117M3-L-2-5/TR $0.53 5 $2.65

3.3V regulator SPX1117M3-L-3-3/TR $0.53 3 $1.59

5.0V regulator SPX1117M3-L-5-0/TR $0.53 3 $1.59

Force Sensing

Resistors

CN1501541594 $24.44 1 $24.44

Male Conn WM15179-ND $4.68 2 $9.36

Female Conn WM15032-ND $1.03 2 $2.32

9V battery n/a $16.99 1 $16.99

22Ω Resistor WR06X220 JTL $0.01 10 $0.09

2kΩ Resistor RR0816P-202-D $0.11 20 $2.20

10kΩ Resistor RR0816P-103-D $0.13 3 $0.39

1uF Capacitor 06033C105KAT2A $0.154 40 $6.16

2.2uF Capacitor 0603ZD225KAT2A $0.11 10 $1.10

4.7uF Capacitor 06033D475KAT2A $0.234 10 $2.34

22pF Capacitor 06035A220JAT2A $0.038 10 $0.38

USB-mini-B 65100516121 $1.41 4 $5.64

16MHz Crystal ECS-160-20-3X-TR $0.35 3 $1.05

Schottky Diode MBR0520 $0.16 5 $0.80

Battery Connector PJ-102AH $0.82 3 $2.46

51

Battery Cable 1927-1053-ND $1.17 2 $2.28

Wire Crimps 538-105300-2400 $0.351 24 $8.43

Additional PCBs n/a $51.00 1 $51.00

Total $260.31

Table D1: Parts Lists Cost

Week Task Person

2/20 Start circuit schematic design, component selection Ryan

Research XBee/Arduino interface research, impact

localization algorithm from sensor data

Saathvik

Visualization software research, initial stage

development

Patrick

Design Document, Team Contract All

2/27 Complete schematic design, begin PCB layout,

finalize component selection and ordering

Ryan

Begin writing receiver Arduino code for XBee

interface,

Saathvik

Expand existing software visualization, full heatmap

functionality, streamlined file IO

Patrick

Design review All

3/6 Finalize PCB layout, confirm communication/plans

with machine shop

Ryan

Complete Arduino code, begin testing with XBee

modules, PCB verification

Saathvik

 Log serial communication to txt file, define

mappings from raw data to meaningful info, PCB

verification

Patrick

1st round PCB orders All

52

3/13 Purchased component validation Ryan

Confirm Zigbee communications Saathvik

Streamline serial → Python → visualization process Patrick

3/20 Assemble PCB, validate on-board functionality Ryan

Integrate XBee module with microcontroller on

board, ensure communication

Saathvik

Validate timing, error requirements of software, PCB

validation

Patrick

3/27 PCB revisions, component re-selection Ryan

PCB revisions, verify wireless connectivity/range

requirements

Saathvik

PCB revisions, demo full information flow helmet →
software

Patrick

Second round PCB orders All

4/3 Full PCB/encasement/helmet assembly, modify as

needed

Ryan

Impact localization algorithm testing/modification Saathvik

Impact localization algorithm implementation with

display

Patrick

4/10 Secondary PCB validation, enclosure modifications Ryan

Secondary PCB validation, verification of high-level

requirements

Saathvik

Secondary PCB validation, complete integration of

software

Patrick

Team Contract Fulfillment All

4/17 Prepare demo, hardware troubleshooting Ryan

53

Prepare demo, communications troubleshooting Saathvik

Prepare demo, software troubleshooting Patrick

Mock Demo All

4/24 Prepare demo, presentation, report Ryan

Prepare demo, presentation, report Saathvik

Prepare demo, presentation, report Patrick

Final Demo, Mock Presentation All

5/1 Prepare presentation, final report Ryan

Prepare presentation, final report Saathvik

Prepare presentation, final report Patrick

Final Presentation All

Table D2: Schedule

