
ECE 445
Spring 2023

SENIOR DESIGN LABORATORY

FINAL REPORT

"Don't Kill My Plant" Habit Tracker

Team 28

Ben Wei (btwei2), DK Ehiribe (ehiribe2), Zade Lobo (zlobo3)

TA: Selva Subramaniam

Professor: Viktor Gruev

Abstract

We are trying to solve a problem that has plagued people for ages: breaking bad habits and
adopting good ones. Our solution involves keeping a person’s habits in check with something
they can be emotionally attached to. Over the course of the semester, we built “Don’t Kill My
Plant Habit Tracker”, an electronic enclosure that holds a user’s favorite plant. Paired with a
companion app on the user’s phone, they will use the interface to keep track of their habits.
While they continue their habits, the plant will be watered and be allowed to stay alive. However
when the user doesn’t keep up with their good habits, the enclosure will slowly start to kill the
plant through dehydration, suffocation, and blocking out light. Though we ran into multiple
fabrication, coding, and electronic challenges throughout the semester, we created a project that
we are proud of.

Page 2 of 20

TABLE OF CONTENTS

INTRODUCTION 4
Problem 4
Solution 4
Visual Aid 5
High-Level Requirements 5
High-Level Justifications 5
Block Diagram 6
Subsystem Overview 6

Power Subsystem 6
Application Interface Subsystem 6
Plant Enclosure Subsystem 7
Microcontroller Subsystem 7
Irrigation Subsystem 7

DESIGN 8
3D CAD Model 8
Circuit Schematic 8
PCB Design 9
App & Web Server Design 10
Fabrication and Integration 10

COSTS & SCHEDULE 11
Cost Analysis 11
Project Schedule 12

DESIGN VERIFICATIONS & CONSIDERATIONS 14
CONCLUSION 15

Accomplishments 15
Uncertainties 15
Ethical Considerations 15
Future Work 16

REFERENCES 17
APPENDIX A (Requirements and Verifications) 18

Page 3 of 20

INTRODUCTION

Problem

The problem for this project was one that has plagued people for ages: breaking bad habits and
adopting good ones. Even though humans may want to change these habits, they usually lack the
willpower to do so. Common solutions for this problem include smartphone tracking apps and
physical devices that track physical habits. These solutions are great for tracking, but most of
them can be circumvented easily and don't hold people accountable for their actions. In addition,
any positive reinforcement methods that they use are minor and are not effective.

Behavioral therapy has been promising in the field of medicine recently, and it is usually used to
address traits in a person that might be self-detrimental or harmful for a person to have. Being
able to understand what a person values and adapting their thought processes to fit what needs to
change can benefit a person in the long term. Bringing behavioral therapy to fixing habits has
been tried in the past, but not to as great of an extent as needed.

Solution

This project solves the problem by adding a physical component to digital habits. “Don’t Kill My
Plant” is a habit tracking solution that brings a plant into the equation. If a user keeps up with
their habits, our solution will maintain their plant with regular watering. But, if the user fails to
complete their habits, their plant will slowly die. In this case, the plant will be denied light,
water, and air. Dark curtains, which block light, will be a visual reminder to maintain personal
habits.

This solution taps into multiple concepts from psychology, which makes it an effective solution.
The plant acts as both positive and negative reinforcement in its maintenance and slow killing. It
is also a visual reminder, intended to sit on a deck or somewhere frequently seen. And finally
symbolically, the plant represents personal growth; put work in, and both you and the plant will
grow. These psychological principles make this an effective solution to the problem of personal
habit building.

Page 4 of 20

Visual Aid

Figure 1. The visual depiction of our solution, showing the app, server, and enclosure.

High-Level Requirements

● The application interface is able to facilitate habit tracking for the user and send this
information to the physical device

● The created device system is capable of keeping a potted plant alive and killing a potted
plant according to the data passed to it.

● The design has a modular design, allowing for more plants-enclosure addons to track
more habits.

High-Level Justifications

Since this problem is based in psychology, the solution is too. The application requirement calls
for the user to habit track, which is an effective method of building habits. The enclosure, with
the ability to provide for and kill the plant, creates a material consequence. And finally,
modularity offers additional material consequences; more plants means greater obligation to keep
up with habits. These three requirements effectively address the problem of habit tracking.

Page 5 of 20

Block Diagram

Figure 2. This is the block diagram of our project. This details the implementation of the app,
server, and enclosure systems.

This top-level design is split into five subsystems: power, enclosure, microcontroller, irrigation,
and application. The airlock and light systems are combined into one enclosure subsystem. This
is because they rely on the same inputs and internal mechanisms.

Subsystem Overview

Power Subsystem

This module should interface between power from the wall input and each of the subsystems.
This means converting the 12V input to both 5V and 3.3V for other systems.

Application Interface Subsystem

The application interface is a phone application that will offer multiple ways to track habit
forming, including location, screentime, and message and call tracking. This allows the
application to pick up on habits such as going to the gym, avoiding a coffee shop, spending too
much time on social media, or messaging your family.

Page 6 of 20

Plant Enclosure Subsystem

The plant enclosure is a box with an airtight lid in order to create an isolated environment for a
plant. The box itself will contain transparent walls with a method for blocking light out (either
electronic tint or rolling window shades. The box will have an airtight lid that can be
electronically opened and closed by the microcontroller. This lid and walls are implemented with
servos.

Microcontroller Subsystem

The microcontroller system will use an ATmega328-P to control the other subsystems. A
ESP8266 chip will also be used to add wireless capabilities to the system. This system will
regulate the functions of the other subsystems. For each enclosure, the microcontroller will fetch
a binary signal from a server and manage systems accordingly. This means, for example, upon
receiving a ‘0’ signal for enclosure 0, all subsystems should maintain the plant: regularly water,
open curtains, and open airlock. The opposite is true for a signal of ‘1.’

Irrigation Subsystem

The irrigation subsystem will be controlled by the microcontroller in order to routinely water the
plant through the included water solenoid. The reservoir outside the plant enclosure will allow
the user to input water for irrigation, but the actual water delivery will be controlled through
hydraulic tubing piping it inside the system.

Page 7 of 20

DESIGN

3D CAD Model

In order to test how the subsystems would work together, we decided to put together a 3D CAD
of the system together in Autodesk Inventor. In order to make everything exactly to the
specification, we employed some neat tricks and tactics.

In order to work out how the curtains would deploy to block light, we deemed that the easiest
way was to use rolling shades that wrapped around a shaft to roll up. Because of this, the shaft
needed to be secured on two ends: to a motor and to a bearing to hold it up. The mounts for the
motors are all custom designs so it would hold the motor, but it would also hold the shaft coming
in from the other corner.

Figure 3. On the left, a CAD diagram is shown for a servo mount. On the right, a fully assembled
enclosure is shown in CAD.

The model altogether uses five servo motors: four to drive the curtains and one to prop the lid for
airflow. In addition, the water solenoid would be used to feed the plant water.

Circuit Schematic

When creating the circuit schematic, there are few considerations we kept in mind.

- When wiring the microcontroller, we wired it to only read and write digital signals. In
addition, we used an external clock for it.

- The relay does not need a flyback diode because there is no MOSFET that can be
damaged from the reverse current.

- The ESP8266 needs to be wired in reverse due to the orientation of the pins on the board.

Page 8 of 20

Figure 4. This diagram shows the final design for our circuit schematic.

PCB Design

Figure 5. This diagram shows the footprint and routing for the final PCB.

Page 9 of 20

App &Web Server Design

Figure 6. Final application on the left with four example habits. On the right is a screenshot of the
Github page after an API update.

The application subsystem was created in Unity. This app was built in three sections: user
interface (UI), base functionality, and server calls. UI involved creating custom scalable elements
for the window, pop ups, and habit elements. Base functionality involved adding functions to
buttons and providing backend habit management. Server calls involved pushing data to the
server via http requests.

Instead of using a standalone web server, Github was used instead. This allowed for easy
verification of the server state, which sped up our verification processes. A challenge with the
Github API is that the ‘location’ of the server page changes after each update. So, before writing
data, first the page location needs to be found (via a GET request), and then data is written (via a
PUT request).

Fabrication and Integration

The fabrication went according to the 3D CAD document created. The enclosure was secured
together with silicone epoxy to make it watertight and airtight. The 3D printed mounts were also
attached via silicone epoxy, and holes were drilled and sealed for cable management and the
irrigation subsystem.

Page 10 of 20

COSTS & SCHEDULE

Cost Analysis

Itm Qty Unit Qty Qty/Pck Amt/Pck Pcks Prchsd Qty Rcvd Amt

Ball Bearings Number 4 10 $7.99 1 10 $7.99

Black Acrylic Number 3 1 $12.60 3 3 $37.80

Vinyl Gasket Feet 4 17 $6.93 1 17 $6.93

Steel Rod Inches 42 48 $6.38 1 48 $6.38

Clear Polycarbonate Number 4 1 $10.24 4 4 $40.96

Silicone Sealant Number 2 2 $9.56 1 2 $9.56

Blackout Fabric Yards 1 1 $7.99 1 1 $7.99

ATmega328-P Chip 1 1 $3.25 1 1 $3.25

MBR0520 Component 1 1 $0.02 1 1 $0.02

Barrel Jack Component 1 1 $1.09 1 1 $1.09

AZ1117-5.0 Component 1 1 $0.40 1 1 $0.40

AZ1117-3.3 Component 1 1 $0.40 1 1 $0.40

G5V-1 Component 1 1 $2.31 1 1 $2.31

ESP8266 Component 1 1 $7.50 1 1 $7.50

Pin Headers Component 20 1 $0.35 20 20 $7.00

10K Ohm Resistors Component 3 1 $0.10 3 3 $0.30

Page 11 of 20

1 uF Capacitors Component 5 1 $0.10 5 5 $0.50

0.1 uF Capacitors Component 1 1 $0.36 1 1 $0.36

900-00008 Component 5 1 $18.95 5 5 $94.76

AC Power Adapter Adapter 1 1 $10.88 1 1 $10.88

997 Water Solenoid Component 1 1 $6.95 1 1 $6.95

In addition to the cost analysis above, we are also including a time-cost for employment of the
people working on this project. We assume that 3 students are working on this project at a pay of
$41 per hour. With a total of 40 hours working on the project and an overhead of 2.5 times the
hourly rate, we arrive at a labor cost of $12,300.

Subtotal $253.33

Expected Tax $22.80

Expected Total $276.13

Total Including
Labor $12,576.13

Project Schedule

Week Task Person

2/20-2/26

Circuit Schematic Design Zade

Team Contract All

Design Document All

2/27-3/05 Finalize PCB Design All

Page 12 of 20

Order PCB

Order COTS Parts

3/06-3/12

Develop Mobile App Ben

Collect Parts Dike

Fabricate Enclosure Zade

3/13-3/19 Spring Break

3/20-3/26

Solder PCB Dike

Develop Mobile App Ben

Fabricate Enclosure Zade

3/27-4/02

Solder PCB Dike

Fabricate Enclosure Zade

Finish Mobile App Ben

4/03-4/09

Finalize PCB Dike

Wiring of Enclosure Zade

Write Code for Board Ben

4/10-4/16 Integration and Debugging All

4/17-4/23
Mock Demonstration

All
Presentation Rough Draft

4/24-4/30
Demonstration

All
Presentation Final Draft

5/01-5/04
Final Presentation

All
Final Paper

Page 13 of 20

DESIGN VERIFICATIONS & CONSIDERATIONS

The largest design constraint was implementing the fluid solenoid. Solenoids inherently require
larger voltage sources due to them containing strong inductors for operation. The best solenoid
for fluids that we could find operated at 12 volts, which was much larger than the 3.3 volts that
we had initially decided on with operation of an ESP32.

An ESP32 chip operates at a maximum of 3.3 volts, causing there to be multiple problems for
our use case. The first major problem occurs with the operation of servo motors, which require
three connections: 5 volts, a PWM signal, and ground. Our initial thought was to include another
regulator for components that needed 5 volts. However, this doesn’t fix our second problem,
which was the operation of the solenoid. The inductor required a 12 volt digital signal for ideal
operation, which the ESP32 could definitely not provide. The alternative solution was to include
a transistor with a diode to get 12 volts directly from the power supply, but operating a solenoid
with a transistor is not an ideal solution due to the high current and effects of the transistor. We
decided to use a relay to operate the solenoid, but most hobbyist relays only work with 5 volt
signals and above.

This prompted our switch to using an ATmega328-P chipset, commonly found on boards like the
Arduino Uno and Arduino Nano. The chipset can be powered with as low as 1.8 volts, but can
use up to 5 volts for its digital logic. With the use of this microcontroller, we downgraded from
the ESP32 to the ESP8266 for wireless communication because we only needed the transceiver.
This not only allows us to power the servo motors much more easily, but it also allows the
inclusion of a relay for use with the solenoid.

Page 14 of 20

CONCLUSION

Accomplishments

By the end of the project, we were able to successfully meet most of our high level requirements
that we assigned to it. Our final enclosure had everything that we had hoped for, except with a
debug button instead of signals being sent over Wi-Fi. Our application interface was also very
clean, allowing for users to make habits, keep track of them, and upload them to our server.

One of our largest accomplishments was debugging electronics. Our group had little to no
knowledge of how to debug electronic components since many of our ECE classes were taken
online through the COVID pandemic. Through this class, we were able to get a better grasp on
how to use tools like the multimeter and the oscilloscope to debug our project and understand
what was going wrong. In addition, we learned more about interfacing with hardware and
software through electronics. This knowledge was crucial, and we learned a lot throughout the
build process.

Uncertainties

In the end, our project remained not entirely finished due to issues with our ESP8266 breakout
chip. We spent a lot of time debugging the chip, and we attribute our problems to be improper
communication between the microcontroller and the chip. The cause of this could be many
reasons such as incorrect firmware on the chip, signals being too different in voltage, or even
incorrect PCB setup. While we didn’t have time to completely debug the issue, we were at least
able to get the rest of the project to work despite these setbacks.

Ethical Considerations

A potential safety concern that may arise in this project is the exposure of certain parts of our
system to water delivered through the irrigation subsystem. We were able to address this issue by
ensuring that the plant enclosure system is properly sealed and can be properly drained to avoid
leakage into other components. We planned to be mindful of the IEEE Code of Ethics 7.8.I.5 as
we received continuous feedback through the development of this project and we used this
feedback to improve our project and continue producing honest data. Relating to the IEEE Code
of Ethics 7.8.I.1, we also planned to be mindful of the safety of the public and the environment
by ensuring that nothing other than a plant is placed into the airtight plant enclosure system
because this system can cause harm to the object it encloses.

Page 15 of 20

Future Work

In the future, if work continues on the project, we would like to continue debugging the issue
integrating the ESP8266 breakout chip to pull down the data. We would also like to secure the
PCB better to the bottom of the system. This will allow for less accessible cables and fewer
dangling wires.

Past what we have stated as the goal of this project, looking into sending data back to the
application interface from the enclosure would prove useful to monitor the state of the plant and
the levels in the reservoir from the user’s app. In addition, we would like to monitor the plan in
more ways than just feeding it water. We can use sensors to monitor light, soil pH, soil moisture,
and air quality.

Page 16 of 20

REFERENCES

“IEEE code of ethics,” Institute of Electrical and Electronics Engineers (IEEE), Jun-2020.
[Online]. https://www.ieee.org/about/corporate/governance/p7-8.html. [visited on 09-Feb-2023].

“Atmega328 Pinout,” Atmega328 pinout. [Online].
https://www.learningaboutelectronics.com/Articles/Atmega328-pinout.php. [visited on
21-Feb-2023].

B. Tymrak, “Programming an AVR ATmega328P with an Arduino,” Programming an AVR
atmega328p with an Arduino. [Online].
https://www.brennantymrak.com/articles/programming-avr-with-arduino. [visited on
22-Feb-2023].

“Transistors, relays, and controlling high-current loads,” ITP Physical Computing. [Online].
https://itp.nyu.edu/physcomp/lessons/electronics/transistors-relays-and-controlling-high-current-l
oads/. [visited on 20-Feb-2023].

Page 17 of 20

https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.learningaboutelectronics.com/Articles/Atmega328-pinout.php
https://www.brennantymrak.com/articles/programming-avr-with-arduino
https://itp.nyu.edu/physcomp/lessons/electronics/transistors-relays-and-controlling-high-current-loads/
https://itp.nyu.edu/physcomp/lessons/electronics/transistors-relays-and-controlling-high-current-loads/

APPENDIX A (Requirements and Verifications)

Power Subsystem
Requirements

Verification Verification
Status (Y/N)

-Must convert 12VDC to
5VDC

-Check with a multimeter that 12VDC is
received from the wall adapter

-Check with a multimeter that 5VDC +/-20%
is being outputted

-Check with a multimeter that at least 0.8mA
is being outputted

Y

-Must convert 12VDC to
3VDC

-Check with a multimeter that 12VDC is
received from the wall adapter

-Check with a multimeter that 3.3VDC
+/-10% is being outputted

-Check with a multimeter that at least 0.8mA
is being outputted

Y

App Interface Subsystem
Requirements

Verification Verification
Status (Y/N)

-The application includes
basic user configurable habit
tracking that leverages phone
features such as location info

-Check that the user can input a habit to be
tracked

-Observe that there is a clear display of
whether habits are kept or not

Y

-The application should be
able to post binary signals
that correspond to each plant
enclosure: 0 for habit kept, 1
for a habit broken

-Use a test program to force signals of all 0
and then all 1. Verify that the server signals
are updated accordingly.

-Use the actual program to test that the habit
tracking translates into updated server signals.

Y

Plant Enclosure Subsystem
Requirements

Verification

-The shades can fully roll and
unroll through the use of
servos.

-First, check that the curtains are
mechanically able to be deployed (no snags or
other issues)

Y

Page 18 of 20

-Next, verify that 5V+/-20% are being
received as power

-Next, verify that the control signals are
correct through the use of an oscilloscope.
This involves using a test program to generate
component specified PWM signals.

-Finally, verify that the system responds
appropriately to the test signals. Observe that
the servos both fully roll and unroll the
shades.

-The airtight lid can fully
close and open through the
use of a servo

-First, check that the airlock is mechanically
able to function

-Next, verify that 5V+/-20% are being
received as power

-Next verify the correctness of the control
signal. Use an oscilloscope with a test
program, and check that the component
specified PWM signals are being generated.

-Finally, observe that the airtight lid can be
fully closed and opened through the use of
these control signals

Y

Microcontroller Subsystem
Requirements

Verification Verification
Status (Y/N)

-Binary signals are
successfully fetched from the
server

-Use the application to toggle each
enclosure’s binary signals

-Observe that the curtain signals activate
accordingly with an oscilloscope (which
verifies that wireless signals are received).

N

-Servo subsystems are
managed through control
signals, opening blinds or
closing them and opening the
airlock or closing it based on
the corresponding binary
signal

-First, use a test program to internally force a
signal transition from 0 (don’t kill) to 1 (kill)
and vice versa (say, transition every given
interval of time), this should not depend on
testing the wireless capabilities.

-Use an oscilloscope to verify the servo
specific PWM signals. Check that the width is

Y

Page 19 of 20

correct for 0->1 transitions and 1->0
transitions.

-Irrigation subsystems are
managed through control
signals, watering regularly or
withholding water based on
the corresponding binary
signal

-Test both binary enclosure signals
individually via a test program (which forces
a binary signal)

For a signal of 1 (kill):
-Use a multimeter to check that the irrigation
control output is never raised to logical 1

For a signal of 0 (don’t kill):
-Use a multimeter to check that the irrigation
control output is regularly raised to logical 1
for a set amount of time

*For example, every hour, the signal is raised
for 30 seconds (or a shorter interval for
testing)

Y

Irrigation Subsystem
Requirements

Verification Verification
Status (Y/N)

-This subsystem must water
the plant when it receives a
logical 1 signal and not
otherwise

-First, check that the 12V input is functioning
with a multimeter

-Next, verify the input signals are correct
using a multimeter and a test program. The
logical high signal should be 5V +/- 10%. The
logical low signal should be 0.5V +/- 100%.

-Finally, verify that 12V are passed to the
solenoid only upon receiving a logical high
signal. Again, use a multimeter to verify that
12V are being passed through.

Y

Page 20 of 20

