

## Automated Sensor-Based Filtration System

Prithvi Saravanan, Omar Koueider, Karthik Talluri

05/01/2023




# Agenda

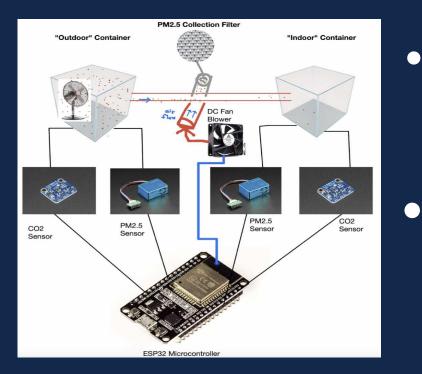
Overview Final Design PCB Design Results Questions











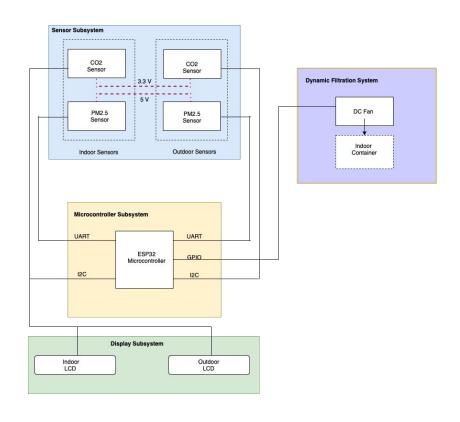

• Burning fossil fuel, industrial emissions and forest fires cause air pollution

• There are more types of toxic gases and particulates in the air



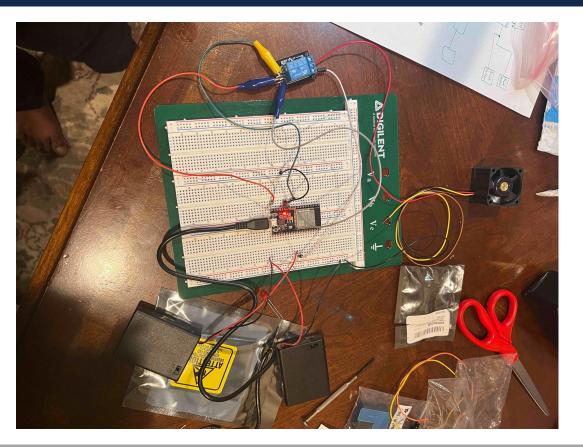
### **Solution**




A dynamic filtration system that adjusts according to particulate concentration

Keep the indoor particulate concentration constant.




There are 4 subsystems represented:

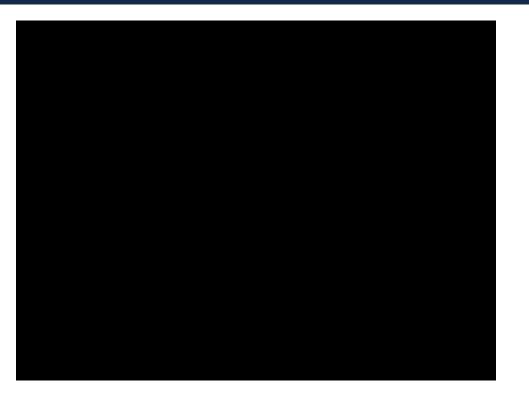
- Sensor Subsystem
- Microcontroller Subsystem
- Dynamic Filtration Subsystem
- Display Subsystem



**FAN FIRST** 






#### **Started with Fan**

- First device to be tested
- 12V Battery and a relay to protect ESP32
- Tested Pulse Width Modulation PWM to control speed

#### **Ended with Fan**

• Final piece was to add logic for fan speed control with data from sensors.

### PM2.5 Sensor - UART

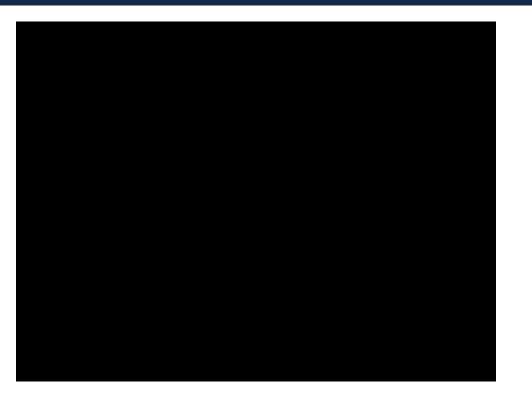


- 2 GPIOs for UART Rx and Tx per PM2.5
- Video shows running standalone program first time

### Deadline Day - 1 Issue - Checksum Error

- PM2.5 streams data almost every 1 second (0.95 secs approx)
- If loop doesn't read on time will result in checksum error
- Took a while to realize that we had added a delay to the integrated code
- Could have done polling

### Hello Display - I2C




#### Standalone Display program for 2 LCD displays.

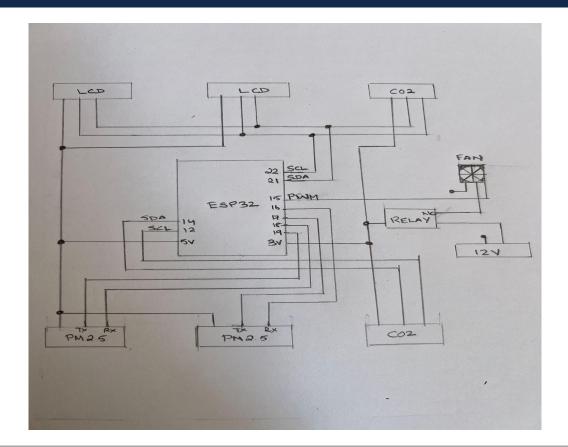
#### Messages randomly goes to both LCDs

- LCDs come with default I<sup>2</sup>C address 0x27
- Needed to hook up 2 LCDs to Default Serial Data(SDA) and Serial Clock(SCL) of ESP32
- On an I<sup>2</sup>C bus, addresses have to be different for each device
- Shorted address solder pads to change one LCD address

### CO2 Sensor - I2C



Ι


- Library support for 1 SCD30 CO<sub>2</sub> sensor in the system.
- Modified library to support multiple SCD30s.

#### Two CO<sub>2</sub> on default I<sup>2</sup>C ports not possible

- Default I<sup>2</sup>C address 0x61 but no solder pads to modify.
- I hooked one CO<sub>2</sub> sensor with LCDs
- Converted couple of GPIOs to act as SDA and SCL for the other CO<sub>2</sub> sensor.

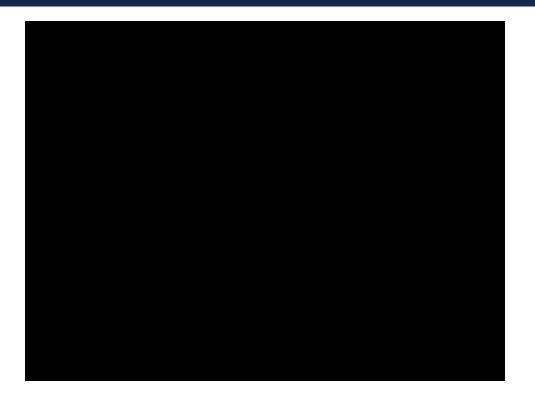
Circuit





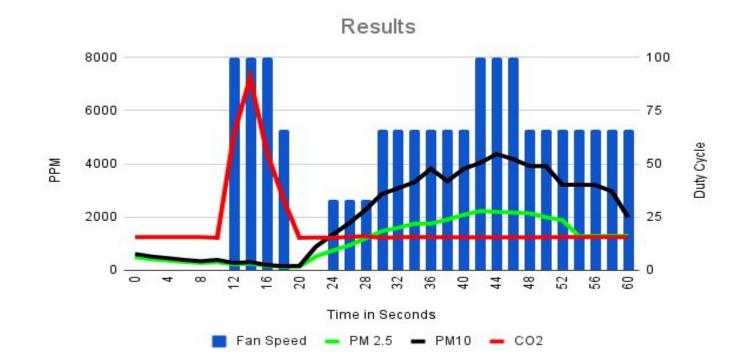


GRAINGER ENGINEERING


### **Integrated Microcontroller System**

Ι

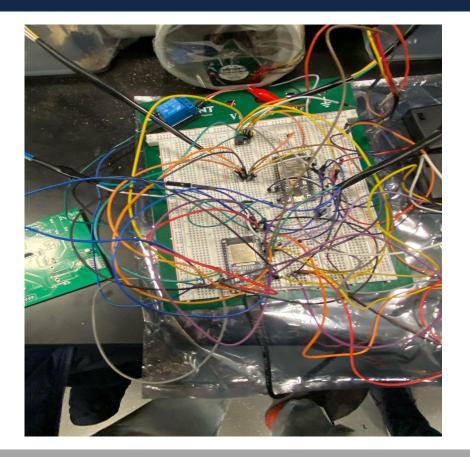
- Sensors fill up global data structures
- 4 ranges for PM2.5, PM10 and CO<sub>2</sub>
  - MODERATE DUTY CYCLE 0 FAN SPEED OFF Ο DUTY CYCLE 33 FAN SPEED LOW UNHEALTHY 0 DUTY CYCLE 66 VERY UNHEALTHY FAN SPEED MEDIUM Ο DUTY CYCLE 100 HAZARDOUS FAN SPEED HIGH 0
- PM2.5, PM10, CO<sub>2</sub> and FAN DUTY CYCLE are displayed on the LCD
- Power efficiency is achieved by turning the fan off at moderate levels


### **System in Action**





### **Graph from Sensor Data and Fan Speed**






ELECTRICAL AND COMPUTER ENGINEERING

GRAINGER ENGINEERING

### **Deadline Day Chaos**



- On demo day ESP32 fried
- Relay protecting ESP32 from 12V battery failed
- Borrowed an ESP32 and rewired in an hour
- Fried ESP32 is still on the breadboard hence the mess





## **Final Design**

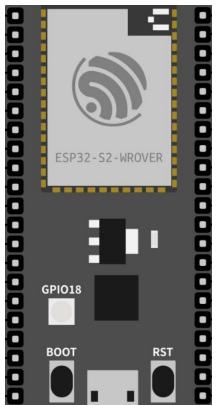
ELECTRICAL AND COMPUTER ENGINEERING



- The concentration of PM2.5 particles in the clean enclosure should be less than that of the outdoor enclosure by approximately 75%
- The concentration of CO<sub>2</sub> will determine whether air flow will speed up or slow down based on circulation
- The dynamic filtration mechanism must only start running when the PM2.5 or CO<sub>2</sub> particles reach a certain threshold






- 2 PM2.5 Sensors one indoor and one outdoor
- 2 CO<sub>2</sub> Sensors one indoor and one outdoor
- ESP32 Microcontroller
- 1 Airflow Fan
- 1 Filter Fan blower supporting PWM function and relay
- 2 LCDs one for indoor sensor data and one for outdoor

sensor data



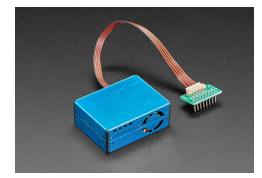
### **Microcontroller subsystem**

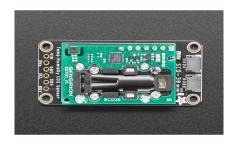
- The ESP32 Microcontroller (MCU) is central to the filtration system
- Initializes UARTs for PM2.5 sensors
- Initializes I<sup>2</sup>C with device addresses to drive CO<sub>2</sub> sensors and LCD displays
- Initializes fan frequency and PWM to control speed
- In a loop reads data from the sensors
- Determines the fan speed based on the readings
- Ramps up or ramps down the fan speed
- Displays the sensor data on the LCD





### **Filtration subsystem**


- The Sanyo Denki fan is the key driver for the filtration subsystem
- Supports **Pulse Width Modulation** (PWM) for speed control
- Based on the sensor readings the MCU controls the fan's duty cycle
  - Thresholds:
    - PM2.5: 250, 500, 750, 1000 [mg/m<sup>3</sup>]
    - CO2: 1400, 1700, 1900, 2200 [parts/million]
- The fan redirects the air inflow to the filter
- A relay is used between MCU and fan due to the voltage difference






### Sensor subsystem

- PM2.5 Air Quality Sensor that senses particulate matter
- One PM2.5 outdoor and one indoor
- 2.5µm and 10µm readings of outdoor PM2.5 used by microcontroller subsystem
- Connected to MCU using UART

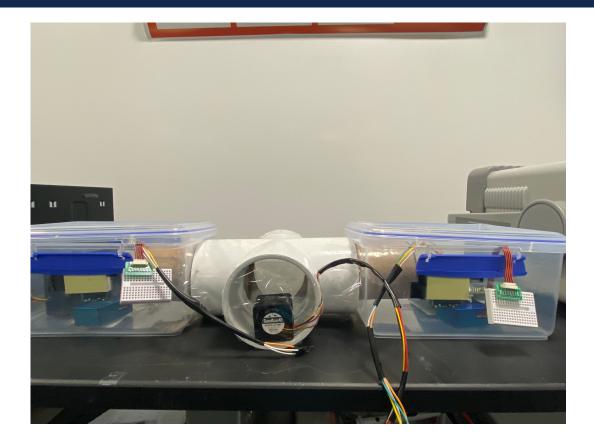




- SCD30 CO<sub>2</sub> sensor that senses Carbon Dioxide
- One SCD30 outdoor and one indoor
- The SCD30 readings is used by microcontroller subsystem
- Connected to MCU using I<sup>2</sup>C



- There are two LCD displays
- One displays outdoor CO<sub>2</sub> value, PM2.5 particulate and PM10 particulate values and Fan duty cycle
- The other displays CO<sub>2</sub>, PM2.5, and PM10 values of indoor
- The LCDs are driven from MCU through I<sup>2</sup>C




**GRAINGER ENGINEERING** 



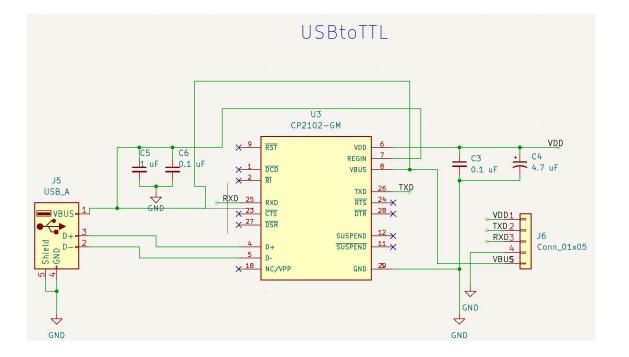
### Mechanical Design









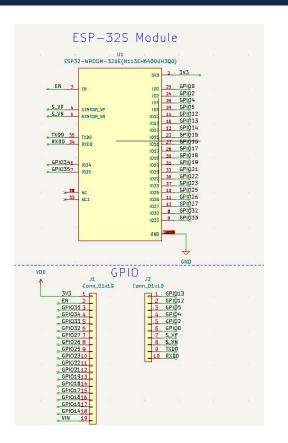

## **PCB** Design





### **Power**

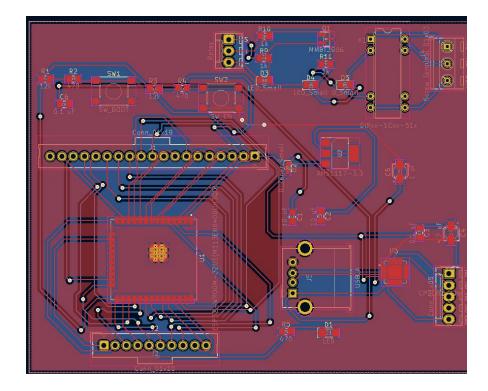
- 5V is supplied to the ESP32 microcontroller
- We initiate a step down from 24V to 5V




### **Microcontroller**

- We used an ESP32 microcontroller for the microcontroller subsystem
- The GPIO pins for UART, TX, and RX in particular were used

to communicate with the subsystems


- Each of them are used for the sensors
- Specific GPIO pins were used to relay fan speed and communicate with the voltage regulator (relay)





### MISC

- USB-A for ease of programming
- Went unused in final project





## **Results**

ELECTRICAL AND COMPUTER ENGINEERING





### What Went Well?

- Microcontroller/Sensor subsystems went very well with some minor hiccups
  - Assigning different I<sup>2</sup>C address to LCDs shorted
  - Modified CO<sub>2</sub> sensor library code to accommodate 2 sensors and on 2 different pins
- Filtration subsystem performed extremely efficiently
  - Fan was changing according to data from both sensors
  - Clean environment stayed clean
- Display subsystem did was constantly displaying correct data





### What Went Wrong?

- D Day -1 Adding an inadvertent delay caused checksum failures when reading PM2.5 streaming data through UART
- PM2.5 streams data close to every second. If UART read is not done every second, it causes checksum errors
- D Day 9:00 AM The relay that is between the fan and ESP32 microcontroller protecting the ESP32 from 12V battery gave up and ESP32 died
  - We borrowed an ESP32 at 12:00 PM and wired all the connections for our demo at 1:00 PM
  - The burnt ESP32 with its connections was left on the board (breadboard looked messy)
- USB to TTL PCB did not work we couldn't get the exact components and the board arrived late making it difficult to debug



• Implement dynamic filtration capabilities with the second CO<sub>2</sub> sensor

• Use forced convection and create consistent air flow through the clean enclosure so that stale air is removed even more consistently

• Extend capabilities to PM1.0 particles





## **Questions?**

ELECTRICAL AND COMPUTER ENGINEERING





### The Grainger College of Engineering

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN