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Abstract
This project aims to reduce the stress of walking home alone at night by providing a backpack interface

that detects and alerts you to potential threats. The Backpack Buddy uses a camera to specifically

identify people approaching you from far away distances and responds with haptic feedback to alert you

about a potential threat. Up close, the Backpack Buddy will send an automated text message to an

emergency contact upon incident detection. This report outlines the design, verification and results of our

project. Apart from a few minor details, we have achieved full functionality of our project.
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1. Introduction
1.1 Objective and Solution
Many college students walk home late at night, and even though safety resources like free transit and

emergency buttons are available, walking home is often the most convenient option. However, when

residential sidewalks are deserted at night, the risk of being approached or followed from behind is high.

The Backpack Buddy helps reduce this risk by providing users with enough time to check their

surroundings and get to a safe place if necessary. The Backpack Buddy is a discreet wearable that alerts

the user to pedestrians behind them. The device should distinguish pedestrians from other moving

objects in low light and alert the user if they are too close or on a collision course. The device will use a

night-vision camera and image processing to detect pedestrians, and will alert the user with haptic

feedback. The device also has emergency detection capabilities where a text alert is sent to a predefined

contact upon incident detection.

1.2 Subsystem Overview
Figure 1.2.1: Block Diagram

The design shown in the block diagram shows two primary components: a custom PCB and a Raspberry

Pi. The purpose of the Raspberry Pi will only be for image capture and processing. The data is then sent

from the Pi to our PCB where the microcontroller will make future decisions about sending haptic

feedback or triggering the automated phone text message system. Additionally, there are three major

subsystems shown above. The power subsystem, in red, now has an 18V input rather than a 9V input. In

green, are the sensors and actuators. Initially, our wifi module was an ESP8266, but in our final version of

the project we used a BCM4345. To simplify our design, we ended up not needing the passive infrared

sensor that we initially discussed in previous versions of our project.
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1.3 Visual Aids
Figure 1.3.1: Visualization of Physical Design

Figure 1.3.2: Physical Design

1.4 Performance Requirements
1. Distinguish pedestrians from other moving objects at a rate of 4-6 frames per second

2. Alert the user with haptic feedback if a pedestrian is less than 3 meters away

3. Send emergency alerts to given emergency contact if a pedestrian is within 30cm

2



2. Design
2.1 Hardware Design
We were always planning on using a Raspberry Pi for image processing due to ease of access and cost,

thus our hardware design process is focused on the intention to make our board an IO Shield or Pi-hat

that could be easily plugged into the Raspberry Pi. For our crystal oscillator, we sized its necessary

capacitors with the following equation: [2]. Knowing that the𝐶𝐿 = (𝐶𝑎 * 𝐶𝑏)/ (𝐶𝑎 + 𝐶𝑏) +  𝐶𝑠𝑡𝑟𝑎𝑦 

standard CL for our crystal oscillator is 18 pF and that Cstray varies around 7 pF, then, keeping symmetry,

we calculate Ca and Cb to be 22 pF. Appendix C hosts the rest of our component values.

Figure 2.1.0: PCB Plugged into Raspberry Pi

2.1.1 Power Subsystem

Figure 2.1.1: Power Sheet

Initially, we planned for our design to have a 9 V battery input, due to ease of access and because our

system would be operating at around 5 V, so it was important for the input voltage to be approximately

double the battery voltage to account for terminal impedance. Table 1 shows the system current draw

that we initially planned for. Based on this information, we wanted to make our circuit tolerant for double

that amount of current, to accommodate for any additional ESR, trace losses, or any unexpected current

spikes. This calls for an 8 A tolerant system, thus we choose the SI-8050Y switching converter. We used a

switching converter, as linear regulators are very lossy and dissipate more heat, which introduces

unnecessary thermal concerns. Not only is our power subsystem 8 A tolerant, but it can step-down
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voltages from 8.6 - 40 V. However, because as batteries discharge their voltage levels will also reduce, this

8.6 V minimum threshold did become a concern for our planned 9 V input. Therefore, we opted to use two

9 V batteries in series to have an 18 V input.

For our 3 V step-down converter we used a LM3940 LDO rather than a switching regulator, because the

voltage drop is low therefore efficiency is not a major concern. Also, this minimizes any noise that may be

introduced by an additional switching regulator, as they have higher frequency components.

Table 1: Initial Design System Current Draw

Component Maximum Current Draw

Raspberry Pi 3.5A

ATMega32U4 200mA

Vibrating Mini Motor Disc x2 200mA

ESP8266 Wifi Module 12mA

HC-SR04 Ultrasonic Sensor x2 30mA

HC-SR501 Passive Infrared Sensor 65mA

Total 4.0A

2.1.2 BCM4345 Wifi Module

For our wireless subsystem, we decided to use wifi over other forms of wireless communication, for its

pre-existing documentation and simplicity. The ESP8266 was our original choice for wifi communication;

however, the module is tedious to program and difficult to debug. More importantly, we ran into DNS

resolution issues while using the ESP8266. Thus, we ultimately chose to use the BCM4345, which is more

easily integrate-able with our other subsystems and is much more straightforward to test and debug.

Figure 2.1.2 BCM4345 Functional Block Diagram
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2.1.3 HC-SR04 Ultrasonic Sensor

In terms of depth sensing, having a built in depth sensor with our camera is very costly. As an alternative,

we wanted to have an external depth sensor that was extremely cost effective. One common architecture

for motion and depth sensing is the HC-SR04 ultrasonic sensor, which is well-documented, cost-effective,

and provides real time distance data from the sensor, something very useful for firmware integration.

2.1.4 Vibration Actuator

As we wanted to discreetly warn our users of any approaching pedestrians, we decided to use haptic

feedback rather than flashing lights or alarms which may cause panic. Hence, we are using the Adafruit

Vibrating Motor Mini Disc, which has a small form factor and low current draw. As motors can introduce

noise into our power lines, we also have designed a transistor circuit to isolate the motors' current draw

from the GPIO pins of our ATMega32U4 microcontroller.

2.2 Firmware and Raspberry Pi Interface
Our design utilizes a Raspberry Pi for image processing and delegates other processing and

communication tasks to an ATMega32U4. The ATMega32U4 acts as a communication hub, requiring a

parallel interface to handle communication between multiple sensors. Initially, we intended to use GPIO

pins as the primary communication mechanism. However, after testing, we determined that an I2C

interface was optimal due to its ability to handle parallel processes communicating. To ensure seamless

transmission and receipt of messages, we tested and developed a stable interface using an I2C interface.

We then integrated sensors into the framework to create a functional prototype of the communication

system between the ATMega32U4, Raspberry Pi, and sensors.

2.2.1 Raspberry Pi Integration with Sensors

Our aim in this development was to design a system where the Raspberry Pi triggers the image

processing algorithm and notifies the Arduino when a pedestrian is detected within the camera's view,

along with their relative location (right, left, or middle). The Arduino then activates one or both of the

vibration modules to indicate the side where the pedestrian was detected. Simultaneously, the Arduino

monitors the ultrasonic sensor and sends an alert to the Raspberry Pi if an object approaches closer than

a specific threshold, which then triggers the emergency protocol.
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Figure 2.2.1: The communication between the Arduino and the Raspberry Pi, and the corresponding

interface with the sensors and actuators.

2.2.2 Firmware Flowchart

Figure 2.2.2: Arduino flowchart

Figure 2.2.2 demonstrates the flowchart for the final algorithm on the Arduino. The communication

framework we developed allows the Arduino to constantly be checking if it has received a message from

the Raspberry Pi while also checking if the Raspberry Pi has requested information. Similarly, the
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Raspberry Pi communication framework also simultaneously checks if the Arduino has requested or sent

data. The algorithm on the Raspberry Pi is shown in Figure 2.2.3.

Figure 2.2.3

2.3 Image Processing Software
The night vision camera on the Raspberry Pi is responsible for capturing a continuous video behind the

user when triggered. This continuous feed is then taken through a series of filters which detect and

identify the location of a person in each frame. Based on this data, the PCB will more accurately send a

warning to the user. Figure 2.3.0 illustrates the high level procedure of our goals.

Figure 2.3.0: High level process for object detection

2.3.1 Approaching Object Detection on a Raspberry Pi

When reading into object detection algorithms, we discovered that many object detection algorithms are

very computationally heavy, so the primary objective for us was to look for existing algorithms and
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architectures that would be able to run on the Raspberry Pi. Initially, we looked to use the YOLO (You Only

Look Once) algorithm [6] because it markets its approach as a higher reduction in latency on a trained

model. However, there was still not enough computational power on the Raspberry Pi for us to use YOLO

as our detection method. After looking further into object detection models, we came across the

MobileNet algorithm that allows smartphones to perform object detection. This was a much better

starting point because although some smartphones have higher processing power than a Raspberry Pi,

the results would be relatively similar.

2.3.2 Using Object Detection with a Pretrained Model

While looking through the implementation of MobileNet, we came across a tutorial that uses MobileNet

on a pre trained architecture using the COCO (Common Objects in Context) dataset. This dataset is

composed of 80 object categories and is trained on 330K images [7]. We utilized the libraries of

Tensorflow lite to deploy MobileNet v1 onto the Raspberry Pi. Once this was deployed, we were able to

identify a variety of household objects with varying degrees of accuracy. After seeing the results of this

model, we realized a big problem with this is the latency. When the camera is still, the screen can display

results that average to 4 frames per second. However, when the camera is in motion, the frames drop

down to 3 or even 2 FPS. This poses a problem because a lot can happen in between 2 frames. Due to

this issue, we looked into optimizing the model by training it with custom data, choosing only two classes

to identify, and searching for an even faster architecture.

2.3.3 Training a Model with a Custom Dataset

After realizing the inconveniences of using the pretrained MobileNet architecture, we looked into using

EfficientDet as an alternative. Like YOLO and MobileNet, EfficientDet is also a single shot detector (SSD)

[8]. SSD works by dividing the image into a grid and having each grid accountable for detecting an object

in that location. If nothing is detected, the grid is considered to be a background region. The advantage of

EfficientDet is that it is 4x - 9x smaller and uses 13x - 42x fewer FLOPS than previous detectors such as

YOLO [9]. It was difficult for me to find a comparison between MobileNet and EfficientDet, so we decided

to try both and see which had lower latency.
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Figure 2.3.3: EfficientDet Neural Network architecture

To start, we began gathering training images of people from the internet. Instead of manually

downloading images, we were able to use Google’s Open Images dataset to filter any image containing a

person and use a script to download as many images as we desired. Initially, we only wanted to use a few

training images to save time annotating each and reduce model training time. Therefore, we initially

started by annotating 29 training images and 10 test images. In each image, we identified the objects in 2

classes; either a person or a group of people. After collecting these annotated images, we used the

EfficientDet0 architecture to train the model. Figure 2.3.4 shows the various differences between each

version of EfficientDet. Our main problem is the latency, so we decided to use the model with the lowest

latency possible.

Figure 2.3.4: EfficientDet architecture differences. Latency is measured on the Raspberry Pi 4 and average

precision is the mean average precision on the COCO validation set.

In the paper describing the details of the algorithm, we discovered that each model is trained using a

standard gradient descent optimization that uses momentum 0.9 and weight decay 4e-5. A step learner is

used for the learning rate which initially increases from 0 to 0.16 in the first epoch but then slows down

using the cosine decay rule [9].

With the smaller training set, we used 29 training images, 20 epochs, and a batch size of 4 to obtain a loss

of 1.15. After training this model, it was deployed on the Raspberry Pi to yield 6 FPS while the camera was
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stationary. After determining that this model worked, we spent time annotating 500 training images to

increase the model precision. With 500 images, we used 50 epochs, and a batch size of 32 to yield a loss

of 0.355 – a much lower value.

Figure 2.3.4: Object detection model using 500 training images on EfficientDet
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3. Verification
3.1 Integrated System Verification

Overall, we were able to meet all three high level requirements. Using the camera, we are able to detect

anyone following the user at a framerate of 4-6 frames per second at a distance of over 3 m. The system

worked even while testing at 11:30 pm in the middle of the night. With any person detected by the camera,

the system successfully warns the user of such presence using the vibrational modules. If at close

proximity, that is, at 30 cm or less, the ultrasonic sensor will detect any such presence and trigger an

emergency signal which allows the wifi module to successfully trigger the SMS response.

Appendix B shows all verification tables and includes the final results of each requirement. Some

important things to note are the failure of the PIR sensor requirements due to high sensitivity to

movement, which made integration into our backpack-based design very difficult. Thus as a contingency,

we decide to eliminate the use of the PIR sensor as it has no significant impact on meeting the high level

requirements. Additionally, while testing with the ESP8266 module, we struggled to make an HTTP

connection despite having wifi connection. As a contingency, we used an alternative wifi module which

had greater serial monitor and debug capabilities in order to meet our desired functionality. Lastly, after

testing in complete darkness and losing person detection capabilities, we introduced an IR flashlight into

our system that would act as a discreet solution for situations lacking ambient lighting such as street

lights.

3.2 Hardware Verification

The integration process saw many difficulties. During initial testing phases, our circuit was not capable of

outputting 5 V from a 10 V power supply input but would rather float at 200 mV. Our switching power

supply would also get hot. The issue lied in using an incorrect footprint for our part, thus traces were

connected in an incorrect way. After debugging this issue for the 5 V step down, we saw a similar problem

for the 3.3 V step down, and made new board revisions accordingly. There were also many struggles in

programming the microcontroller, as we planned on using micro USB but were not able to get it working.

Our final hardware revision includes an ISP programmer header and corrected footprints.

3.3 Firmware Verification

To simplify the debugging process, we developed the firmware incrementally and verified each stage as it

was created. After achieving a fully functional communication framework where the Arduino and

Raspberry Pi could communicate and receive all required information simultaneously, we shifted our

focus towards user-centric functionality. The most important aspect of this was timing. The
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communication needed to be fast enough to provide quick feedback in response to the environment,

while also being carefully timed to prevent I2C timing issues.

3.3.1 Accuracy and Functionality

To ensure accurate transmission and reception of information, we included a 100ms delay on both the

Arduino and Raspberry Pi after each reading and transmission of data before restarting the read/transmit

process. Additionally, we implemented counters for each transmitted datapoint to ensure accuracy. These

counters counted the number of messages received indicating consistent information. Only if a device

received a threshold number of messages with consistent information, would it actuate a vibration

module. This helped improve the accuracy of our image processing algorithm when detecting a person.

For instance, a person had to be detected in 10 subsequent readings of the same object in the same

relative position to actuate a vibration module. Similarly, in an emergency scenario, the Raspberry Pi

wouldn't initiate the emergency text sequence until it had received 10 subsequent emergency messages

from the Arduino. If a person is continuously in the frame, we ensured that the backpack would not vibrate

constantly. We made sure that the vibration modules would vibrate in 10 second increments if someone is

constantly detected. We considered this timing fast enough to be considered a real-time alert.

The firmware uses the camera’s perspective to determine the relative location of a pedestrian. To verify

this would align with the user’s intuition, we tested the device on a person and had them specify what

direction they were feeling as we moved behind them. In this testing process, we determined that as long

as the camera was positioned correctly in the middle of the backpack, the positional vibration would align

with a pedestrian’s relative position with the user.

3.3.2 Emergency Procedure and Wifi

To verify our emergency procedure was working, we manually triggered the emergency event by triggering

the ultrasonic sensors and timed how long it took for the emergency contact to receive a text. If a user’s

phone has a cellular hotspot, we assume that the wifi module will automatically join the hotspot. This

assumption is valid for most modern cell phones, including the iPhone XS which we tested on. The

emergency text was consistently sent within 1-2 minutes.

3.3.3 User Experience

Timing is also added throughout the firmware to improve user experience. When a person is detected

behind the user, the corresponding vibration module will vibrate for 300 milliseconds and will wait 10

seconds to vibrate again. Similarly, to avoid emergency texts being sent excessively during a detected

incident, we have timing constraints in place to only allow texts being sent once per minute.
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3.4 Software Verification

3.4.1 Custom Trained Model Dataset Results

As mentioned in Figure 2.3.4, the custom training set had been able to somewhat identify a person

correctly in an image. To quantify the accuracy of these tests, we used 10 test images to evaluate the

results of the model once on the 29 images, and another time on the model trained with 500 images and

tested with 100 images. The evaluation metrics can be confined to average precision and average recall

[10] [11].

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

AP - The average precision of the intersection of bounding boxes. This value is the average of ten

thresholds that range from 0.5 to 0.95 in increments of 0.05.

AP50 - The average precision of predicted bounding boxes that intersect over 50% of the annotated box.

AP75 - The average precision of predicted bounding boxes that intersect over 75% of the annotated box.

APs - The average precision across scales of predicted bounding boxes for small boxes: area < 322

APm - The average precision across scales of predicted bounding boxes for med boxes: 322< area < 962

APl - The average precision across scales of predicted bounding boxes for large boxes: area > 962

ARmax1 - Average recall given one detection per image

ARmax10 - Average recall given ten detections per image

ARmax100 - Average recall given 100 detections per image

ARs - Average recall across scales of predicted bounding boxes for small boxes: area < 322

ARm - Average recall across scales of predicted bounding boxes for med boxes: 322< area < 962

ARl - Average recall across scales of predicted bounding boxes for large boxes: area > 962

AP_/person - Same as AP, but only looking at a the class “person”

AP_/person_group - Same as AP, but only looking at a the class “person_group”

Figure 3.4.1: Metrics used for evaluating the small training dataset (29 images)
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Figure 3.4.2: Metrics used for evaluating the large training dataset (500 images)

When evaluating the models on the same training data, it is clear that the dataset that used 500 images to

train had a much higher average precision. In this particular case, there were no test images annotated

with person_group, so the precision for this value is irrelevant. Therefore, AP and AP_/person are the

same value. For 500 images, the average precision resulted in 27.44%. This is above our expected

precision value of 25.69% from Figure 2.3.4.

3.4.2 Low Light Testing

The last component of verifying the object detection model was to test how our system worked at night.

Initially, this was done in the ECE 445 Lab by slowly dimming the lights in the room. Once we tested this,

we soon discovered that our camera is not sensitive enough to low light conditions. To improve upon this,

we added IR light to illuminate the FOV of the camera. With the initial setup, we saw drastic improvement

while testing in the senior design lab. The next step of this was testing in an outdoor setting. Our

verification table declared that our object detection should be able to work at least 30 minutes before

sunrise and 30 minutes after sunset. We tested this by going outside with the IR light at 11:30PM and

ensuring our object detection model worked. We found that it worked very well when the IR light

illuminated the person for a distance over 3 meters.
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4. Cost and Schedule
4.1 Cost

Table 2: Cost Analysis

Part MPN Manufacturer Description/Notes Quantity Cost

Ultrasonic
Sensor HC-SR04 Sparkfun ultrasonic low range 1 4.50

PIR Sensor HC-SR501 Xiaohunike passive infared, longer range 1 8

Night Vision
Camera OV5647 MakerFocus 5MP 1080P camera 1 17.99

3.3V Regulator LM3940
Texas
Instruments 5V to 3.3V, 1A max output 1 2.84

5V regulator SI-8050Y Sanken 9-5V, 8A max output 1 2.26

9V Battery – EBL 5400mWh Li-Ion 4 23

Microcontroller ATMega32U4 Microchip Tech 5V operating voltage 1 5.68

Vibration Sensor
Adafruit
Motor Disc Adafruit 11000 RPM at 5V (x2) 2 17.70

Wifi Module ESP8266 Sparkfun 3v3 operating voltage 1 7.50

Backpack – Jansport
Standard Lightweight
Schoolbag 1 20.00

IR Light - WAYLLShine For night time detection 1 20.00

Total Cost
(Materials) – – – – $129.47

Labor – –
$38.60/hr for UIUC EE from
[7]

144
hrs/person 16,675.20

Total Cost (with
Labor) – – – – $16,804.67
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4.2 Schedule
Table 3: Schedule

Week Task Assignee

2/26 Finalize schematic Jeric

Refine library for pedestrians Rahul, Emily

3/5 After receiving components, begin verification Everyone

Test algorithm in low-light and various moving conditions. Begin
firmware

Rahul, Emily

Begin testing ultrasonic and PIR in low light conditions Jeric

3/12 Complete software to distinguish human from other moving object, send
corresponding signal to ATmega

Emily

3/19 Begin integrating subsystems Everyone

Finalize datasets for image processing algorithm Rahul

3/26 Second Round PCB Orders Due Jeric, Rahul

Finalize PCB design and component selection Everyone

Individual Progress Reports Everyone

4/9 Finalize software and firmware components Emily

Team Contracts Everyone

4/16 Mock Demonstration and debug Everyone

4/23 Final Demonstration Everyone

4/30 Final Presentation and Final Paper Everyone
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5. Conclusion
5.1 Accomplishments
Throughout the semester, we were able to meet all major project goals and fit them all onto one small

PCB. We successfully developed an image processing algorithm that can successfully detect human

beings, and use that information as the main input to a night time safety wearable capable of not only

discreetly letting users know they are being followed from behind, but also capable of sending an SMS

message to an emergency contact if approached too closely. The level of cooperation and work

necessary to engineer this scope of project has instilled in us invaluable hands-on experience that we will

take with us to our future endeavors.

5.2 Ethical Considerations
Ethical issues lie in the nature of the image processing algorithm. Because our priority is to classify and

localize an object in an image quickly, it will be prone to numerous errors. This can result in a higher

number of false positives and negatives when recognizing pedestrians. It is important to ensure that

privacy is maintained while video may capture someone unknowingly [3]. To prevent this, we will make

sure that the processed image data will not be stored after its use; however, in the case that a figure does

approach the user, a divergence can be made where an image can be saved in order to assist law

enforcement in the case of emergency.

5.3 Broader Impact
In a larger context, our project hopes to address the issues of night time safety for pedestrians.

Ultimately, the desired societal impact of our project would be to improve night time safety. If our product

becomes common enough and well known to the general public, hopefully it would deter situations where

someone may be approached unexpectedly or followed at night.
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Appendix A: Abbreviations

Unit or Term Abbreviation Unit or Term Abbreviation

General Purpose
Input/Ouput

GPIO Microcontroller MCU

Printed Circuit Board PCB Light Emitting Diode LED

You Only Look Once YOLO Passive Infrared PIR

Common Objects in
Context

COCO Volts V

Frames Per Second FPS Amperes A

Floating Point
Operations per second

FLOPS Watts W

Single Shot Detector SSD Seconds s

Average Precision AP Milliseconds ms

Average Recall AR Domain Name System DNS

Infrared IR Low Drop Out LDO

Field of View FOV In-System Programming ISP

Short
Message/Messaging

Service

SMS Hypertext Transfer
Protocol

HTTP
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Appendix B: Verification Tables
Table 4: Power Subsystem Requirements and Verification

Requirement Verification Procedure

9V 18 V +/-10% Power

Protection circuit ensures

battery does not experience

sudden surges in voltage in

current leading to an

undervolt situation

● Plug battery configuration into the PCB. With a DMM, we will

able to probe the voltage coming out of the protection circuit

● Connect an LED from the output of the converter to GND for

quick visual verification

● Passes with changes: 18 V used rather than 9 V, but circuit does

not experience sudden voltage drops and unexpected undervolt

situations.

SI-8050Y buck switching

regulator for 5V +/- 10%

conversion and up to 8A

output

● Probe circuit voltage and current at testing points

● Connect an LED from the output of the converter to GND for

quick visual verification

● Passes: Switching regulator outputs approximately 5 V while

being able to supply the system's peak current draw.

LM3940 LDO for 3.3V +/-

10% output and at up to 1A

output

● Probe circuit voltage and current at testing points

● Connect an LED from the output of the converter to GND for

quick visual verification

● Passes: 3.3 V is successfully probed in-system and

successfully powers its respective sensors.
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Table 5: Sensor Subsystem Requirements and Verification

Requirement Verification Procedure

HC-SR501 Passive Infrared

Sensor makes initial

detection from 5m +/- 0.5m

away

● Pedestrian walking towards PIR turns on indicator LED

● Modify sensitivity of PIR and repeat tests

● Failed: We did not end up using the PIR sensor due to sensitivity

of user movement. Its removal had no impact to meeting high

level requirements

HC-SR04 Ultrasonic Sensor

measures depth with person

30cm +/- 10cm away

● Use the ATmega32U4 Arduino Dev Kit to read sensor data

● Verify sensor detects correct depth within tolerance

● Passes: Resulting range of 3 cm to 130 cm

MakerFocus Raspberry Pi 4

Camera Night Vision

Camera works in Low Light

Conditions (in between last

light and first light)

● Connect camera to external monitor for live video output

● User is able to distinguish most objects with live camera feed

● Test between sunset and sunrise (+/- 30 minutes)

● Passes with contingency: Was not able to work in low light

conditions unless there were street lights. Issue fixed by adding

infrared flashlight

Vibrating Mini Motor Disc for

vibration generation that

produces noticeable haptic

feedback through a

standard canvas backpack

● Connect motor to microcontroller

● When an object is detected within 3m away the microcontroller

will supply the motor with 5V

● Verify user is able to feel vibrations through backpack

● Passes: User is able to directional feel vibrations

ESP8266 BCM4345 Wifi

Module can send

emergency message to

Phone within 5 minutes

● Independently Power using breadboard setup

● Determine programmability to ping a webserver to send a text

message to any preset phone number

● Test functionality with AtmegaA32U4 microcontroller

● Test integration with entire system

● Passes with Changes: As long as there is signal, emergency

contact receives SMS message. We used a different wifi

module.
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Table 6: Control Subsystem Requirements and Verification

Requirement Verification Procedure

Image Processing Algorithm

identifies people with the

similar accuracy as the

YOLO EfficientDet0

algorithm +/- 5% at a rate of

4-6 frames per second

● With a stationary camera, perform object detection on objects

stationary objects

● Algorithm should be able to determine which objects are people

and which objects are non-people (not relevant whether it can

properly identify what non-people objects are)

● Camera is stationary, objects are moving at average walking

speed (2.5 - 4 mph)

● Algorithm should be able to determine which objects are people

● Camera is on a moving platform to simulate walking, objects

are moving toward the camera at average walking speed

● Passes with Design Changes: We ended up using the

EfficientDet0 rather than YOLO; otherwise, specification is met.

Microcontroller sends

correct I/O signals to each

subsystem within 1 second

● Flash the MCU with a program that drives pins to high and

measure output with a DMM as well as have LED indicators

● Verify PWM signal pins with an oscilloscope

● Verify that each sensor is able to work with the same

functionality on the dev kit and custom PCB

● Passes with Design Changes: We opted for I2C communication

instead for its parallel capabilities; otherwise, there is minimal

delay, on the order of microseconds.
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Appendix C: Circuit Schematics

Figure 6.1 Main Schematic Capture

Figure 6.2: Power Protection Circuit

23



Figure 6.3: 5V Switching Regulator Schematic

Figure 6.4: 3.3V Linear Regulator

Figure 6.5: ESP8266 Schematic and Footprint
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Figure 6.6: Vibration Actuator Array

Figure 6.7: Microcontroller Schematic
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Figure 6.8 Micro Usb Programmer Schematic

Figure 6.9 Raspberry Pi Connector Schematic
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