
A.I.Dan

A ChatGPT Integrated Virtual Assistant

By

Andrew Scott

Brahmteg Minhas

Leonardo Garcia

Final Report for ECE 445, Senior Design, Spring 2023

TA: Hanyin Shao

May 2023

Project No. 25

Abstract

A.I.Dan is a ChatGPT integrated virtual assistant built to vastly speed up the process of

information lookup. Using speech recognition and OpenAI’s natural language processing

models, a user can ask A.I.Dan a question and get a holistic answer within seconds. The original

design envisioned a combination of a device for speech input and text, speech and visual output

as well as a computer for execution of the software subsystems.

The presented product is fully software, but completes the core requirements of the product:

speech recognition, text comprehension and response with an audio and visual output,

including properly marked code segments in markup.

ii

Contents

1. Introduction.. 1

2. Design... 2

2.1 Block Diagram...2

2.2 Physical Design... 2

2.3 Remote Block..3

2.3.1 PC.. 3

2.3.2 ChatGPT API.. 4

2.4 Onboard Block.. 6

2.4.1 Microcontroller... 6

2.4.2 Input Subsystem..7

2.4.3 Output Subsystem...7

2.4.4 Power.. 7

2.5 Tolerance Analysis.. 8

2. Costs and Timeline.. 9

4.1 Parts.. 9

4.2 Labor... 10

4.3 Schedule..10

5. Conclusion...12

5.1 Accomplishments and Uncertainties..12

5.2 Ethical Considerations.. 12

5.3 Future Work..12

References.. 14

Appendix A: ChatGPT API Testing Methodology... 15

Appendix B: Speech-To-Text Testing..16

Appendix C: Wake Word Testing... 18

Appendix D Text-To-Speech Testing.. 19

iii

1. Introduction

All existing virtual assistants use a search engine (primarily Google Search) as a data retrieval tool

for answering questions posed to them by a user. The responses given by a search engine to a virtual

assistant is a result or excerpt from the top search result that comes when searching for that question.

However, this result is often not useful or relevant. Search engines are built to present multiple

information sources from the web when presented with a question, not necessarily output one definitive

answer. Furthermore, searches respond poorly to requests, unable to produce an output of a specified

form.

OpenAI’s ChatGPT is an AI language model that can respond to questions, generate text and have

conversations. It is an extremely useful tool to respond to questions or present a singular output in a

specified format. However, accessing ChatGPT requires going to the ChatGPT website, logging in and

manually typing the question. This process is cumbersome and takes more time than it needs to.

Our solution is a device that integrates ChatGPT with a virtual assistant in order to nullify the

weaknesses of both tools. Because ChatGPT is trained on human language, it is much better suited for a

virtual assistant, which uses human language as input. As such, integrating ChatGPT into a virtual

assistant would yield a much better tool for getting information and tailored responses to user

questions. Our solution will allow the user to present the virtual assistant with a prompt or question. The

device will then return the response that ChatGPT gives to the user input, both through a speaker and

through a screen on the assistant.

1

2. Design

2.1 Block Diagram

2.2 Physical Design

The four major physical components of our original design are a small (2” diagonal) screen, our

PCB, a microphone, and a speaker. These components will all be mounted inside a single 3” 3d-printed

cube, with the speaker and microphone on top, the screen on the front, and the PCB on bottom. The

USB Ports for power and Debug will be cut out of the back side and directly soldered to the pcb.. Outside

of the enclosure will be a standard Wall plug DC 5V power supply, wired to the back of our cube through

a power-only type c connection. As previously stated, the whole physical system outside of the PC was

not used in demonstration.

2

2.3 Remote Block

The PC block consists of an external computer connected to the microcontroller through WiFi.

The PC performs the majority of the heavy compute lifting of the entire project, performing the Speech

recognition, ChatGPT API Calls, and Text to speech processing. Its implementation performed as

expected, with each component being fully functional at the end of the project.

2.3.1 PC

The PC accepts audio input from the microcontroller (streamed via WiFi), and constantly

translates it to text in chunks, listening for the keyword, “Hey A.I.Dan” (pronounced Aidan). When it

hears the phrase, the PC will listen to the next sentence it gets (waiting for a long pause in audio to stop

listening), convert the data to text and send it to ChatGPT’s API.1 The API text output is then transmitted

as both text (to be displayed on the screen), and as audio (through a text-to-speech conversion) back to

the microcontroller to be output to the user. Each software component functioned within the

performance thresholds set during the design stage of the project with the exception of the components

that interacted with the microcontroller. See Appendix A for more information on the testing done for

audio/chatGPT requirements.

Table 1: PC Subsystem Requirement and Verification

Requirement Verification Procedure Verification Result

The PC must maintain an open

WiFi port for 1 hour, untouched,

to listen for microcontroller

input.

Open a socket on the PC to
check for microcontroller
connectivity. Regardless of
whether the microcontroller
connects, ensure that the
connection is still open after 1
hour.

Passed. Due to the PCB not
working, the microcontroller
never connected to the open
socket on the PC. However,
following 1 hour, the PC was still
searching on the open socket for
potential connectivity.

The PC must be able to convert

clear and simple speech into text

using a pre-trained model with

an 80% or greater accuracy rate

Run the speech to text model on
a real time audio stream and
verify that the text output
matches the spoken words with
the specified (>80%) accuracy
rate.

Passed. When speaking clearly
into the microphone with simple
speech, audio was transcribed
as intended. Mistranscription
occurred only when speech
contained certain proper nouns
(which were not classified as
simple speech). See Appendix B
for details.

The PC must be able to analyze

text to determine whether a

Run the wake word detection
software on real time audio
streams. Should the detected

Passed. There was a recurring
instance where a user saying
“Hey Aidan” would transcribe to

3

question is valid (contains the

wake words “Hey A.I.dan” or

similar) with an 80% or greater

accuracy rate.

audio contain the wake word
“Aidan” or a similarly
pronounced word, the output
display shows “Wake Word
Detected” and when the audio
does not contain the wake word,
the output display shows “Wake
Word Not Detected.” This
verification passes with a >80%
accuracy rate.

“Hayden” with the
Speech-to-Text model.
Accounting for this led to the
verification being passed with a
high accuracy.

The PC must be able to convert

standard text into speech using

a pre-trained model,

understandable at least 80% of

the time.

Input text files containing
standard text into the text to
speech module.
Analyze the output audio files to
ensure the output speech is
understandable and accurate to
the source text, within reason,
greater than 80% of the time.

Passed. Standard text was
converted into understandable
and accurate speech with an
extremely high accuracy. In
testing, 100% of plain and
simple speech was heard. See
Appendix C for details.

The PC must be able to output

both a digital audio signal and

text to the ESP32

microcontroller through WiFi,

only outputting one or none

20% or less of the time

Collect a digital audio file and a
text file.
Establish a TCP connection with
the microcontroller.
Send the text file, followed by
the audio file, over the TCP
connection to the
microcontroller.
Ensure that the microcontroller
received data of the same size
as the digital audio file and the
text file for 80% or more of the
trials

Failed. Due to the
microcontroller being
unrecognized by the PC, no data
was able to be sent to the
microcontroller. However, the
files were all present on the PC
should the microcontroller have
been functional.

2.3.2 ChatGPT API

The ChatGPT API generates the ChatGPT response. It receives text input from the PC and outputs

the response of chatGPT as text back to the PC. During testing, the ChatGPT API worked as expected,

with different models performing at varying capabilities. Testing the performance of the different models

yielded the results seen in Figure 1.

4

Figure 1: API Model Speed Comparisons

The final product was delivered using gpt-3.5-turbo due to its performance and code generation

capabilities.

One plan that was not able to come to fruition was the ability to pick an appropriate model for

different tasks. Prior to deprecation in march of this year, there existed versions of ada and davinci that

were designed specifically for code, as their primary models do not provide programming help. Had we

been able to use those models in tandem with their text-based counterparts, full functionality would

have been achievable in our desired timeframe of 4 seconds. As it stands, however, that would only

speed up text-only interactions as gpt3.5 turbo is the current fastest code generation model.

Table 2: ChatGPT API Subsystem Requirement and Verification

Requirement Verification Procedure Verification Results

The API must be able to

generate an answer to a text

Collect a text file containing 10
prompts for chatGPT.
Run the text file through the
ChatGPT API model, using

Passed. Testing on multiple
OpenAI’s models gave varying
results (see figure 1). GPT-3 text
models all passed under the 4

5

input with a text output within 4

seconds of the API call

python’s timeit library to track
how long it took
Analyze the output text file of
the ChatGPT API model to
ensure that it contained a
reasonable response to the
prompt and received it within
the timeframe.

second threshold but models
with integrated code completion
took longer.

2.4 Onboard Block

The onboard block takes in audio data through a microphone and transmits it through WiFi to

the PC. It also receives data through WiFi to be output to a screen and through a speaker. Unfortunately,

we were unable to get a working onboard block at the completion of the project. The most likely

explanation is due to a short in the ESP32 or the connecting components.

2.4.1 Microcontroller

zConsists of an ESP32 microcontroller with built-in WiFi. It serves as the liaison between input

and output data. Input data is received from the microphone and transmitted to the PC through WiFi.

From the PC, it receives data back both in the form of text and audio. The microcontroller sends the

audio directly to the speaker to be output to the user and converts the text input to visual and sends it to

the screen through the SPI protocol. The ESP32 was unable to be integrated into the final project due to

the PCB failure.

Table 3: Microcontroller Subsystem Requirement and Verification

Requirement Verification Procedure Verification Results

The microcontroller must be

able to host a TCP server using

Wifi to interface with the PC.

Establish a TCP connection
between the PC and the
microcontroller.
Ensure the TCP connection is
valid by checking the remote
client (the PC) for a message
from the microcontroller which
states:
“ESP32 connected”.

Failed. The microcontroller was
unresponsive so verifying the
TCP connection was not
possible.

6

2.4.2 Input Subsystem

The input subsystem contains a microphone, which is constantly streaming input audio to the

microcontroller’s built-in analog-to-digital converter. Because of our inability to integrate the PCB, we

were unable to utilize this subsystem.

2.4.3 Output Subsystem

The output subsystem displays data received from the microcontroller through a screen through

the SPI protocol and through the speaker following a digital-to-analog conversion. Due to the PCB failure,

we moved the output subsystem to the PC and displayed output to a python tkinter GUI.

Table 4: Output Subsystem Requirement and Verification

Requirement Verification Procedure Verification Results

The screen must be able to

properly display code snippets,

which requires at least 16-bit

color.

Connect the microcontroller to
the PC via USB.
Download an SPI Code Display
Test program which contains a
formatted code snippet with text
of 16 different colors.
Ensure that the code displays
legibly and 16 colors are
distinguishable and present on
the display.

Failed. The screen received
power but was unable to display
an image.

2.4.4 Power

The power subsystem powers all onboard components.

Table 5: Power Estimates for Selected Components

Component Power Draw

Screen 1 W2

Microcontroller 2.50 W3

Speaker 0.5 W4

7

Digital-to-Analog Converter ﹤0.1 W5

Total 4.0 - 4.1 W

Based on the above estimates, a standard wall plug DC 5V power supply operating at 1A should be

sufficient.

2.5 Tolerance Analysis

Data Throughput (PC-Microcontroller data transfer)

The largest identified issue associated with this design is the data management on the

microcontroller, and its interaction with the PC. Even the most robust microcontrollers only contain

around 512 KiB of memory, which corresponds to roughly a second of audio information. Data will be

streamed to the PC as fast as possible, and taking and running Text-To-Speech will act similarly quickly,

but both streams could prove too much for the microcontroller.

To demonstrate feasibility, assume 100 KiB of memory allocated for each individual stream, up

and down. Wifi speed is quite high relative to these numbers, so the actual communication shouldn’t be

an issue (ESP32-C3 supports 150mbps, and any PC we would be using will support at least 300mbps)

Assume standard 44khz audio at 12 bits of digital resolution.

(1)44000ℎ𝑧 · 12𝑏 = 528000 𝑏/𝑠 = 528 𝐾𝑖𝑏/𝑠

A single audio stream comes out to 528 Kib/S. With the initial 100 KiB memory stream assumption, we

get:

refreshes/s
528 𝐾𝑖𝑏/𝑠

100 𝐾𝑖𝑏 𝑠𝑡𝑟𝑒𝑎𝑚 = 5. 28 < 160 𝑚ℎ𝑧 (2)

That means we need to fully refresh and clear the memory 5 times over each second. This should be

acceptable, given the SRAM’s posted speed of 160mhz.

8

2. Costs and Timeline

4.1 Parts

Table 6: Parts Costs

Part Manufacturer Unit Cost ($) Quantity Total Cost ($)
Chat Completion
API

OpenAI 0.28

1mm pitch 11x1
male connector

Molex 1.61 3 4.83

1mm pitch 11x1
female connector

Molex 0.42 3 1.26

28 gauge
pre-crimped wire

Molex 1.13 20 22.60

USB B receptacle Samtec-inc 1.32 2 2.64
USB A-B 2.0 cable CNC Tech 4.65 1 4.65
Ferrite beads Laird-Signal Integrity

products
0.18 6 1.08

slide switch E-switch 1.29 4 5.16
10kOhm
potentiometer

Vishay Spectrol 4.97 2 9.94

OPA1692 op-amp Texas Instruments 2.41 2 4.82
LMV321 op-amp STMicroelectronics 0.62 2 1.24
RF Antenna Taoglas Limited 3.52 1 3.52
2x1 side-entry
terminal block

Wurth Elektronik 0.41 5 2.05

USB-C power only
receptacle

Kycon, inc. 0.91 4 3.64

32Ohm Speaker Soberton Inc 1.75 1 1.75
Omni-directional
Microphone

PUI Audio, Inc 3.83 1 3.83

ESP-32
Microcontroller

Espressif inc 3.30 2 6.60

320x240 2” screen DFRobot 17.90 1 17.90
PCB Order JLCPCB 2.22 5 (min. order) 11.10
Total 108.89

9

4.2 Labor

UIUC Graduates in Electrical Engineering make ~$80,000 per year on average [1]. Prorating to a

2000 hour work year, 80,000 equates to $40 an hour. Based on this, and our average weekly hours of

roughly 8,

(3)𝐿𝑎𝑏𝑜𝑟 𝐶𝑜𝑠𝑡 = $40 * 8 ℎ𝑟𝑠 * 16 𝑤𝑒𝑒𝑘𝑠 * 3 𝑝𝑒𝑜𝑝𝑙𝑒 * 2. 5 = $38, 400

(4)𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡𝑠 = 𝐿𝑎𝑏𝑜𝑟 𝐶𝑜𝑠𝑡 + 𝑃𝑎𝑟𝑡 𝐶𝑜𝑠𝑡 = $38, 400 + $108. 89 = $38, 508. 89

4.3 Schedule

Table 7: Actual Timetable for Project Design Cycle

Week Deadlines Tasks

Brahmteg Leo Andrew

2/13 Prepare Design Document and Team Contract

2/20 Design Document,
Team Contract

Text-to-Speech
Model

Finish Design
Document

PCB Design,
Finish Design
Document

2/27 Design Review Speech-To-Text
Model

Finalize PCB Finalized original
pcb design

3/06 First Round PCB Orders,
Teamwork Evaluation 1

ChatGPT API Data Stream Ordered
components for
original pcb
design, worked
on requested pcb
redesign

3/13 Create pipeline
from
Text-To-Speech to

Data Stream finished pcb
redesign,

10

ChatGPT model ordered pcbs

3/20 Work on buffer for
audio input for
speech-to-text
transcription

Data Stream soldering and
parts ordering

3/27 Second Round PCB Orders Test multiple
ChatGPT models
for best accuracy
and performance

Testing USB
connection

Soldering, PCB
testing

4/03 Complete full
pipeline of input
audio to output
text response

Configuring Ardino
code for
microcontroller

Soldering, PCB
testing

4/10 Team Contract Fulfillment Create GUI for
demonstration of
software project

Testing Screen and
Configuring Screen
code.

Glue Code,
setting up GUI,
finished full
soldering

4/17 Prepare Final Demo, Final Presentation and Final Paper

4/24 Prepare Final Demo, Final Presentation and Final Paper

11

5. Conclusion

5.1 Accomplishments and Uncertainties
While the full original design was not accomplished, a useful tool was developed in the end. The

created app allows users to interact via audio with ChatGPT, and use it hands-free. Wake-word

recognition was generally successful, and depending on the specific AI model being used, the response

times were as fast as a couple of seconds. The best working section of the project was definitely Text To

Speech, which had zero complications the whole time. Because this program is coded in python, it would

be trivial to migrate it to a small fully-fledged computer such as a Raspberry PI or Jetson Nano, connect

up a screen, microphone, and speaker, and have the originally intended experience become a real

product.

5.2 Ethical Considerations
When AI solutions are being developed, ethical and safety concerns abound. Based on IEEE’s

Code of Ethics, there are two major ethical concerns that should be addressed with this design. The first,

violating point I.2, is that AIs like ChatGPT are capable of misinformation, despite most users considering

them infallible. On newer versions of ChatGPT, it does an excellent job of informing its users when it

believes that the question asked might lead to safety concerns or untrue information. This is not perfect,

but can be easily patched with a rudimentary End-User Licensing Agreement (EULA) that you have to

read and accept before using our product.

One final ethical concern presented by this project is the issue of collecting user data, which also

touches on IEEE’s Code of Ethics point I.2. In order for this project to work, a microphone must be

constantly on and recording the room around it, presenting a safety risk to users were that data to be

leaked or tapped. While many companies use this data to reinforce their own learning models, we will be

discarding it as soon as humanly possible to protect our users. While we do not keep the audio data, as a

result of using Google’s API, it is possible that they might be using the audio in ways our users did not

intend. According to Google themselves, they only use audio of users who opt into their data collection,

which we have not. While it is healthy to be skeptical of security claims by large companies modernly,

taking them at their word is as much as we can reasonably do.

5.3 Future Work
A much more involved, but likely invaluable extension of this project would be to move the

whole program to a microprocessor, and remove the PC from the equation entirely. In order to do that,

and maintain reasonable latency, much of the signal processing (STT and TTS) would need to be done

onboard. Accessing chatGPT would still need to be done through the cloud, necessitating an internet

connection. Research into the viability of this has been done, and quick Text to Speech has been

accomplished within the scale of a microprocessor has been achieved [2], though it did require a

built-to-purpose microprocessor. Given the age of that paper (published in 2007), it is likely that a similar

approach would no longer require specialized hardware due to power density scaling. While no similar

12

commercially available solutions for Speech recognition/Speech to text exist, some companies claim they

can accomplish this with existing hardware, such as MicroAsr [3].

A complication with room for improvement was the microphone experience. In testing, users

had to be relatively close to the computer and enunciate clearly in order to have their response taken

properly. Accents would also often ruin the speech conversion, making it only really usable by Americans

with American accent By changing the microphone to one specifically designed for full-room listening

applications, applying more specific post-processing on the audio (like Nvidia’s Nvidia Voice), or making

our own speech recognition algorithm, this part of the project’s performance could be dramatically

improved.

13

References

[1] “Salary Averages”, web page. Available at:

https://ece.illinois.edu/admissions/why-ece/salary-averages

[2] S. Dey, M. Kedia and A. Basu, "Architectural Optimizations for Text to Speech Synthesis in Embedded

Systems," 2007 Asia and South Pacific Design Automation Conference, Yokohama, Japan, 2007, pp. 298-303,

doi: 10.1109/ASPDAC.2007.358002.

[3] “Speech Technologies”, web page. Available at: https://microasr.com/technology.html

14

Appendix A: ChatGPT API Testing Methodology

For tests where different prompts were needed, we used a list of ten questions that ChatGPT

themselves generated. The list of questions was:

1. "Can you tell me a joke that always makes people laugh?",

2. "What's the most interesting fact you know about history?",

3. "How can I improve my writing skills?",

4. "What's the best way to stay motivated when working on a long-term project?",

5. "Can you recommend a good book for me to read?",

6. "What's the best way to approach a difficult conversation with a friend?",

7. "Can you give me some tips for staying organized and productive?",

8. "What's the most important thing to consider when starting a new business?",

9. "Can you explain a complex concept in a simple way?",

10. "What's your opinion on the impact of technology on society?".

This list covers many real question cases, and does not include programming specific language. We left

out programming intentionally, because not all of the tested language models have coding capabilities.

While it would be possible to add more varied questions, it is not strictly necessary. This battery had

relatively consistent results for the same language model over different runs (ignoring the high traffic

models that varied a bit depending on the time of day), and had similar length responses over different

models, which does affect the overall speed of a response.

Questions like these were also used to test for accurate Speech to Text functionalities, which we

graded based upon ChatGPT’s ability to properly interpret. Even if the language was not exactly

transcribed perfectly, because ChatGPT is able to understand imperfect speech, as long as the output

was appropriate for the original intended question, that was counted as a success.

15

Appendix B: Speech-To-Text Testing
Table 8: Speech-To-Text Testing Results

Prompt Transcription Word Count Errors

The quick brown fox jumps
over the lazy dog.

the quick brown fox jumps over
the lazy dog

9 0

Peter Piper picked a peck of
pickled peppers.

Peter Piper picked a peck of
pickled peppers

8 0

She sells seashells by the
seashore.

she sells seashells by the
seashore

6 0

How much wood would a
woodchuck chuck if a
woodchuck could chuck
wood?

how much wood would a
woodchuck chuck if a
woodchuck could chuck wood

13 0

I am speaking to test the
accuracy of this speech to text
model.

I am speaking to test the
accuracy of the speech to text
model

13 1

The cat in the hat is a great
children's book.

Cat in the Hat is a great
children's book

10 1

The rain in Spain falls mainly
on the plain.

rain in Spain falls mainly on the
plane

9 1

The sun shines bright on my
old Kentucky home.

the sun shines bright on My Old
Kentucky Home

9 0

I can't believe it's not butter. Can't Believe It's Not Butter 6 1

The jagged rocks jutted out
from the craggy cliff face,
casting a shadow over the
treacherous path below.

Jagged rocks jutted out from the
craggy Cliff face casting a
shadow over the treacherous
path below

18 1

Totals 101 5

To test the speech-to-text model, ChatGPT was asked to generate 10 random spoken prompts. These

prompts were then spoken and input into the speech-to-text model with the transcription output being

compared to the original prompt. Capitalization and punctuation were ignored. The total erroneous

word rate across 101 total words is

16

(1)
5

101 · 100% = 4. 95%

Which is less than the 20% error threshold requirement.

17

Appendix C: Wake Word Testing
Table 9: Wake Word Testing Results

Prompt Contains Wake
Word

Wake Word Found Correct

Hey Aidan, can you tell me a joke? Yes Yes Yes

What's your favorite movie of all time? No No Yes

Could you recommend a good book to
read?

No No Yes

Hey Aidan, what's the weather like
today?

Yes Yes Yes

Can you suggest a recipe for a quick
and easy dinner?

No No Yes

Hey Aidan, what's the latest news in
technology?

Yes Yes Yes

What's your opinion on the current
political climate?

No No Yes

Hey Aidan, do you have any travel tips
for visiting Europe?

Yes Yes Yes

What are some of your hobbies or
interests?

No No Yes

Can you recommend a good podcast to
listen to?

No No Yes

Total Correct: 10

10 randomly generated prompts with some beginning with “Hey Aidan” were input into the wake word

detection algorithm. Of these 10, all 10 were correctly detected (100% detection rate) which fits into the

verification threshold of 80% detection.

18

Appendix D Text-To-Speech Testing
Table 10: Text-To-Speech Testing Results

Prompt Word Count Mispronounced Words

The quick brown fox jumps over the lazy dog. 9 0

Peter Piper picked a peck of pickled peppers. 8 0

She sells seashells by the seashore. 6 0

How much wood would a woodchuck chuck if a
woodchuck could chuck wood?

13 0

I am speaking to test the accuracy of this text to
speech model.

13 0

The cat in the hat is a great children's book. 10 0

The rain in Spain falls mainly on the plain. 9 0

The sun shines bright on my old Kentucky home. 9 0

I can't believe it's not butter. 6 0

The jagged rocks jutted out from the craggy cliff
face, casting a shadow over the treacherous path
below.

18 0

Totals 101 0

10 generated ChatGPT prompts were input into the text-to-speech model and the speech output

analyzed for incorrect or mispronounced words. The rate of mispronounced words is

(1)
0

101 · 100% = 0%

which is less than the 20% error threshold requirement.

19

