
ECE 445
Senior Design Laboratory

Final Report

BAGS:
Bags Automated Game System

Team No. 23
Annabelle Epplin

(aepplin2)
Sania Huq
(saniah2)

Owen Schaufelberger
(ods2)

TA: Zicheng Ma
Professor: Olga Mironenko

May 3, 2023

Abstract
This project for ECE 445 Senior Design was dubbed BAGS: Bags Automated Game System.
The objective of this project was to remedy score-tracking in a game of bags, also known as
cornhole, as it can be an issue to keep track of the score, especially considering that bags is often
played during parties, where people are more prone to becoming intoxicated. We approached this
problem by finding hardware, such as an ultrasonic sensor and a radiofrequency (RF) antenna
and receiver to establish location of the bags that land on the board in the hole to manage score
to then display onto an app. An Sparkfun receiver was used as an Arduino shield as a means to
send information via firmware since there were numerous problems with interference with the
ultrasonic sensor and the RF antenna. Despite some technical difficulties with both hardware and
software, we considered our project successful primarily due to the fact it met our high-level
requirements to be considered a functional product.

Table of Contents
1. Introduction 4

1.1 Problem 4
1.2 Solution 4
1.3 High Level Requirements 5
1.4 Visual Aids 5
1.5 Subsystems 8

2. Physical Design 8
2.1 PCB Design 9

2.1.1 Schematic 9
2.1.2 Layout 9
2.1.3 Soldering and Testing 9

2.2 Hardware Design 9
2.2.1 Ultrasonic Sensor/ IR Stuff 9
2.2.2 RFID System 9

2.3 Firmware Design 9
2.4 Software Design 11
2.4 Integration 12

3. Cost and Schedule 12
3.1 Cost Analysis 12
3.2 Schedule 14

4. Conclusion 14
4.1 Challenges 14
4.2 Successes and Key Takeaways 14
4.3 Redesign Suggestions and Further Improvements 15
4.4 Ethics 15

5. References 17
Appendix 20

1. Introduction

1.1 Problem
Due to its fairly simplistic nature, cornhole is a staple at events such as barbecues, tailgates, and

other outdoor get togethers. Some other staples at these types of events are adults drinking, energetic
children, and engaging conversations. While these are great and part of what makes these events fun, they
are distractions that can affect one’s ability to keep track of the score. This can lead to heated arguments
that are heightened due to alcohol consumption or take away the competitive edge as it can devolve into
just throwing bags back and forth with no clear objective. Once losing track of the score of the game, it
can be difficult and frustrating to realize the players either need to start over or have no idea who has
actually won the game.

1.2 Solution
To combat participants losing track of score, we will be removing the need for them to score the

game entirely. This will be accomplished by creating a set of bags, a board with a sensor array, and an app
that will automatically score the game for them.

The Bags Automated Game System is meant to appear as a normal cornhole game that can be
played fully as normal. Underneath the board, there is an array of sensors mounted to the back that are
used to determine which bags are hitting the board and then when. The primary sensor to be used to do
this on the board is the RFID detection system. RFID (Radio-frequency identification) uses
electromagnetic fields to wirelessly communicate between objects for identification and location purposes
[1]. To detect a bag falling into the hole, we used ultrasonic sensors, which determined if a bag passed
through the hole. These sensors deliver the board information to the microcontroller unit which
communicates wirelessly via Bluetooth via an app to a phone. This entire system is fueled by the power
subsystem, which consists of a voltage regulator on the PCB, battery packs, and a wall adapter for the
RFID reader.

1.3 High Level Requirements
To consider our project successful, we wanted to accomplish several objectives:

1. Successfully keep track of bag locations with regards to the board and the hole
2. App is able to keep track of score and time played with the game
3. System is able to distinguish between bags of different teams

1

1.4 Visual Aid

2

1.5 Subsystems
Refer to Appendix for full tables of verification and requirements for each subsystem. Further
discussion of the design of each subsystem is shown in Section 2.

1.5.1 Power Subsystem
The power subsystem locates itself on the PCB which provides adequate power to all our
components including the ESP32, ultrasonic sensor, and the RFID receiver. It consists of a 12V
battery, two voltage regulators and the ESP32 which was mounted underneath the cornhole
board. In order to power all the other components that aren’t directly attached, the appropriate
wiring was attached to sufficiently power the IR emitter and receiver. The main purpose of our
PCB is to supply voltage to all the necessary components and to ensure that enough voltage and
current is delivered to ensure all the components are properly working.

1.5.2 User Interface Subsystem
The user interface subsystem consists of two main components: the RFID tags located in each
game bag and the ultrasonic sensor that will detect game bags that go in the hole. The RFID tags
will interface with the RF antenna whose data will be read by the RFID reader whereas the
ultrasonic sensor was placed across the hole underneath the cornhole board. When a bag falls in
the hole, the ultrasonic sensor detects an incoming bag that then communicates to the ESP32.
These components are vital to the scoring of the game as they are the sensors that will actively
detect the bag hits which will eventually become the game score.

1.5.3 Control Subsystem
The control subsystem is the brains of the operation that will function as a central location where
the sensor data from the user interface subsystem will be received and stored as well as be able to
communicate with the other subsystems. The control subsystem is divided into two main groups:
the communications and the microcontroller. We went with the ESP32 primarily for its ability to
use Bluetooth which seamlessly communicates with our sensors and the app. Bluetooth
capabilities are needed for sensor data storage and processing in the app to collect information
from the game board electronics. The ESP32 was programmed with the Arduino IDE, enabling
the transmission of data via Bluetooth. The firmware is uploaded to the ESP32 via a micro USB
type B connector located on the PCB. The other primary group within the control subsystem is
the communications system, which consists of the RFID Reader.

3

1.5.4 App Subsystem
The app subsystem is responsible for keeping track of game statistics, which information will be
received through the ESP32 Bluetooth module.

The app itself doesn’t have any direct impacts on the actual gameplay of bags, rather it is
a medium to manage score, game statistics and methods for improvement. An important aspect
of the app is to effectively gather data from the ESP32 module, create game statistics, and keep
track of the game. We tested a lot of software with an Android phone as there were more
resources available at our disposal compared to iOS.

2. Design and Verification

2.1 PCB Design and Power

2.1.1 Schematic

4

The PCB houses the power subsystem, the ESP32 microcontroller, and connections to our peripheral
hardware such as the RFID reader and ultrasonic sensor.

The power subsystem consisted of our 12V battery, a LDL1117S33R 3.3V linear regulator, and a
LDL1117S50R 5V linear regulator. We needed to be able to supply appropriate voltage and current to all
components simultaneously, so we selected a 12V battery so we had enough potential power to do this.
We opted for a battery rather than a wall plug due to the game of cornhole generally being played outside
or in an area where wall outlets are not readily available. We specifically chose the linear regulators we
did because they were both rated for an output current of 1.2A. We felt confident that there would be a
sufficient amount of current based on the max current draw of each component as seen in table 1 below.

HC-SR04
Ultrasonic
Sensor

Arduino UNO ESP32 WiFi-BT-BLE MCU
Module

Simultaneous
RFID Reader

Current
Draw

15 mA 50 mA Min (not transmitting
Bluetooth): 500 mA

Max (transmitting Bluetooth):
630 mA

170 mA

Voltage
Draw

5 V 5 V 3.3 V 5 V

Power
Draw

(P= V * I)

0.075 W 0.25 W Min: 1.65 W
Max: 2.08 W

0.85 W

Between our 12V battery input and the 3.3V and 5V linear regulators, we placed a Schottky diode. This
serves as our reverse polarity protection in the instance the 12V battery is connected incorrectly. Both
linear regulators are equipped with the recommended supplementary circuits provided in their datasheets
[2] as shown in fig. 4. Each has decoupling capacitors at their inputs and outputs to ensure that there is
alway stable supply signal for our components.

In our schematic above, we have circuits for IR emitters and receivers. These are remnants of our
original design, however we still made use of one of the IR emitter connections. This particular

5

connection is connected to the 5V linear regulator and GPIO pins of the ESP32, which we were able to
make use of to integrate the ultrasonic sensor.

The microcontroller section contains the ESP32 Wroom module, a CP2102N USB to UART IC,
and supplementary auto programming circuits. The intention was to use a micro USB type B cable to
upload our firmware to the ESP32 via Arduino IDE. The USB to UART IC generates a collection of
signals based on the incoming data from the cable. Based on resources available online [3], we designed a
circuit to utilize these signals consisting of two BJTs and resistors. Labeled as the reset circuit in the
figure above, it was designed to either reset the ESP32 or put it into programming mode. It did this by
sending its outputs directly to the EN and GPIO0 pins on the ESP32, which when pulled low places the
microcontroller into programming mode to receive the uploaded firmware.

2.1.2 Layout

We had many things to carefully consider when designing the layout of the PCB. The most
significant design consideration is the width of the connections. We prioritized having wider traces for
power delivery, which can be seen in fig. 4. We have the widest traces round the 12V battery terminal,
inputs to both the 5V and 3.3V linear regulators, and into the voltage inputs for all our hardware
peripherals because these are where we will have the highest voltage and current draws. For less

6

strenuous applications such as data transfers from the RFID read to the ESP32, we opted to use thinner
traces which provided us more flexibility. We also placed 22uF ceramic capacitors as close as possible to
our most important and vulnerable components. These served as decoupling capacitors to provide a more
stable input voltage to the ESP32 and RFID reader.

The ESP32 Wroom’s Wi-Fi and Bluetooth antennas are located at its top. Since Bluetooth was
crucial for this project, we had to ensure that no other components were located within the designated
keep-out zone, designated in the ESP32’s footprint. This space is reserved to prevent as much
electromagnetic noise as possible so that we could have the strongest Bluetooth connection possible.

2.1.3 Soldering and Testing
Some of the difficulties encountered while soldering were component sizing. Many of the

capacitors and resistors were 0402’s, so around .01 inches. The soldering pads were significantly larger
than the actual components themselves and so many times, components would become damaged through
soldering and lead to shorts. We also ended up having to create jump connections to make the regulators
work, but since our components experienced damage through the soldering process, the continuity tests
and voltage outputs were not passing our requirements. Some considerations we had for the second round
of PCBs was utilizing the rest of the ESP32 pins and LED receiver ports for testing and debugging
purposes.

Once everything was soldered, testing the components straightforward. We connected a 12
voltage source to see that our 5V voltage regulator and the 3.3V voltage regulator were functioning
properly. On top of that, we were also able to get the ESP32 pins connected properly with support of the
continuity tests.

When it came time to test the ESP32, we realized that we neglected pull up resistors. This was
critical because it would enable the ESP32 to jump into boot mode. What we tried instead was physically
adding a resistor to GPIO0 and connecting it to 3.3V in hopes of having the ESP32 get into boot mode.
That failed and so our last resort was taking apart a development board that already had all the
connections and solder connections there. This method didn’t work either, and we believed that the ESP32
shorted, and after some multimeter verifications, it was shown to be true. While the ESP32 Wroom was
meant to be surface mounted on our PCB, due to these issues we were unable to use it directly on our
PCB. Instead, we ended up having to use a Sparkfun Thing Plus ESP32 Wroom dev board as our
microcontroller. This was powered using the 5V linear regulator located on our PCB. While the ESP32
uses 3.3V for its power, the Sparkfun board contains a pin named VUSB equipped to take a 5V source
and then use a 3.3V linear regulator to power the actual ESP32 module [4]. To avoid reaching the current
limit of the 5V linear regulator, this also forced us to use a wall adapter to power the Arduino UNO and
the RFID reader in the final demo.

2.2 Hardware Design and Verification
The hardware design is the aspect of this project that went through the most changes throughout

the semester. At the conception of this project, we envisioned a cornhole board covered in force sensitive
resistors, an ultrasonic sensor and IR receiver in the hole, and an RFID reader underneath the board. The
idea was that the force sensitive resistors would be used to register where and when a bag had landed on
the surface of the board. The RFID reader would simply be used to identify which team a bag belonged

7

to. The idea of having both the ultrasonic sensor and the IR receiver in the hole, was that the ultrasonic
sensor would detect that a bag is incoming and the broken IR connection would sense that a bag has
actually made it into the hole. We also experimented with the thought of using a camera and image
processing to identify and score bags on the board and in the hole based on their colors.

The final hardware design we settled on was a simpler version of our first initial concept. It uses
only an RFID reader to detect when a bag lands on the board and an ultrasonic sensor to sense when a bag
lands into the hole. These peripherals were connected to our ESP32 Wroom microcontroller, which
collected data, generated a score, and sent the results to the mobile app via Bluetooth, We opted not to use
force sensitive resistors at all as we could not locate any with a large enough sensing area to cover the
surface of our board. We also felt that using force sensitive resistors was redundant as we could detect and
identify a bag landing on the board with just the RFID reader. We also abandoned the idea of using both
an ultrasonic sensor and an IR receiver. We wanted to just use the IR receiver to detect bags falling into
the hole, however through testing we found that electromagnetic interference made this approach
unreliable. In the end we used only an ultrasonic sensor to detect bags falling into the hole.

2.2.1 ESP32 Wroom
At the heart of our hardware design lies the ESP32 Wroom microcontroller. This serves as the major
junction that connects all of the peripheral hardware necessary for the complete product. We needed a
microcontroller that was capable of interfacing with several peripheral hardware components at the same
time. The ESP32 fits this criteria as it has 40 different GPIO pins that can be programmed in a multitude
of ways such as serial inputs and outputs and digital-analog converters. While there are many
microcontrollers on the market that have these features, our biggest draw to the ESP32 Wroom was its
Bluetooth capabilities. One of the high level requirements we established for this project was to be able to
keep track of the score with a smartphone app. We found that the most elegant way to do this was to send
the score data to the app via Bluetooth.

To connect the ESP32 Wroom to the RFID reader and ultrasonic sensor, we took advantage of the
many available GPIO pins on the ESP32. We connected the ultrasonic sensor to GPIO pins 18 and 19.
These are general GPIO pins that were tuned in our ESP32 firmware to output a trigger signal to the
ultrasonic sensor and receive the analog output signal of the sensor. The RFID reader sends its data
serially, and thus needs to utilize one of the three hardware serial ports available on the ESP32. The first
serial port UART0 (GPIO1 and GPIO3) are by default designed to send and receive data upon boot,
meaning this serial port is set aside for uploading the desired firmware to the microcontroller. The second
serial port UART1 (GPIO9 and GPIO10) is connected to the integrated SPI flash by default. This left us
with having to use the third serial port UART2 (GPIO16 and GPIO17), which by default are free for any
use [5]. We had incredible difficulty getting the ESP32 and RFID reader to communicate directly, and
thus had to make use of an Arduino UNO to act as an intermediary. We struggled with this due to poor
documentation around the RFID reader as it is designed as an Arduino shield and thus, nearly all
documentation for it revolves around an Arduino.

Most testing of the ESP32 Wroom’s functionality before integrating all the components revolved
around making an LED light up. To test the ability to simple program the ESP32, we uploaded a code in
which one of the pins periodically outputted a high signal to light up an LED. To verify functionality and
gain a basic understanding of the ESP32 Wroom’s Bluetooth capabilities, we experimented with a simple
serial Bluetooth example provided in the ESP32’s library in Arduino IDE. With this example code, we
were able to type messages in the serial monitor and send them to be displayed on a serial Bluetooth

8

smartphone app and vice versa. To verify we could make use of this, we modified the code such that a
specific message sent to the ESP32 would make an LED light up. With these verifications in place, we
were able to integrate

2.2.2 Ultrasonic Sensor
In the final design, we elected to employ an ultrasonic sensor to detect if a bag has fallen into the hole.
The ultrasonic sensor is supplied 5V from our 5V linear regulator and connected to the ESP32. Originally,
we had planned to use a Vishay TSOP34838-IR receiver in conjunction with an IR emitting LED. The
idea was that the IR receiver outputs a low logic signal whenever it is detecting the IR light from the
LED. When this connection is interrupted the receiver outputs a high logic signal. The emitter and
receiver would be placed across the diameter of the hole. When a bag was detected by the RFID reader
and the IR receiver outputs a high signal, the bag was detected as falling into the hole. The receiver
required a pulsing light that matched its rated frequency of 38kHz in order to produce meaningful outputs.
We had great difficulty producing this signal as the ESP32 does not have an elegant way of producing the
required squarewave. Since we were already using the Arduino UNO, we used the tone() function
(unavailable on the ESP32 [6]) to produce the desired square wave. When testing the whole system
however, we found that when in close proximity to two or more RFID tags, the desired square wave had
large amounts of interference and resembled a DC signal. This caused the IR receiver to constantly read at
a high logic level and thus, bags that landed on the board would be detected as falling into the hole. This
violated our high level requirement of being able to distinguish bag location with regards to the board and
the hole.

The solution we settled on utilizes the ultrasonic sensor from our original design. In our firmware,
we are repeatedly sending a pulse to the trigger pin of the ultrasonic sensor, which generates an 8 cycle
ultrasonic burst from the transmitter side. This signal is then reflected back by any object within the rated
range of 2 cm-400 cm and detected by the receiver side. When the reflected wave is detected, the echo pin
outputs a high logic signal and using the amount of time it outputs a high signal, we can determine how
far away the object is. To test the sensor’s functionality, we use a very basic distance program. As shown
in fig. 5, we placed a hand across the diameter of the hole across from the sensor. The program then
outputs that the distance to the hand is 13 cm as shown in fig. 6. Using this distance, we were able to tune
our firmware to score a bag as in the hole, if the bag is both detected by the RFID reader and within 13
cm of the ultrasonic sensor. We did however, have some difficulties with the ultrasonic sensor during our
final demo. We had it working shortly before the demo, however we needed to transport the board into the
lab from another location. During transportation several wires were knocked loose and due to this, the
ultrasonic sensor did not function as expected. We have since fixed this issue but for our demo we did not
have the time to troubleshoot and locate the issue.

9

2.2.3 RFID System
One of the largest hardware pieces of this project was the RFID system, which was responsible for
detecting if a bag was thrown somewhere on the board or in the hole. The RFID reader used in this project
was a Sparkfun Simultaneous RFID Reader with an M6ENano chip coupled with an external UHF RFID
antenna. The schematic for this system is shown in Figure 8. Originally, we had planned on using the
internal Sparkfun antenna, but it did not perform to the necessary read range to reliably detect multiple
bags on the board. The RFID reader could be operated at a power anywhere from 5 dBm to 27 dBm [7].
The read range needed for this antenna was 2 feet, so after testing a range of power outputs, it was
determined that the RFID reader should run at 18 dBm to best cover the entirety of the cornhole board
without risking a possible shutoff due to a voltage brownout. This was tested by placing bags on each
corner of the board at varying power outputs to see which power level could fastest identify each bag
without the RFID receiver overheating.

10

For the verification process, the RFID reader was tested with various amounts of tags to ensure it
could detect up to 8 unique RFID tag IDs. These unique RFID tags IDs were programmed using the RFID
reader and a Write EPC program written in Arduino IDE and were written to be a 4 bit hex value that
corresponded with each team and bag number [8]. An example of the RFID functionality is shown below
in Figure 9. When a bag was thrown on the board, the RFID reader would read the input shown in the
figure, consisting of: received signal strength indicator (RSSI), frequency, timestamp, and electronic
product code name (EPC). The EPC name is the most vital element as it shows the unique tag identifier
assigned to that tag which is eventually used to match up the right score to the team. As shown in the
figure, multiple bags can be detected on the board at once and identified separately, which serves to
satisfy our main requirements for the RFID system. For a further look into the specific requirements and
verifications for the RFID system, see Appendix. This process was coded using Constant Read function
code on Arduino IDE and programmed as an Arduino Uno shield. One issue encountered with the RFID
system was the delay for it to sometimes read bags that were found on the outer edges of the board. This
was mostly fixed by experimenting with the power output as described earlier, although the potential for
such delay still existed. We did not encounter any significant issues with the RFID system detecting bags
that missed the board and hole. The RFID system could detect all bags on the board within an absolute
maximum of 90 seconds, although it was much faster with fewer bags on the board. Due to issues with the
voltage regulator on the PCB, a wall adapter was needed to fully power the RFID reader during the final
demonstration.

2.3 Firmware Design and Verification
The firmware of this project unites the hardware and software and allows us to collect data

received from the hardware sensors and transmit this to the microcontroller to be received eventually by
the app via Bluetooth. The firmware process is shown below in Figure 11.The ESP32 code is responsible
for continuously pinging for new RFID or ultrasonic sensor data. When a new tag is identified, it goes
through simple logic to determine if the bag is on the board or in the hole. If the ultrasonic sensor has
transmitted data at the same time as the RFID receiver, the ESP32 determines that the bag is in the hole
and adds +3 to the correct score. If the ultrasonic sensor does not have any new data, the ESP32 decides
that the bag was on the board and adds +1 to the correct score. After this logic occurs, the tag name is
printed to the ESP32 serial monitor along with a message saying which bag was found and both teams’
scores. This is shown in Figure 10 and serves as a verification that the tag data was transmitted and
identified properly. Once the ‘bag found’ flag went high for a specific bag, it would not add any more
points for that bag until the round was reset, eliminating the potential for the same bag being counted
multiple times in one round.

11

This new score is then written to ESP_BT. This is sent to the app to be presented as the score of the game.
To verify these connections, we tested it by sending a given message from the ESP32 Serial Monitor to a
Serial Bluetooth smartphone app, as is discussed further in the verification discussion of Section 2.2.1..
One of our beginning difficulties with the firmware was finding enough Serial communication channels to
use. To communicate between the Arduino Uno and the ESP32, we used an AltSerial port as we had no
more available Software or Hardware Serial ports [9]. Our other difficulties with the firmware were
delays that were caused by electromagnetic noise being received by the system, which is discussed further
in Section 4.1.

12

2.4 Software Design and Verification

To meet one of our high level requirements, we created an app to function as the primary means of
displaying the score and keeping track of the score. The operations of the app were straightforward. A
timer was created alongside the score management. The decisions that had to be made within the app
weren’t very demanding. All it would do would check for any bags on the board once the update score
button was clicked, revealing the current score. Even if no score was made, the app would display “Team
A: 0, Team B: 0” for points. Once a score was made and the button was pressed, the appropriate score
would be shown. This continued until all the bags were thrown. Once everything is scored, the game ends,
the timer stops and a new game can be started.

Some of the issues that we came across were polling for data from the ESP32. We first
encountered this when trying to integrate software and firmware together. At first, the app was only able
to receive one packet and show one score since all the ESP32 serial pins were in use for the RFID system.
We were able to remedy this problem by sending both scores at once and having software parse through
the scores with a flag to show the two different team’s scores.

Another issue that we came across was the timer on the app. The app would start the timer as
soon as the application was loaded, but we felt it was more appropriate to have a timer start as soon as the
game started. It was an issue of having an if-else statement, which we added and fixed the problem
immediately.

One last task we hoped to accomplish was having past scores as a feature. Due to lack of time, we
were unable to implement this feature, but it did not prevent us from completing our high level
requirements as this was a verification method of the app.

13

2.5 Integration
The integration of the entire project involved ensuring all of the hardware sensors were working,
communicating with the microcontroller, and properly sending data to the software component. When
assembling our total project, we housed all of the electronics underneath the board so as to not interfere
with typical gameplay. Our antenna was housed in the center underneath the board to give it the best
chance of successfully reading bags anywhere on the board. The ultrasonic sensor was located directly
next to the hole to best determine if any bags had fallen in the hole. Our goal was to make the electronics
unnoticeable from the front of the board so as to preserve the functionality of the game. As mentioned in
Section 2.1.3, we ended up using a wall adapter for the RFID reader in the final demonstration, so the
system had to be near a wall outlet to be successfully used. Our choice of a smaller, portable board
allowed us to have a more portable system that we could transport if needed.

To verify this final integration, we tested various cases of gameplay to ensure the scoring would
work no matter the number of bags that landed or their location on the board. During each test, we
monitored the serial monitors of both the Arduino Uno and ESP32 to ensure data was being collected and
properly transmitted. Originally, when testing the integration of the entire system, we had issues when
verifying that the score data could be sent from the ESP32 to the app. To test this, we attempted to just
send a “1” from the ESP32 serial monitor to the app via Bluetooth. When this succeeded, we attempted to
once again send the score to the app as an integer rather than our original idea of a string, which
succeeded. This final piece allowed us to fully integrate our system into a fully automated cornhole game.

14

15

3. Cost and Schedule

3.1 Cost Analysis
The first calculation needed to decide the total cost of this project is the total cost of all the components
that we purchased. This includes components we used in the final design, components we did not use in
the final design, and unused spare components. The price of each of these items is listed in table 7. The
total sum comes out to be $442.02 without taxes. Subtracting components we already own, this becomes a
total cost of $408.41. We must also calculate the total labor costs associated with this project. For this
project, we can expect an hourly rate of $40 for our work. The entirety of the senior design project from
project approval to the end of the course was around 12 weeks. We each spent an average of roughly 14
hours a week on this project. Given the fact that our team consists of 3 people, the total cost of labor
would be $40/hr x 14 hrs/week x 12 weeks x 3 team members = $20,160. This would add up to a total
project cost of $20,568.41 not including taxes and the items we already owned.

3.2 Schedule

Date Huq Epplin Schaufelberger

Feb 20-27 ● Software researching
● PCB drafting

● Components
researching and
ordering

● Components
researching and
ordering

27- March
5

● Software application in
the works

● PCB design finalized

● PCB design is
finalized

● Sensor and
components all
ordered, actual
building begins

● Sensor and
components all
ordered, actual
building begins

● Begin working on
modularization

March 5 -
12

● PCB design finalized,
order is sent out

● Teamwork evaluation
filled out

● Software development

● PCB design
finalized, order is
sent out

● Teamwork
evaluation filled
out

● RF shielding
prototyping

● PCB design
finalized, order is
sent out

● Teamwork
evaluation filled out

● Firmware in
progress

March 12-
19

● Spring break ● Spring break ● Spring break

March 19-
26

● Document updating
● Software development

● Document
updating

● Unit testing of

● Document updating
● Unit testing of

subsystems

16

subsystems
● RF shielding and

testing

● Firmware
development

March 26 -
April 2

● Software done
● Debugging

● Debugging
● RF shielding +

systems
completed

● Firmware testing

April 2 - 9 ● Debugging and testing
software with firmware

● Mock demo testing
● Mock presentation

preparation

● Debugging and
testing software
with RF shielding

● Mock demo
testing

● Mock
presentation
preparation

● Debugging and
testing software with
firmware

● Mock demo testing
● Mock presentation

preparation

April 9 -
17

● Final presentation
preparation

● Final paperwork

● Final presentation
preparation

● Final paperwork

● Final presentation
preparation

● Final paperwork

April 17 -
24

● Mock demos
● Final demos

● Mock demos
● Final demos

● Mock demos
● Final demos

4. Conclusion

4.1 Challenges/Uncertainties
The largest challenge faced by this project was electromagnetic noise generating false results within the
system. Our project focused around an RFID location system coupled with multiple other serial
communication channels all attempting to communicate at the same time. This had the potential for
creating significant delays within data transmission. We especially noticed this to be a problem when
attempting to use the 38kHz IR emitter with the 38kHz RFID reader M6ENano chip which ultimately led
us to switch from the IR sensor to the ultrasonic sensor, as discussed in Section 2.2.2. This problem was
especially noticeable during the final demonstration, where much longer score delays were caused due to
the prevalence of significant electromagnetic noise within the senior design lab area. We know this to be
the cause of our issues due to the history of electromagnetic interference when developing our project and
our ability to test in an open area without the same delays.

An example of this noise affecting our system is shown in Figure 15. The figure shows the ESP32
serial monitor screen. When compared to Figure 10, it is seen that there is appearingly “junk” being sent
from the Sparkfun RFID reader to the ESP32. This makes it more difficult for the ESP32 to correctly

17

identify the bags and attribute the points to the right team and has the potential to add a notable delay to
the score calculation.

To avoid this, we tested with multiple different baud rates for each serial communication channel in an
attempt to prevent the different channels from interrupting each other and causing unintelligible data to be
sent in the system. The baud rates we eventually decided on along with the frequencies certain
components operate at are shown below in Table 3. The other primary challenge we faced in our project
was the issue with the 3.3 V voltage regulator components on the PCB. This is discussed further in
Section 2.1.3 and resulted in us being forced to use the breadboarded ESP32 rather than the PCB ESP32
for our microcontroller.

Transmitting
Channel

RFID
Tags

RFID
Antenna

Sparkfun
RFID
Reader

Arduino
Uno

Ultrasonic
Sensor

ESP32

Receiving
Channel

RFID
Antenna

Sparkfun
RFID
Reader

Arduino Uno ESP32 ESP32 Bluetooth

Baud
Rate/Frequency

860-960
MHz

38400 115200 9600 40 kHz 2.4 GHz

4.2 Successes and Key Takeaways
In order for us to deem our project successful, we had to meet our high level requirements, which

were:
1. Successfully keeping track of bag location with regards to the board and hole
2. App able to keep track of score and time played with the game
3. System is able to distinguish between two different teams playing

We were able to meet all these requirements, therefore we considered our project a success.
Although we had some ultrasonic sensors during the demo (refer to section 4.1), we were still able to
prove during our testing and demonstration video that all these requirements were met. As for key
takeaways, all of us were able to understand the research process and understand the value of
documentation while testing. Although we ran into issues, we used our resources and asked one another

18

for guidance. We gained experience in creating an electronic project and learning to be creative to solve
unique problems. Lastly, we were able to truly understand and appreciate the value of teamwork. If one
part of a team fails, it hurts the other team members and by working together, we could find solutions
faster and better rather than doing it individually.

4.3 Future Work / Design Alternatives
If this project were to be continued or redesigned, there would be multiple avenues of improvement we
would choose to pursue. The first item we would have changed would be our final demonstration
location. Due to all of the electromagnetic noise in the senior design lab area, our project experienced
significant time delays during operation, which likely would not have occurred as severely in a more
open-air test area, as discussed in Section 4.1. Another potential future improvement would be the
implementation of a physical LED scoreboard on the side of the cornhole board rather than a mobile
application. This would allow for more simple viewing of the game score and also help to reduce delay by
eliminating the Bluetooth communication delay between the ESP32 and the app. A third potential
improvement that we would have changed in a redesign would be the choice to use ultrasonic sensors
over IR sensors from the very beginning of the project. A final potential improvement would have been to
redesign the PCB so that the 3.3 V voltage regulator would work as intended and we could have used the
microcontroller on the PCB rather than the breadboard.

4.4 Ethical Considerations
For a successful senior design project, it is imperative that safety and ethics policies are followed
throughout the entire process (IEEE Code of Ethics I.1) [10]. Because our project is an auto-scoring
cornhole game, there are not many immediate safety risks to users. However, there is the potential of
electrical shock or fire due to faulty wiring or degradation of the board in inclement weather. Although
there is always going to be some risk, every care will be taken to minimize the little risk our project poses.

Ethical concerns must also be addressed to ensure that our senior design project is compliant with
IEEE standards. Due to the nature of our project, the main ethical concern would most likely be
plagiarism. In this project, designers will be researching several different components and methods and
looking at other products in the automated game industry, such as auto-scoring dart boards. It is vital to
make every effort to ensure each source is correctly cited and referenced in the senior design process.

19

5. References
[1]“What is RFID - how does RFID work,” AB&R, 15-Apr-2022. [Online]. Available:
https://www.abr.com/what-is-rfid-how-does-rfid-work/. [Accessed: 23-Feb-2023].

[2]“1.2 A high PSRR low-dropout linear voltage regulator LDL1117” Accessed: Feb. 24, 2023.
[Online]. Available:
https://www.st.com/content/ccc/resource/technical/document/datasheet/group3/0e/5a/00/ca/10/1a
/4f/a5/DM00366442/files/DM00366442.pdf/jcr:content/translations/en.DM00366442.pdf

[3] A. Guirao and P. (A. PCBArtist), “ESP32 CP2102 programmer schematic,” PCB Artists,
10-Dec-2022. [Online]. Available:
https://pcbartists.com/design/esp32-cp2102-programmer-schematic/. [Accessed: 29-Mar-2023].

[4] “Print esp32thingplus - sparkfun electronics.” [Online]. Available:
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/2/ESP32ThingPlusV20.pdf. [Accessed:
03-May-2023].

[5] Espressif Systems, “ESP32-WROOM-32 Datasheet,” Version 3.4, February 13, 2023
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf

[6] Thomascountz, “Arduino tone for ESP32,” Thomas Countz, 21-Feb-2021. [Online].
Available: https://www.thomascountz.com/2021/02/21/arduino-tone-for-esp32. [Accessed:
03-May-2023].

[7] “SparkFun Simultaneous RFID Reader - M6E Nano,” SEN-14066 - SparkFun Electronics.
[Online]. Available: https://www.sparkfun.com/products/14066. [Accessed: 23-Feb-2023].

[8]“Simultaneous RFID tag reader hookup guide,” Simultaneous RFID Tag Reader Hookup
Guide - SparkFun Learn. [Online]. Available:
https://learn.sparkfun.com/tutorials/simultaneous-rfid-tag-reader-hookup-guide/all. [Accessed:
23-Feb-2023].

[9]“Altsoftserial Library,” PJRC. [Online]. Available:
https://www.pjrc.com/teensy/td_libs_AltSoftSerial.html. [Accessed: 03-May-2023].

[10] “IEEE code of Ethics,” IEEE. [Online]. Available: https://www.ieee.org/about/corporate
/governance/p7-8.html. [Accessed: 12-Feb-2023]

20

Appendix

Requirement Verification

LDL1117S50R must be able to
safely take an input of 12V
from the battery and step down
to 5V +/-5% (4.75V-5.25V)
and appropriate currents for
each component:

- IR emitter: 90-110mA
- RFID receiver:

100-200mA
- IR emitter eradicated

a. Ultrasonic
sensor was
adopted

1. Use an oscilloscope/multimeter to probe and display
the voltage output of the 12V battery.

2. Use an oscilloscope/multimeter to probe and display
the voltage and current output of only the buck
converter. -Successful

3. Observe if current and voltage outputs are within
desired voltage range. -Successful

LDL1117S33R must be able to
safely take an input of 12V
from the battery and step down
to 3.3V +/-5%
(3.135V-3.465V) while
providing 500mA-660mA to
supply power to the ESP32
and 1-5mA to the IR receiver

1. Use an oscilloscope/multimeter to probe and display
the voltage output of the 12V battery.

2. Use an oscilloscope/multimeter to probe and display
the voltage output of only the buck converter.
-Successful

3. Observe if current and voltage outputs are within
desired voltage and current ranges. -Successful

A 12V battery must be able to
provide power to the ESP32,
IR emitting LEDs, IR
receivers, and RFID receiver
simultaneously.

1. Use an oscilloscope/multimeter to prove and display
the voltage output of the 12V battery.

2. Use an oscilloscope/multimeter to probe and display
the voltage and current inputs to a device while all
others are also connected. -Successful

3. Observe if current and voltage outputs are within
desired ranges (+/- 5% tolerance) for each device
while all devices are connected. -Successful

4. Repeat the process for each device.
5. Play a test game, utilizing all devices to determine if

all sensors and receivers are working as expected.
-Successful

Requirement Verification

21

1. The IR emitting LEDs
must be able to emit
strong enough signals
such that the IR
receivers output
voltage within +/- 5%
of their supply
voltage of 3.3V
(3.135V-3.465V.

-Requirement eradicated
a. Didn’t implement this

due to ultrasonic
sensors being adopted

1. Place the IR emitter and receiver pair 6 inches apart
(same length as the diameter of the hole).

2. Supply 5V to IR emitting LED circuits and 3.3V to the
IR receivers and probe to display the output pin of the
receiver with an oscilloscope.

3. When an IR emitter and receiver are unblocked,
connection is established and the receiver’s output
should be in the range of 3.135V-3.465V.

4. Cover the emitter or receiver with a fabric to observe
change in output. Voltage output should now be in the
range of -0.3V-+0.3V

2. Bags that have fallen into
the hole should not be
detected by the RFID
receiver with 80% accuracy.
-Requirement eradicated

a. Didn’t implement this
idea to due ultrasonic
sensors being adopted

1. Drop a singular bag into the metal bucket inside the
hole

2. Check the Universal Reader Assistant to run the READ
EPC command.

3. If a tag is detected by the READ EPC command, the
hole has not been successfully shielded and needs
further RF shielding. If a tag is not detected, the system
is working as intended. [8]

3. The RFID tags must be
able to be read through both
the 1 cm fabric material of
the bag and the 1 in. plastic
material of the board with
90% accuracy.

1. M6E Nano board will be connected to a laptop
computer for power by plugging in the serial breakout
board via USB.

2. The Universal Reader Assistant program will be run,
which is a Windows program designed to help test
capabilities of M6E-Nano.

3. The Universal Reader Assistant will connect to the
board, sending a ping to verify the module’s existence.

4. The tag will be fastened in the game bag, This game
bag will be placed under a sheet of plastic
approximately 1” thick, and the RFID reader will be
placed on top. -Successful

5. The READ EPC function will be run. If the tag is
correctly detected, the function will return with
“RESPONSE_SUCCESS” and the EPC (Electronic
Product Code) will be stored in the array. -Successful

6. The game bag will be moved in increasing intervals
(1”, 2”, 3” and so on) until it is no longer able to be
read by the RFID reader, and this maximum read
distance will be recorded. [8] -Successful

22

*See also Verification Procedure #1 for control unit for a
similar procedure setup to test RFID reader functionality.

4. At least 8 RFID tags must
be able to be read
simultaneously by the RFID
receiver.

1. Similar process will be used as the previous
verification method to set up the RFID components.

2. Another RFID tag will again be placed in a separate
game bag and placed under an approx 1” sheet of
plastic which will be underneath the RFID reader.
-Successful

3. Using the Universal Reader Assistant set to constant
read, the READ EPC function will be used to detect the
bag. -Successful

4. If that bag is detected, another RFID tag will be added
in a separate game bag. -Successful

5. The number of bags will keep increasing until the
RFID reader either fails to detect a bag or until the
number of bags reaches 8 total. -Successful

Requirement Verification

1. RFID reader must be
able to correctly receive
signals from each of the
8 RFID tags that exist
within the game bags.

1. M6E Nano board will be connected to a laptop computer by
plugging in the serial breakout board via USB.

2. The Universal Reader Assistant program will be run, which
is a Windows program designed to help test capabilities of
M6E-Nano.

3. The Universal Reader Assistant will connect to the board,
sending a ping to verify the module’s existence. -Successful

4. A tag will be placed within a game bag and placed next to
the M6E Nano.

5. The READ EPC function will be run. If the tag is correctly
detected, the function will return with
“RESPONSE_SUCCESS” and the EPC (Electronic Product
Code) will be stored in the array. [8] -Successful

2. ESP32 must communicate
with the RFID receiver
via GPIO pins.

1. ESP32 will be connected via jumper cables before
soldering. -Success

2. An Arduino sketch will be uploaded to the ESP32
3. The RFID sensor will echo the test to communicate whether

the test string has been received or not. -Success
4. The output from the Arduino IDE will confirm if

communication is established -Success
5. The Arduino sketch will then be edited to consider multiple

bags. -Success
6. Repeat Step 3.
7. Output from Arduino IDE will confirm that communication

23

is established and bags are distinguishable. -Success

Requirement Verification

1. Receive data from the ESP32
module via Bluetooth.

1. A test signal will be created using the Arduino IDE to
communicate to the ESP32 module once the ESP32
module Bluetooth connection has been verified to work.
-Successful

2. The signal will be sent to the app via Bluetooth to ensure
the signal is received and the app is able to connect to
Bluetooth. -Successful

a. Test data received is echoed onto the app.

2. After marking the end of the
round, the app can produce game
scores within 60 seconds.

1. Working with the procedure from above, use a stopwatch
to measure the time it takes from the information to be
sent from the board electronics to the mobile app.
-Successful

a. If too slow, latency must be low.

3. The app is responsive to user
inputs.

1. Upon pressing the “End Round” button, the app should
send a signal back to the board system to score the game.
-Successful

2. We will code the app to send a “1” as data back to the
ESP32 when the “End Round” button is pushed.
-Successful

3. If the ESP32 receives the 1 signal, the app has shown that
it can respond to user inputs and both read and write
inputs. -Successful

4. In the final product, the user should be able to open up
past game history (up to the last two or three games) and
the score of the game. This will be checked against the
known score of the game to ensure it is accurate. -Didn’t
pass

a. Lack of time to implement

Description Manufacturer Quantity Extended Price Link

Simultaneous RFID
Reader

SparkFun Electronics 1 $224.95 Link

UHF RFID Tags-
Adhesive (5 pack)

SparkFun Electronics 2 $2.95 Link

LDL1117S33R (3.3V
Voltage Regulator)

STMicroelectronics 1 $1.16 Link

24

https://www.sparkfun.com/products/14066
https://www.sparkfun.com/products/2022
https://www.digikey.com/en/products/detail/stmicroelectronics/LDL1117S33R/7102071

LDL1117S50R (5V
Voltage Regulator)

STMicroelectronics 1 $1.16 Link

IR Emitting Diode RS Americas 2 $0.38 Link

Siliconix / Vishay
TSOP34838- Infrared

Receiver

RS Americas 2 $1.20 Link

Gater, Cornhole, Light
Up and Standard
Available, Easy

Storage, Light Weight
Perfect for Outdoor
and Indoor Play

EastPoint Sports Go! 1 $29.99 Link

Red LED * Rohm
Semiconductor
(Already Owned)

1 $0.53 Link

Micro USB to USB
cable *

Best Buy Essentials
(Already Owned)

1 $6.99 Link

LP-35F Plastic
Enclosures for
Electronics

Polycase 1 $4.31 Link

USB to UART Bridge Silicon Labs 4 $19.00 Link

ESP32 WiFi-BT-BLE
MCU Module /

ESP-WROOM-32

Adafruit 4 $15.80 Link

RFID Blocking Fabric SpecialtyFabric 1 $10.73 Link

Bluetooth LE Asset for
iOS, tvOS, and

Android

Unity Asset Store 1 $20.00 Link

12-Volt 9 Ah UPS
Battery Replacement
for APC BE550G

The Home Depot 1 $24.99 Link

Battery Screw
Terminal

CUI Devices 1 $0.70 Link

Schottky Diode Diodes Incorporated 2 $0.90 Link

Micro USB Type B
connector

GCT 4 $3.24 Link

25

https://www.digikey.com/en/products/detail/stmicroelectronics/LDL1117S50R/7102072
https://us.rs-online.com/product/siliconix-vishay/tsal6100/70026432/
https://us.rs-online.com/product/siliconix-vishay/tsop34838/70026441/
https://www.amazon.com/EastPoint-Sports-Weather-Cornhole-Built/dp/B0725CNVXN/ref=sr_1_13?keywords=plastic+cornhole+board&qid=1677139819&sr=8-13
https://www.digikey.com/en/products/detail/rohm-semiconductor/SLR-56VC3F/636991?utm_adgroup=Optoelectronics&utm_source=google&utm_medium=cpc&utm_campaign=Shopping_Supplier_Rohm%20Semiconductor_0846_Co-op&utm_term=&utm_content=Optoelectronics&gclid=Cj0KCQiAutyfBhCMARIsAMgcRJQMxQG3P8WnQOQ9styf9vF7VtNN_jmCj7lN_VRKAXpMDA9ne3QRZR4aAs8XEALw_wcB
https://www.bestbuy.com/site/best-buy-essentials-5-micro-usb-to-usb-charge-and-sync-cable-black/6456438.p?skuId=6456438&ref=212&loc=1&extStoreId=46&ref=212&loc=1&&&gclid=Cj0KCQiAutyfBhCMARIsAMgcRJQHlYAmEXh4FgvNKPdhSEqpNJtwmITn17svEoX6M4wG4vznZDi3K5saAqOwEALw_wcB&gclsrc=aw.ds
https://www.polycase.com/lp-35f
https://www.digikey.com/en/products/detail/silicon-labs/CP2102N-A02-GQFN28/9863477
https://www.adafruit.com/product/3320
https://www.etsy.com/listing/271135680/rfid-blocking-fabric-emi-shielding-for?ga_order=most_relevant&ga_search_type=all&ga_view_type=gallery&ga_search_query=rfid+blocking+fabric&ref=sr_gallery-1-7&sts=1&organic_search_click=1
https://assetstore.unity.com/packages/tools/network/bluetooth-le-for-ios-tvos-and-android-26661
https://www.homedepot.com/p/MIGHTY-MAX-BATTERY-12-Volt-9-Ah-UPS-Battery-Replacement-for-APC-BE550G-ML9-12101/314742445
https://www.mouser.com/ProductDetail/CUI-Devices/TB003-500-P02BE?qs=vLWxofP3U2yAT9CFQJ%2FCaw%3D%3D
https://www.mouser.com/ProductDetail/Diodes-Incorporated/SBR3U40S1FQ-7?qs=1mbolxNpo8ch7miqGKbORA%3D%3D
https://www.mouser.com/ProductDetail/GCT/USB3145-30-1-A?qs=KUoIvG%2F9IlYD1lvSRu5iyg%3D%3D

S8050 NPN BJT UMW 4 $0.88 Link

4.7uF Capacitors Samsung
Electro-Mechanics

6 $0.60 Link

1 uF Capacitors Samsung
Electro-Mechanics

4 $0.40 Link

0.1uF Capacitors Samsung
Electro-Mechanics

4 $0.40 Link

22uF Capacitor Samsung
Electro-Mechanics

4 $0.52 Link

10k Ohm Resistor YAGEO 6 $0.60 Link

100 Ohm Resistor YAGEO 6 $0.60 Link

UHF RFID Antenna Sparkfun 1 $42.95 Link

HC-SR04 ultrasonic
sensor*

OSEPP Electronics
LTD (already owned)

1 $3.59 Link

SparkFun Thing Plus SparkFun (already
owned)

1 $22.50 Link

* The indicated component is already owned and does not need to be purchased.

26

https://www.digikey.com/en/products/detail/umw/S8050/17635323
https://www.digikey.com/en/products/detail/samsung-electro-mechanics/CL10A475KQ8NNNC/3886703
https://www.digikey.com/en/products/detail/samsung-electro-mechanics/CL10A105KA8NNNC/3886760
https://www.digikey.com/en/products/detail/samsung-electro-mechanics/CL05A104KA5NNNC/3886701
https://www.digikey.com/en/products/detail/samsung-electro-mechanics/CL21A226MQQNNNG/3894436
https://www.digikey.com/en/products/detail/yageo/RC0402JR-0710KL/726418
https://www.digikey.com/en/products/detail/yageo/RC0201FR-07100RL/1948860
https://www.sparkfun.com/products/14131
https://www.adafruit.com/product/3942
https://www.sparkfun.com/products/15663

