
 Automated Frozen Pipe Burst Prevention System
 ECE 445 FINAL REPORT – SPRING 2023

 Project #22

 Neha Vagvala, Benedicta Udeogu, Ethan Zhang

 Professor: Arne Fliflet

 TA: Prannoy Kathiresan

 Abstract

 The purpose of this report is to introduce and summarize the design and findings of our ECE 445

 Senior Design Project: Automated Frozen Pipe Burst Prevention System. The result of our

 project is a fully functional prevention system that automatically triggers two preventative

 methods upon detecting the water temperature at or below the threshold of 55 degrees

 Fahrenheit: the valve subsystem and the notification subsystem. The valve subsystem sends a

 trickle of water through the pipe at programmed intervals to help prevent heat loss from

 exceeding flow rate, and the notification subsystem sends a push notification to the designated

 resident’s smartphone to alert them that the given pipe is at risk. The following were the three

 high-level requirements that we successfully demonstrated:

 1. The system is triggered only when the temperature sensor output reads at or below 13.0

 °C (55 °F).

 2. A push notification is sent to the mobile device using Wi-Fi upon the Raspberry Pi

 receiving a low temperature reading.

 3. Water is deposited through the pipe over the course of 5 seconds, so that the movement of

 trickling water prevents the pipe from freezing.

 ii

 Contents

 1. Introduction .. 1

 2. Design .. 2

 2.1 Block Diagram & Design Procedure ... 2

 2.2 Design Details .. 4

 2.2.1 PCB Schematic ... 4

 2.2.2 Microcontroller Subsystem ... 5

 2.2.3 Valve Control Subsystem .. 6

 2.2.4 Notification Subsystem ... 7

 3. Design Verification .. 9

 Table 1 – Requirements and Verifications ... 10

 4. Design Costs .. 11

 4.1 Itemized Bill Cost .. 11

 Table 2 – Itemized List of Components and Costs .. 11

 4.2 Labor Costs .. 12

 4.3 Total Project Cost ... 12

 5. Conclusions .. 13

 5.1 Summary .. 13

 5.2 Future Improvements ... 13

 5.3 Ethical Considerations ... 14

 References .. 15

 Appendix .. 16

 iii

 1. Introduction

 The purpose of this project is to come up with an automated solution to prevent frozen pipe

 bursts. It is estimated that an average of over 250,000 homes will suffer damage from frozen and

 burst pipes each year. The damage is estimated to rack up to $400–500 million each year. To

 further highlight the fragility of frozen pipes, even a rupture as small as 1/8th of an inch can

 release up to 250 gallons of water per day.

 Frozen pipe bursts occur in cases of plummeting temperatures outdoors (or due to the thawing of

 ice thereafter). Water expands as it transforms into its solid state (ice), increasing the pressure

 inside the pipe until it ruptures.These unfortunate bursts can be attributed to a myriad of factors,

 such as insufficient insulation or lack thereof, the household resident forgetting to set the

 household thermostat to 55 °F, and/or the household resident forgetting to open the tap to allow a

 small trickle through.

 That is why we have devised an automated two-part solution that offers preventative measures,

 both triggered by the ATmega328P microcontroller upon crossing below the threshold

 temperature of 55 °F. The first is a valve that releases a trickle of water into the pipe so that the

 movement prevents the water from solidifying, and the second is a notification that is sent to the

 designated resident’s phone indicating the current pipe temperature detected and alerting them

 that their pipe may be at risk of bursting if outdoor weather conditions continue to worsen and it

 is left unattended. This provides the resident with the peace of mind of knowing exactly when

 their pipes may be at risk and enables them to take action if necessary before it's too late, in case

 they left the house without setting the household thermostat to 55 degrees or leaving the tap open

 so that a trickle of water can flow through. Our system is also natural resource and budget

 conscious, as it is only triggered when needed, as opposed to the resident leaving the tap open for

 extended periods of time, which results in unnecessary water wastage and excess utility costs.

 1

 2. Design

 2.1 Block Diagram & Design Procedure

 Pictured below is the block diagram for our project. It consists of three subsystems: 1) the

 microcontroller subsystem, 2) the valve control subsystem, and 3) the notification subsystem.

 These three subsystems integrate together cohesively by transmitting data signals and power

 between each other, as denoted by the colored arrows. In particular, the microcontroller

 interfaces with the temperature sensor via the 1-Wire protocol, the LCD display to display the

 temperature reading, and the transistor in order to activate the electronic solenoid valve, which

 uses 12V DC power. The Raspberry Pi of the notification subsystem also interfaces with the

 temperature sensor via its GPIO pins and the 1-Wire protocol, and connects wirelessly to the

 internet in order to send the push notifications. Each individual subsystem is discussed in further

 detail in subsequent sections.

 Figure 1. Block diagram

 2

 In regards to the design procedure, multiple options were explored for the implementations of

 each subsystem prior to a final decision being chosen. For the microcontroller subsystem, we

 considered multiple different options for several components, most notably the temperature

 sensor. We had initially considered a temperature sensor which was not waterproof and would

 thus be more appropriate to be affixed to the exterior of the pipe in order to measure the change

 in temperature, however, after consulting with the ECE Machine Shop staff, we determined that

 for this to be viable it would require a more thermally conductive pipe material such as copper,

 which would not only make the construction more complex but would also be less faithful to real

 life scenarios, as the majority of plumbing in modern homes utilizes PVC pipes. As a result, in

 our final design we opted for the DS18B20 Temperature Sensor, which is a fully waterproof

 temperature probe which we could insert directly into the section of pipe for which we desire the

 water temperature to be read.

 Accordingly, for the valve control subsystem, we opted for our apparatus to utilize PVC pipes as

 opposed to copper or galvanized steel pipes, as we had been considering in the early stages of

 planning our project. As a result, we ordered a solenoid valve that is compatible with PVC pipe,

 which was also more affordable than alternatives.

 Lastly, for the notification subsystem, we had settled upon using a Raspberry Pi in our initial

 design due its in-built wi-fi functionality as well as easy programmability, but we also considered

 using a smaller and less powerful and expensive device with wi-fi capabilities, such as an

 ESP32. However, based on online research and the experiences of peers, we determined that

 using a more niche and less flexible devices such as these would yield a higher probability that

 our notification subsystem would not work at all for our demonstration, especially given the

 requirement of connecting to the university enterprise wi-fi, which requires additional

 authentication measures. As a result, we decided to continue using the Raspberry Pi for our

 project, as it would result in the highest likelihood of success.

 3

 2.2 Design Details

 2.2.1 PCB Schematic

 The project ran on a custom-made PCB that contained an ATmega328p microcontroller.

 Figure 2. PCB Schematic

 The schematic of the microcontroller features an external 16 MHz clock oscillator in charge of

 the data control speed. In comparison to the internal 8 MHz clock, the 16 MHz oscillator

 provided data transfer speeds twice as fast, which in turn increased power savings. As the circuit

 was running at 5V rather than the alternating 3.3V, the 16 MHz clock was necessary due to a

 higher current draw. Other components in the schematic are the LCD, operating in 4-bit data

 mode; the 6-pin ISP programmer used to flash the microcontroller; and the power supply, a 5V

 wall adapter fed through a 5V linear voltage regulator.

 Figure 2 shows a 3D rendering of the PCB. A preference for through-hole (THT) components

 was favored over surface-mount (SMD) parts as THT components were easier to solder and

 came in bigger sizes while still providing the same functionality. Lastly, the custom PCB was

 4

 created with the Arduino Uno as a reference because the Arduino Uno was the original fallback

 plan should the custom PCB not program or operate correctly.

 Figure 3. 3D Rendering of PCB

 2.2.2 Microcontroller Subsystem

 The implementation of this subsystem is primarily composed of two critical components: the

 ATmega328P microcontroller and the waterproof DS18B20 [1] digital temperature sensor. The

 ATmega328P MCU serves as the heart of the project and is utilized to interface with the

 DS18B20 temperature sensor, the LCD display, the plastic water solenoid valve, and the

 Raspberry Pi 4. The temperature sensor utilizes the 1-Wire protocol to be able to communicate

 with the microcontroller and is powered via a 5 VDC power adapter. More specifically, the

 temperature sensor produces a 9 to 12 bit output that is then converted into degrees Celsius and

 degrees Fahrenheit using the OneWire [2], DallasTemperature [3], and LiquidCrystal [4]

 libraries. The temperature sensor takes 750 µs to query the water temperature within the pipe.

 Once the MCU receives an output from the temperature sensor that the water temperature has

 5

 crossed below the threshold of 55 °F, the valve control and notification subsystems will be

 triggered.

 Figure 4. Code to Process Waterproof DS18B20 Digital Temperature Sensor Output

 2.2.3 Valve Control Subsystem

 The implementation of this subsystem consisted of the use of a normally closed, 12 V, ½" in

 diameter, solenoid valve to pass water through a ½" in diameter PVC pipe. The signal to open

 the valve was provided by the 5V microcontroller, as that was the unit reading the temperature

 sensor outputs. To enable the valve using the ATmega, a NMOS transistor was used. The gate

 pin of the transistor was connected to a digital I/O pin of the ATmega328p, and when the MCU

 received a sufficiently low temperature reading, a HIGH signal was sent to the gate pin. The

 transistor, acting like a switch, would complete the solenoid valve circuit and allow the 12 V to

 pass through so that water could be deposited into the PVC pipe.

 Figure 5. Code to Open Valve for 5 s

 To control how long the valve stayed open, a 5 s delay was applied, as shown in the while loop in

 figure 5, before the gate pin was set to LOW. The system then returned to its original state of

 measuring the temperature within our water reservoir, waiting to repeat the valve process once

 the temperature dropped below 55 °F.

 6

 Additional software used for the solenoid valve was the inclusion of the OneWire and

 DallasTemperature libraries to aid in the data conversion of the 1-Wire temperature sensor. The

 LiquidCrystal library was also utilized, but to interact with the LCD display.

 The hardware for this project consisted mostly of I/O communication between the

 microcontroller, temperature sensor, solenoid valve, and LCD display; the MCU would read the

 temperature and display it on the LCD. If the temperature was low enough, the valve would be

 engaged, and messages depicting the action of the valve would show up on the LCD display.

 This process would repeat for as long as the system was powered.

 2.2.4 Notification Subsystem

 The notification subsystem runs on a Raspberry Pi 4 single-board computer, running the standard

 Raspberry Pi Linux OS. Like the ATmega328p PCB, the Raspberry Pi accepts 5V DC as its

 power input. The DS18B20 temperature probe is connected to the Raspberry Pi via its GPIO

 pins, and like the microcontroller utilizes the 1-Wire protocol for digital data communication.

 The Raspberry Pi is connected to the user’s home wi-fi network in order to send push

 notifications over the internet, and it can also easily be configured to connect to enterprise

 networks (such as IllinoisNet).

 Both the temperature reading and notification sending are handled by a Python 3 script, which

 runs continuously on the system and is automatically launched upon boot using a system

 daemon. We are using the Telegram API to deliver the push notifications to the user, as it is

 reliable, fast, and the client is available on all mobile and desktop platforms. The bot API token

 and ID are stored securely in a separate YAML file on the system, and are needed to construct

 the URL which is then used to send the message containing the temperature to the user [5]. The

 message is only sent once the temperature reading from the sensor drops below the set threshold,

 which in the case of our demonstration is 55°F in order to reliably prevent water from freezing in

 the pipe, though this value can be adjusted as needed according to the user’s preferences and

 needs. The notification is thus sent in sync with the valve opening activation. A flowchart

 diagram depicting the control flow of the script is shown below.

 7

 Figure 6. Diagram of the control flow of the notification script

 The Python script utilizes the requests and w1thermsensor libraries for sending the push

 notifications and reading the temperature sensor, respectively. The push notification is sent via

 the Telegram API to the user’s mobile phone, providing them with a real-time update on the

 status of their pipe burst prevention system, regardless of where they are in the world.

 Figure 7. Example iOS push notification from a test run (with threshold set to 40°F)

 8

 3. Design Verification

 Testing of the completed project involved finding the optimal refresh rate of the DS18B20 digital

 thermometer probe in order to prevent read interference on the one-wire data bus. Interference

 was likely to occur if the ATmega328p microcontroller attempted to read from the bus at the

 same time the Raspberry Pi attempted to read. Solutions included increasing the read latency and

 decreasing the refresh rate of the sensor. To increase the read latency, the delay between each

 request was increased from 1 s to 2 s.

 As mentioned earlier, the DS18B20 temperature sensor can convert data anywhere from 9 to 12

 bits in value. Our team considered reducing the refresh rate of the temperature sensor by reading

 at 9 bits as opposed to 12 bits to make the sensor 2 3 times faster. The result would theoretically

 be less wait time between each request of the sensor, but it was irrelevant as we had added a

 manual delay to the software. The preferred method was an increased latency of 2 s to give the

 microcontroller and microprocessor enough time to both read the current temperature. With the

 increase in wait time, we observed that the function meant to request the temperature was no

 longer returning a device error message but instead would always return the current temperature.

 Instead, we saw the ATmega328p and Raspberry Pi working in parallel.

 Provided in the design review was Table 1, the Requirements and Verification Table. The

 requirements were meant to assure that the major components would work as they should. The

 major components included the microcontroller, temperature sensor, and solenoid valve. By the

 completion of our project, we had found success with all components as well as the requirements

 and verifications for each.

 9

 Table 1 – Requirements and Verifications

 Component Requirements Verification

 NMOS Transistor

 & Solenoid Valve

 1. Provide 12 VDC +/- 10% from a 10.8

 VDC to 13.2 VDC solenoid valve regulated

 by a 5 VDC microcontroller.

 1. Using a NMOS transistor, connect a digital

 I/O pin from the ATmega328p, set as an output,

 to the "Gate" pin of the transistor and only close

 (set pin to HIGH) the gate when the temperature

 reading reaches threshold. Observe the valve

 open during this time.

 DS18B20 Digital

 Temperature

 Sensor Probe

 1. The system should only be triggered

 between a temperature of 13.0 °C and 14.0

 °C, accounting for the +/- 0.5 °C tolerance

 of the DS18B20 Digital Thermometer.

 2. Temp sensor conversion takes 750 s.

 Atmega328p and Raspberry Pi reading the

 DS18B20 temperature sensor do not cause

 read failures.

 1. Measure the temperature of the water in the

 reservoir using an alternate thermometer and

 compare the result to the output of the DS18B20

 digital thermometer on the LCD.

 2. Add a delay (2000) after a read of the

 temperature sensor to see the removal of read

 failures as the ATmega328p and the Raspberry

 Pi attempt to read temperature versus when the

 delay is not there.

 ATmega328p

 Microcontroller

 1. The MCU burn bootloader works and is

 able to upload any sketch once flashed.

 Ability to interact with incoming data

 signals and sensors.

 1. Connect an LED to an analog pin of the

 microcontroller. Set the LED to blink every

 second. After proper programming of the board

 through USBasp, one should see the LED blink

 in 1 s intervals.

 10

 4. Design Costs

 4.1 Itemized Bill Cost

 With our given budget of $150, the materials cost of this project came out to be $90.18, as

 specified in the itemized list in Table 2. Much of this cost was due to the need for a Raspberry Pi

 for Wi-Fi connectivity. In the conclusion chapter, a cheaper alternative, the ESP32 Wi-Fi module,

 is brought up as an alternative. If this chip were used in place of the microprocessor in our build,

 the itemized cost would drop to $38.33 , making the project even more affordable.

 Table 2 – Itemized List of Components and Costs

 Description Manufacturer Quantity Price Link

 IC MCU 8BIT 32KB FLASH 28DIP Microchip Technology 1 $3.03 Link

 WATERPROOF DS18B20 DIGITAL TEMPE Adafruit Industries LLC 1 $9.95 Link

 PLASTIC WATER SOLENOID VALVE - 1 Adafruit Industries LLC 1 $6.95 Link

 LCD MOD 32DIG 16X2 TRANS YLW/GRN Matrix Orbital 1 $9.53 Link

 RASPBERRY PI 4 MODEL B 4GB SDRAM Raspberry Pi 1 $55 Link

 MOSFET N-CH 60V 30A TO220AB STMicroelectronics 1 $1.54 Link

 CRYSTAL 16.0000MHZ 20PF TH IQD Frequency Products 1 $0.48 Link

 LED 5MM VERTICAL GREEN PC MNT Dialight 2 $1.81 Link

 IC REG LINEAR 5V 800MA SOT223-4 Texas Instruments 1 $1.41 Link

 RES 10K OHM 5% 1/4W AXIAL Stackpole Electronics Inc 3 $0.10 Link

 RES 100 OHM 5% 1/2W AXIAL YAGEO 2 $0.17 Link

 CAP CER 22PF 50V C0G 0402 TDK Corporation 2 $0.10 Link

 CAP CER 0.1UF 4V X7T TDK Corporation 5 $0.11 Link

 TOTAL $90.18

 11

https://www.digikey.com/en/products/detail/microchip-technology/ATMEGA328P-PN/2357094
https://www.digikey.com/en/products/detail/adafruit-industries-llc/381/5875807
https://www.digikey.com/en/products/detail/adafruit-industries-llc/997/6827136
https://www.digikey.com/en/products/detail/matrix-orbital/MOP-AL162A-BYFY-25J-3IN/9602838
https://www.digikey.com/en/products/detail/raspberry-pi/RASPBERRY-PI-4B-4GB/10258781
https://www.digikey.com/en/products/detail/stmicroelectronics/STP36NF06L/1039545
https://www.digikey.com/en/products/detail/iqd-frequency-products/LFXTAL027945BULK/10106622
https://www.digikey.com/en/products/detail/dialight/5500704F/809009
https://www.digikey.com/en/products/detail/texas-instruments/LM1117MPX-5.0-NOPB/660149
https://www.digikey.com/en/products/detail/stackpole-electronics-inc/CF14JT10K0/1741265
https://www.digikey.com/en/products/detail/yageo/CFR-50JB-52-100R/242
https://www.digikey.com/en/products/detail/tdk-corporation/C1005C0G1H220J050BA/513679
https://www.digikey.com/en/products/detail/tdk-corporation/CGA1A1X7T0G104M030BC/10413505

 4.2 Labor Costs

 Using an ideal hourly rate of $45/hr, the cost of labor for our three person team, considering a

 completion time frame of two months, would come out to $20,250.

 EQ 1. $45/ ℎ𝑟 𝑥 2 . 5 ℎ𝑟𝑠 / 𝑑𝑎𝑦 𝑥 60 𝑑𝑎𝑦𝑠 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑥 3 𝑝𝑒𝑜𝑝𝑙𝑒 = $20 , 250

 There is also the consideration of the time the machine shop put into building our frame. After

 briefings of our ideal structure with one individual of the machine shop, they were able to

 complete our setup in two days. Using the same parameters used for the team's labor costs,

 replacing the days to complete with two and the number of people with one, the machine shop

 cost equates to $225.

 EQ 2. $45/ ℎ𝑟 𝑥 2 . 5 ℎ𝑟𝑠 / 𝑑𝑎𝑦 𝑥 2 𝑑𝑎𝑦𝑠 𝑓𝑜𝑟 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑥 1 𝑝𝑒𝑟𝑠𝑜𝑛 = $225

 4.3 Total Project Cost

 The total cost for this project, including an additional 10% in tax towards the bill of components,

 is $20,574.19 total.

 EQ 3. 1 . 1 * 90 . 18 + 20 , 250 + 225 = $20574 . 19

 12

 5. Conclusions

 5.1 Summary

 Overall, all high-level requirements were executed successfully. The scope of the project

 remained the same throughout, and a system matching the proposal and the design document was

 delivered. To elaborate, our project repeatedly measured the water temperature, and upon a

 sufficiently low reading, a push notification was sent to the user's mobile device over Wi-Fi

 while the solenoid valve opened for 5 seconds and allowed a trickle of water through the ½ ”

 diameter PVC pipe.

 5.2 Future Improvements

 Potentially, some future improvements could be made to increase the elegance of the system.

 Suggested improvements are to replace the Raspberry Pi with an ESP32 microcontroller. The

 ESP32 module retails for $3.15, while the Raspberry Pi costs $55. Given the scope of this

 project, the Wi-Fi capabilities of the ESP32 MCU would handle the push notification script as

 well as the Raspberry Pi could. Had we been aware of this component prior to the end of our

 research and early build stages, we would have utilized it instead.

 Another improvement that could be made is to shift from controlling the movement of the water

 in the users home pipes to focusing on raising the environment's temperature to prevent the need

 for water flow. This more hands-off and low-stakes option, while keeping with the original

 budget if the ESP32 module is used in place of the Raspberry Pi microprocessor, would include

 obtaining a smart thermostat for the home and creating an automation that sets the home's

 temperature to 55 °F if it were to drop below this threshold. The other portions of the project

 would remain the same, but now we eliminate the need for access to the water pipes beyond

 measuring the temperature of the pipe. The user would still receive a push notification if the

 temperature reading came back low enough to warrant a notification.

 13

 5.3 Ethical Considerations

 In regards to ethics, our biggest concern was with the waterproofing of our project, but we took

 steps to keep with I.1 of the IEEE Code of Ethics [6] by utilizing water-resistant components

 when possible. Our project inherently attempts to create a sustainable alternative to current

 frozen pipe prevention measures by minimizing the use of resources such as water and heat. One

 aspect that could be considered unsafe was the proximity of our electrical components, including

 the PCB and Raspberry Pi, to the water reservoir and pipe for accurate measurements.

 Specifically, we were able to mitigate these risks by using a waterproof temperature probe that

 was 3 feet long and moving the LCD mount to the top of our project frame. See Figure 1 of the

 appendix. We also taped the PCB to the underside of the top portion of the frame, both for easy

 reach and to keep it away from the water escaping the valve. Further steps taken to prevent water

 exposure to the components were to move them to the side of our frame. Including proper

 enclosures for components that are not waterproof would provide an extra layer of protection.

 Additional safety precautions and procedures followed during the construction of this project

 included exercising caution when handling water around electrical wall outlets and other

 high-voltage equipment.

 14

 References

 [1] “DS18B20 high temp waterproof digital sensors,” Mouser,

 https://www.mouser.com/new/sparkfun/ds18b20-waterproof-sensors/

 [2]“1-Wire Protocol | Arduino Documentation,” 1-Wire Protocol | Arduino Documentation .

 https://docs.arduino.cc/learn/communication/one-wire

 [3] A. Industries, “Waterproof 1-Wire DS18B20 Digital temperature sensor,” Waterproof 1-Wire DS18B20

 Digital temperature sensor : ID 381 : $9.95 : Adafruit Industries, Unique & fun DIY electronics and kits .

 https://www.adafruit.com/product/381

 [4] “Liquid Crystal Displays (LCD) with Arduino | Arduino Documentation,” Liquid Crystal Displays

 (LCD) with Arduino | Arduino Documentation . https://docs.arduino.cc/learn/electronics/lcd-displays

 [5] L. Z. Lin. Using python to send telegram messages in 3 simple steps. Medium. 03-Jun-2022.

 Retrieved March 27, 2023, from

 https://medium.com/codex/using-python-to-send-telegram-messages-in-3-simple-steps-419a8b5e5e2

 [6] “IEEE Code of Ethics,” IEEE - IEEE Code of Ethics .

 https://www.ieee.org/about/corporate/governance/p7-8.html

 15

 Appendix

 Figure 8. Front view of Project Setup

 16

 Figure 9. Side view of Project Setup

 17

