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1 Introduction

1.1 Problem and Solution

Traditional gloves are often bulky and make it hard to control music playback on a

phone. Even gloves manufactured to be touch screen compatible are quite inconsistent. Our

solution to this problem is to build a glove that can connect to a user’s phone via bluetooth and

allow the user to control their music settings.

1.2 Block Diagram

Figure 1: Block Diagram
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The four critical blocks are the power, sensor, control, and output subsystems. The power

subsystem supplies power to the three other subsystems. The sensor subsystem takes data from

the hand motions and sends that data to the control system. The control subsystem takes the hand

motion data and detects when the user has made a relevant gesture and what gesture has been

made. Once a gesture has been detected, the control subsystem sends the appropriate signals to

the phone and the output system. The output subsystem takes commands from the control

subsystem, and then vibrates the motor when the user makes a predetermined gesture.

1.3 High-Level Requirements List

In order to solve the problem in its entirety, we had three quantitative characteristics of an

ideal system that will accomplish our goals:

1.3.1 Correctly Identify Predetermined Gestures From Sensor Readings.

We need to be able to detect when the user provides input that matches any one of the

five predetermined gestures based on the sensor readings from the flex sensors and IMU sensor.

In order to detect this, we will need to create a model that identifies the correct command based

on a hand gesture. We also want to limit false gestures as much as possible to prevent the user

from providing unintended commands to the phone.

1.3.2 Correctly Convert Predetermined Gestures into Correlated Bluetooth Commands

Once one of the five predetermined gestures is detected, the glove will need to provide

the correct bluetooth command to control the phone. We will use the BLE protocol and the

BLEKeyboard library to control music. We will know if the correct bluetooth command is sent

based on the change we see on the phone.

1.3.3 Glove Has Small Form Factor and Battery Life Sustains a Session of Use
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We also want to ensure the user has a final product that fits comfortably on their hand

unobtrusively in a small form factor, while also having a decent battery life. We set a target goal

of an average battery life of 3 hours for the glove. After testing our final design by actively using

the glove for 33% of the time in a 3 minute time period, we extrapolated this data with a linear fit

in order to calculate a battery life of 12.5 hours, which far exceeds the 3 hour battery life

requirement.

2 Design

2.1 Design Procedure

The requirement of the power subsystem is to have a rechargeable battery that provides

3.3V to the other subsystems. For the rechargeable battery, we decided to use a Li-Po battery as

they are the safest option with a good battery life and small form factor. It is also easier to find a

battery IC for single-cell Li-Po batteries so that we could create a battery charging circuit. The

other option would be to use disposable AA or AAA batteries, but this would make the design

bulkier and would not allow for a closed system. Also, we decided to use a USB-C connector for

charging to make use of the latest generation of technology.

For the sensor subsystem, our goal is to collect data to map out the movements of a user’s

fingers and hand. In order to track finger movements, our initial idea was to either use flex

sensors or hall effect sensors on the knuckles with small magnets mounted on the fingers. In the

end, we decided to choose the flex sensors because they made the mechanical design of the glove

simpler, and it would be easier to collect and interpret the data from these sensors. We believe

that with the hall effect sensors, we would have run into a lot of issues with noisy and

inconsistent data readings, which would unnecessarily complicate our software data processing.

For hand motion and orientation data, we decided to use an IMU. We initially planned to use the
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gyroscope to detect hand orientation and the accelerometer to detect hand motion. About halfway

through the semester, when we were working with our IMU data, we were using gyroscope

readings to determine the orientation/position of the user’s hand, and we were using

accelerometer readings to determine the motion of the user’s hand. However, we had a lot of

issues with obtaining consistent readings from the gyroscope and found it difficult to determine

the user’s hand orientation. So, instead, we decided to stop using the gyroscope and only use the

accelerometer. We included a calibration sequence where we set an initial zero position using the

accelerometer data. This made it much easier to determine the glove’s orientation. Overall, this

ended up being more desirable because we were using one less sensor and reducing the amount

of data we had to process.

For the microcontroller, we decided to go with the ESP32-WROOM-32E as it has an

integrated bluetooth module, which will allow us to easily send bluetooth signals to the phone

without the need for an external antenna. Also, the ESP32 microcontroller is very popular, so

there’s a lot of debugging documentation online. There are also many dedicated ADC

(Analog-to-Digital Converter) pins on the ESP32 to convert our flex sensor voltage readings into

digital voltage readings to analyze.

For our output system, we wanted to provide the user with haptic feedback, and so we

decided to use a vibration motor as it is small, easy to mount, and easy to interface with. The

other option would be to use a speaker, but this implementation would be more complicated and

more obnoxious than the instant feedback we would get with a vibration motor. In addition, the

audible feedback from the speaker is probably a lot less desirable than the silent, undetectable

feedback from the vibration motor.
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2.2 Design Details

2.2.1 Sensor Subsystem

The sensor subsystem consists of the flex sensors and the IMU. The flex sensors detect

whether or not a finger is flexed and the IMU detects acceleration data of the hand movements.

Figure 2: Sensor Subsystem Circuit Schematic

Five flex sensors are sandwiched between two gloves and run along the five fingers, so

they flex with the fingers. These are variable resistors and their resistance decreases when flexed,

increasing the current through them. The flex sensors are placed in a voltage divider circuit with

a shunt resistor. The microcontroller then reads the voltage drop across the shunt resistor due to

the change in resistance of the flex sensors. As such, the microcontroller is able to read a finger

flexing as a change in voltage on an input GPIO pin. To determine the proper resistance value for

the shunt resistors to get a good reading, the calculations in Figure 3 were performed.
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Figure 3: Flex Sensor Shunt Resistor Calculations

Figure 4: IMU Circuit Schematic

The IMU detects acceleration and orientation data and sends it to the microcontroller

through I2C protocol. The microcontroller sees this data as float values for x, y, z acceleration

and orientation. Through our building process, we eventually decided that the gyroscope was no

longer needed and so we only used the accelerometer in order to detect both orientation and

movement.
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2.2.2 Control Subsystem

The control subsystem takes data from the sensor subsystem and outputs bluetooth

signals to the connected device as well as feedback signals to the output subsystem.

Figure 5: Control System Flow Chart

The flow chart in Figure 8 is the model we based our microcontroller code on. The user

needs to put their gloved hand at 90o facing forward when they turn the device on for calibration.

A vibration signal will be sent to the output subsystem when the device is connected and

calibrated. At this point, the user can relax their hand. The user can now close their fist to send a

play/pause bluetooth signal or do a two-finger point in the calibration orientation to initiate any

of the other four signals. Both actions will send a vibrate signal to the output subsystem. This

works because the accelerometer is zeroed in the calibration orientation. This is the only position
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in which the accelerometer will read approximately zero, so the microcontroller will read correct

orientation when a two-finger point is detected and the accelerometer reads near-zero

acceleration. Once the correct orientation is recognized by the microcontroller, it waits for a

right, left, up, or down swipe-induced acceleration reading and then sends the appropriate

bluetooth signal based on the swipe direction. A signal is also sent to the output subsystem in

order to provide haptic feedback to indicate that a command has been performed.

Figure 6: Control System Circuit Schematic

The output from the reset circuit is connected to the enable pin, so the code will re-run

every time the reset button is pressed. The GPIO0 circuit output is connected to the GPIO0

button so that when the button is pressed, the circuit will enter bootloader mode and the code can

be flashed.
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Figure 7: Button Circuit Schematic Figure 8: Auto-Reset Circuit Schematic

2.2.3 Power Subsystem

The power subsystem consists of the Micro-B USB to Serial Converter, battery charging

circuit, battery, and voltage regulator.

Figure 9: Power Subsystem Circuit Schematic

The micro-B USB to serial converter breaks out the USB data lines into Rx and Tx lines.

This is what enables the microcontroller to be programmed.

The battery charging circuit has an IC that supplies a 500mA constant current to the

battery allowing it to safely be charged. This is a safe charge current as it is significantly less

than the max fast charge current of 1500mA as specified in the data sheet. The battery we are

using has a nominal voltage of 3.7V with a capacity of 3000mAh.
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The voltage regulator circuit takes its input from the switching circuit. The switching

circuit is designed such that when the USB is connected, the USB-VBUS is the input to the

voltage regulator, and when the USB is disconnected, the battery is the input to the voltage

regulator. This is done so that the battery isn’t powering the circuit (discharging) while charging.

The voltage regulator steps down the battery voltage to 3.3 V to provide the necessary voltage to

the rest of the subsystems.

2.2.4 Output Subsystem

The output subsystem consists of the vibration motor. The motor is connected to an

output from the control subsystem. This output signals the motor when to vibrate.

Figure 10: Output Subsystem Circuit Schematic

The vibration motor circuit is a simple switching circuit with a BJT. It is biased in a way

such that when the microcontroller output is high, the vibration motor vibrates, and when the

microcontroller output is low, the vibration motor will not vibrate. The VIB_MOT signal will

only be high when the microcontroller determines haptic feedback is needed. In addition, to

avoid any voltage spikes from the motor, we included a capacitor in parallel to the vibration

motor, and to stop any reverse current, we included a diode in parallel to the vibration motor.
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2.3 Verifications

The following tables includes the design requirements, verification tests, and test

results:

Table 1: Sensor Subsystem Requirements and Verifications Table

Requirements Verifications Test Results

When the flex sensors
are in an unflexed
position, they should
give a raw ADC reading
of 0, and when the flex
sensors are flexed, they
should produce a raw
ADC reading of greater
than 150. We are just
looking for a large binary
change between unflexed
and flexed positions.

1. Connect the flex sensors
to the microcontroller
using a voltage divider
circuit as specified in
our circuit schematic

2. Ensure the flex sensors
are attached to the
fingers and are unflexed
(fingers are straight)

3. Measure the raw ADC
reading on the
microcontroller using
the serial monitor.
Ensure this measurement
is 0±5.

4. Flex all fingers into a
fist.

5. Measure the raw ADC
reading on the
microcontroller using
the serial monitor.
Ensure this measurement
is greater than 150.

6. Repeat steps 2-4 for 5
trials, and ensure
measurements are within
specified limits.

5 Trials of flexing and unflexing
fingers. Peaks refer to flexed

ADC value, and unflexed refers
to 0 ADC value.

The accelerometer
readings from the IMU
sensor should be accurate
to within ±5% when
measured under the same
motion.

1. Connect the IMU to the
microcontroller and
establish the I2C
communication between
the 2 devices

2. Place the IMU flat on a
desk with the z-axis

Trial x y z

1 1.00 .98 1.01

2 1.00 .98 1.01

3 1.00 .98 1.01
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facing up. Note down
the accelerometer value
for the z-axis (this
reading should be
around 1g).

3. Place the IMU flat on a
desk with the y-axis
facing up. Note down
the accelerometer value
for the y-axis (this
reading should be
around 1g).

4. Place the IMU flat on a
desk with the x-axis
facing up. Note down
the accelerometer value
for the x-axis (this
reading should be
around 1g).

5. Repeat steps 2-4 for
another 4 trials.
Calculate the error
(percent difference) for
each axis, compared to
the first trial.

6. Then calculate the mean
error for each axis from
each of the trials. This
mean error should be
less than 5%.

4 1.00 .98 1.01

5 1.00 .98 1.01

Mean
Error

0% 0% 0%

Mean Error of IMU Acceleration
Data Across 5 trials for X,Y, and

Z axis

Table 2: Control Subsystem Requirements and Verifications Table

Requirements Verifications Test Results

When the RESET
button is pressed,
the
microcontroller is
power cycled.

1. Connect a DC 3.3V power
supply to the VDD pin of
the microcontroller.

2. Connect the channel 1
probes of an oscilloscope to
the enable pin of the
microcontroller and ground
of the microcontroller.

3. Measure the voltage of the
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enable pin. This should
measure 3.3V ± 0.1V.

4. Hold down the RESET
button. Ensure that the
oscilloscope reads 0V ±
0.1V on channel 1.

5. Release RESET button.
This should power cycle the
microcontroller (the
oscilloscope should now
read 3.3V ± 0.1V on
channel 1).

Microcontroller enable pin is held
high initially, goes low when reset
is hit, and goes back to high when

reset is released

When the GPIO0
button is pressed,
the bootloader in
the
microcontroller is
enabled.

1. Connect a DC 3.3V power
supply to the VDD pin of
the microcontroller.

2. Connect the channel 1
probe of an oscilloscope to
the GPIO0 pin of the
microcontroller and ground
of the microcontroller.

3. Hold down the GPIO0
button. Measure the voltage
on channel 1. It should read
0V ± 0.1V. This ensures that
we are in bootloader mode.
The GPIO0 button can now
be released.

Microcontroller GPIO pin is held
high initially and goes low when the
GPIO0 button is pressed, enabling
the microcontroller bootloader

Provide at least 2
mA current from a
GPIO pin in order
to switch on BJT
transistor to drive
the vibration
motor.

1. Connect a DC 3.3V power
supply to the VDD pin of
the microcontroller.

2. Connect pin GPIO21 on the
microcontroller to the base
node of the BJT transistor in
the vibration motor circuit
(specified in the figure 13).
Create the Vibration motor
circuit from figure 13.

3. Program the pin GPIO21 to
be an output pin sending out
a digital ‘1’.

4. Using a voltmeter, measure
the voltage drop across the
resistor R12 (470 ohm
resistor in figure 13). This

Voltage at Output of Vibration
Motor GPIO pin

2.292V / 470Ω = 4.8766 mA
4.8666 mA > 2 mA as specified in

verifications
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measured voltage divided
by 470 ohms should
produce a value greater than
2 mA.

When a
predetermined
gesture input is
provided to the
microcontroller
through the flex
sensors and IMU,
the
microcontroller
should be able to
correctly identify
the gesture 90%
of the time.

1. The gesture inputs that our
system will take are: up
swipe, down swipe, right
swipe, left swipe, and close
fist (refer to figure 8 for
more information).

2. Perform the first gesture 10
times and each time
determine if the gesture was
correctly identified in the
code (by using a print
statement). Ensure we get a
success rate of 9/10.

3. Repeat step 2 for the other 4
gestures. This will verify
that our thresholds set for
each gesture are correctly
tuned.

This is directly observed in normal
device operation. Refer to the
appendix for the demo video link.

Translate
identified gestures
into bluetooth
commands using
BLE protocol and
ensure these
commands can be
sent to a user’s
iPhone.

1. Establish bluetooth
connection between
microcontroller and an
iPhone using the bluetooth
protocol as specified in the
ESP32-WROOM
documentation.

2. Send each of our
predetermined gestures as
bluetooth commands
following BLE protocol for
music playback controls
(volume up/down,
play/pause, next/previous
track).

3. Ensure the commands are
correctly executed on the
iPhone when trying to
control music playback.

This is directly observed in normal
device operation. Refer to the
appendix for the demo video link.
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Table 3: Power Subsystem Requirements and Verifications Table

Requirements Verifications Test Results

The battery must
have a capacity of
at least 2.39 Ah (in
order to have a
battery life of at
least 3 hours).

1. Build the entire circuit with
the battery attached

2. Connect the terminals of
the battery to a voltmeter
and measure the output
voltage and ensure it is
above 3.7V.

3. Turn on the power switch.
4. Run the glove for 3

minutes, providing active
gestures for 20% of the
time.

5. Turn off the power switch.
6. Measure the change in the

output voltage of the
battery.

7. Extrapolate this data to see
how long it will take for
battery voltage to drain to
3.7V. Ensure this number is
above 3 hours.

Initial Battery Voltage: 3.8226 V
After 3 minutes with 33% active

use: 3.8206 V

4.2V - 3.7V = 0.5V
0.002V drop in 3 minutes

Thus, 0.5V drop will occur in
approximately 12.5 hours

The power switch
must safely
disconnect and
reconnect the
voltage regulator to
the rest of the
circuit. When the
power switch is in
the ON state, the
voltage regulator
should output a
voltage of 3.3V ±
0.1V.

1. Create the entire PCB
circuit.

2. Connect an oscilloscope to
terminal 1 of the power
switch (from figure 12) and
to ground.

3. In the ON state (switch is
connecting terminals 1 and
2 together), the voltage
reading should be 3.3V ±
0.1V.

4. In the OFF state (switch is
connecting terminals 2 and
3), the voltage reading

This is directly observed in normal
device operation. Refer to the
appendix for the demo video link.
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should be less than 1mV.

Total maximum
current draw for all
components must
be less than 1 A to
fit specifications.
Thus, the output of
our voltage
regulator must
supply a current of
less than 1 A to the
rest of the circuit.

1. Run device at max power
consumption (full flex)

2. Probe current output of
voltage regulator

3. Verify the current output is
well below 1A

22/6 ohms = 3.67 ohms
3.27V

When running at full power, the
current is maxed out at 893 mA.
This fits within the component

specifications.

Table 4: Output Subsystem Requirements and Verifications Table

Requirements Verifications Test Results

Vibration motor
vibrates when a
digital high is
provided from the
microcontroller and
the vibration motor
turns off when a
digital low is
provided from the
microcontroller.

1. Connect a DC 3.3V power
supply to the VDD pin of
the microcontroller.

2. Connect pin GPIO21 on
the microcontroller to the
base node of the BJT
transistor in the vibration
motor circuit (specified in
the figure 13). Create the
Vibration motor circuit
from figure 13.

3. Connect an oscilloscope to
pin GPIO21 of ESP32

4. Program the
microcontroller to send a
digital high to pin
GPIO21. Ensure the
voltage reading is 3.3V ±
0.1V. Ensure motor is
vibrating

5. Program the
microcontroller to send a
digital low to pin GPIO21.
Ensure that the voltage
reading is 0V ± 0.1V.

Vibration Motor Circuit Output
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Ensure motor isn’t
vibrating.

3 Costs

The average ECE graduate makes about $80,000 per year, which translates to roughly

$40 per hour. We worked about 12 hours per week. Not including spring break, that’s 15 weeks.

Since there are three of us, the total labor costs add up to around $21,600.

A table of all parts we ordered in the project along with their prices is in the following

table:

Table 5: Overall Costs Table

Quantity Part Price/part Price ($)
x1 ESP32 Dev Board 22.50 22.50

x4 ESP32 Microcontroller 2.84 11.36

x1 ESP32 Microcontroller 3.30 3.30

x1 Flex Sensor 6.50 6.50

x4 Flex Sensor 6.08 24.32

x1 IMU Dev Board 24.95 24.95

x1 Vibration Motor 2.25 2.25

x1 IMU 12.23 12.23

x11 Battery IC .73 8.03

x1 Battery 14.95 14.95

x1 USB-C Port .86 .86

x1 Linear Voltage Regulator 1.05 1.05

x3 Linear Voltage Regulator 1.16 3.48

x4 Power Switch .52 2.08

x1 micro-B USB Receptacle .46 .46

x1 USB-UART Bridge Evaluation Board 7.95 7.95

x1 USB-UART Bridge 5.70 5.70

x1 Gloves 8.99 8.99

x1 Velcro 6.99 6.99
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x1 PLA Filament 13.85 13.85

x1 Solderable Resistors and Capacitors 9.02 9.02

x1 Paracord 4.99 4.99

Total $145.81

4 Conclusions

By doing this project, we learned how to go through the end to end design of a project

from the brainstorming phase to a prototype. We learned how to test, do root-cause analysis, and

how to do verifications of a product using data.

Given more time and resources, there are a couple things we would change about our

design. First, we would add a battery-life indicator on the outside of the PCB encasing so that the

user knows when the battery is in need of a charge. Second, we would make the PCB smaller and

build a less bulky PCB encasing. Given the size of the PCB, it’s hard to get a small form factor

for the glove. If we were able to make the PCB and encasing smaller, the glove would look much

cleaner.
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6 Appendix

Demo Video Link:
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