
Fetcher Car for Ball Sports
ECE 445 Design Document

Project Team #72

Louie Davila, Yinshuo Feng, Patrick Sarad

TA: Sainath Barbhai

Contents
1 Introduction 3

1.1 Problem and Solution . 3

1.2 Visual Aid . 4

1.3 High-Level Requirements . 4

2 Design 5

2.1 Block Diagram . 5

2.2 Physical Design . 5

2.3 Subsystem Descriptions . 9

2.3.1 Power Subsystem . 9

2.3.2 Control Subsystem . 10

2.3.3 Sensor Subsystem . 11

2.3.4 Fetching Subsystem . 13

2.4 Tolerance Analysis . 15

3 Cost and Schedule 17

3.1 Cost Analysis . 17

3.2 Schedule . 18

4 Discussions of Safety and Ethics . 19

2

1 - Introduction

1.1 - Problem and Solution
It is well known that athletes all around the world train for hours every day in order to hone their
skills and become the best at their sport. Of course, no matter the training regime, athletes
simply can’t train all day and have to partition their time accordingly in order to maximize the
gains they can make. As such, we can see here that time is a key factor when it comes to
practicing. This is especially the case when people have to repeat a certain skill for hours in
order to master it. Now, it is important to note that this isn’t always the case. For instance,
pro-athletes train for a living so they have more time to hone their skills. Younger athletes, on
the other hand, often have an extremely tight schedule and have to fit in their training with
school work or something similar. Our project aims to help these athletes in their training. More
specifically, our project is designed to help athletes that train in ball sports.

In ball sports, many athletes can probably attest to both the annoyance and time-consumption
of having to collect their ball after practicing a certain skill. For instance, in basketball, when
practicing your shots, you may find that once you shoot all the balls that you had on standby,
you have to go and pick them all up and bring them back to your initial training position. As
another example we have tennis, where players have to go and pick up all of the tennis balls
they used to practice their serves. The collection of these balls is a huge waste of time and, in
many cases, takes more time than the actual act of practicing the skill. We intend to solve this
problem by using a small, lightweight car with pincers that can watch for a ball from a safe
position and fetch the ball when it leaves a designated region for practice. After fetching the ball,
the car will return the ball to the user and will continue waiting for the next ball. This solution is
the first of its kind in the sense that, with more time, manpower, and resources, the design could
be expanded upon and refined for use in any ball-oriented sport.

3

1.2 - Visual aid

Figure 1: Process of Fetching a ball on a basketball court

Our project focuses on three main stages in order to successfully complete its task. The first
stage involves the fetcher car searching for balls from a designated “waiting” point. Once a ball
has been found, the car will proceed to follow the ball till it manages to catch it. This process is
outlined by the yellow line in figure 1. Upon catching the ball, the car will begin to search for the
user and will return the ball to them as soon as they are located. This is outlined in figure 1 with
the red line. More specifically, the fetcher car will be located at the orange point and will follow
the red path once the user is found. After this process is completed, the drone will follow the
blue line (as shown in figure 1 again) till it reaches its “waiting” point and will once again begin
the process from the beginning.

1.3 - High-level requirements
Our project will focus on the following high level requirements in order to solve the given
problem in 1.1:

1. The fetcher car can locate the ball, the user, or the waiting location as necessary in the
current context of the program within 10 seconds of beginning a search.

2. The fetcher car will be able to run with the wheels at maximum power output for at least
45 minutes before needing to recharge.

3. The fetcher car will be able to capture and return a ball to the user within 45 seconds of
the ball becoming acquirable.

4

2 - Design
2.1 - Block diagram

Figure 2: Fetcher Car Block Diagram

2.2 - Physical Design
The entirety of our project will be laid out onto a 4-wheel car chassis. This chassis contains 2
floors, each of which will be used to hold the corresponding components of each subsystem.
Both levels have the same dimensions of 10.6 x 6.6 inches with a separation of 1.8 inches
between them. Figure 3 displays the layout of the chassis with the corresponding dimensions.

Figure 3: Physical dimensions of car chassis

The first level of the chassis will primarily be used to hold the battery and the sensors. We will
be using a rechargeable battery with the approximate dimensions of 2.8 x 2.8 x 2 inches near
the back of the car. This is indicated by the red box in figure 4. In addition to this, we will have 2

5

motors powering pincers at the front of the chassis. The placements of these motors are
indicated by the blue boxes in figure 4. These motors are 1.57 x 0.78 x 1.43 inches and won’t fit
between the levels of the chassis. As such, we will either keep them slightly in front of the
chassis or we will adjust the top level of the chassis accordingly so that the motors can fit
without issue. The size of these motors can be seen in figure 5 where the golden rod indicates
the height of the second level of the chassis. The final components on this floor will be a pair of
ultrasonic sensors as well as a camera. The camera will be placed between the 2 motors, as
indicated by the green box. The ultrasonic sensors will fit beneath the first level so that they can
be placed approximately level to the pincers. The relative positioning of these ultrasonic sensors
can be seen in figure 5.

Figure 4: Component placements on first floor of chassis

6

Figure 5: Positioning of ultrasonic sensor and pincer motor

The pincers need to be able to completely encompass a tennis ball and partially encompass
balls of slightly bigger size. As such, the pincers need to be both spaced out at least 2.6 inches
and need to be at least 2.6 inches in length in order to match the dimensions of a tennis ball. Of
course, this would mean that we would be tightly holding the tennis ball which would add some
friction working against the wheels of the car. The solution to this is to have the pincers both
spaced out more and to have them be far longer than the ball to allow some space for the ball to
move. We plan on spacing the pincers about 5 inches apart and we plan on them being about
5-6 inches in length. The pincers will be attached to the motors indicated by the blue boxes in
figure 4. Figure 6 displays the pincers when opened in front of the chassis. Figure 7 displays
how the pincers will enclose a ball.

7

Figure 6: Pincer placement and dimensions

Figure 7: Pincers in closed position

Finally, on the second floor of the chassis we will place our pcb and raspberry pi. Due to various
holes within the chassis, the exact positioning of the pcb and raspberry pi won’t matter too
much. These holes will allow us to place wires within the chassis without issue and hook up
everything with ease. With that in mind, we will place the raspberry pi near the front of the
chassis and place the pcb right behind it. Having the raspberry pi closer to the camera will make
it easier to connect the 2 while having the pcb near the center will make the wiring of all the

8

motors more contained. Figure 8 shows the positioning of the 2 on the physical chassis, with the
red box indicating the raspberry pi and the blue box indicating the pcb.

Figure 8: Component positions on the second floor of the chassis

2.3 - Subsystem Descriptions

2.3.1 Power subsystem
This block will be responsible for providing power to the PCB, motors, and raspberry pi. It will be
responsible for ensuring that the design can move quickly enough to capture a ball within the
time limit and remain active for at least an hour without the need for a recharge.
Requirements
This subsystem must provide a constant supply of 2.5A-3.5A at 3.3V-5.5V to the Raspberry Pi
for the duration of the time that the design is in use. It must also provide 1mA-3mA at 3V-5.5V to
the ATmega328P microcontroller when idle and 9mA-20mA at 3V-5.6V when active. The
ultrasonic sensors must be provided with a constant 13mA-17mA each at 4V-5.5V each so that
they remain available for use at any time. The pincer motors will be provided with 6mA-9.4mA
(idle) and 160mA-185mA (active) at 4.8V-6V each so that they have enough power to move and
capture the ball. The car motors will use 0mA-20mA (idle) and 0.4A-1.5A (active) at 6V-8.4V
each so that they can carry all of the hardware needed for the design (including the ball). In
order to be able to carry this much weight, the car should be able to exert at least 4N of force.
The motors on the right side of the car will be connected to each other in parallel, and the same
will be done for the left side motors. The 2 pincer motors will also be connected to each other in
parallel. Each pair of parallel motors will be controlled via its own designated H-bridge. Each
H-bridge must take 8V-36V as input, and output up to 2.8A. The poles of each pair of motors will
be connected to one of the 2 output pins on the H-bridge to allow for bidirectional current. The
input to each H-bridge must be connected to a battery. In order to reduce the voltage to the

9

range of 6V-9V, resistors must be connected to either one of the output pins of each H-bridge.
For the 2 car motor H-bridges a sufficient resistance, depending on the battery chosen, must
connect the motors to an output pin of the H-bridge. For the pincer motor H-bridge, a sufficient
resistance depending on the battery chosen must be connected in series so that 260mA-370mA
can be drawn by the pair of motors at 4.8V-6V.
Verification
Equipment: All measurements relevant to the power subsystem will be taken using a multimeter
(to measure voltage and current) and a scale (to measure the weight/mass of the car). A
user-controlled, RC version of the control subsystem will be used to perform unit tests. This RC
version will be hosted on the Raspberry Pi.
Procedures:

- Raspberry Pi: Look up the pinout for the Raspberry Pi being used (in our case,
Raspberry Pi 4B). Next, turn on the battery for the Pi. Measure the current and voltage
across the 5V and GND pins. Start running the fetching program (image processing and
communication with PCB). measure the voltage and current the same way as before. If
the voltage and current are consistently within the expected range (given fully charged,
working battery), then this requirement is satisfied.

- ATmega328P and sensors: With the Pi off and the motors detached, check the voltage
and current at the VCC and GND pins of the microcontroller and the 2 sensors. Connect
the Pi and run the fetching program. Check the voltage and current for the
microcontroller and sensors the same way as before. Connect the 3 pairs of motors and
check the voltage and current the same way as before. If the voltage and current are
consistently within the expected range (given fully charged, working battery), then this
requirement is satisfied.

- Motors:
- Provide power to the car and remove the wheels. Prepare the multimeter to

measure the voltage and current across the left-side motors, control the left-side
motors with the manual controls, and record the current/voltage observed.
Repeat with the right-side motors. Repeat again for the pincer motors. If the
measured current and voltage for each pair of motors is within its respective
required range, then the requirements for the power subsystem with no extra
weight are satisfied.

- Provide power to the car and attach the wheels. Use the manual controls to try to
move the car. If the motors can supply enough force to move the car, then they
can supply at least 4N of force, meaning that the requirements for the power
subsystem with maximum expected load are satisfied. The pincer motors don’t
need to be tested again, as their movements will not be limited by the ball that
they are enclosing.

2.3.2 - Control Subsystem
This subsystem will be responsible for the transmission of all signals involved in the operation of
the motors, and it is implemented on the microcontroller. The microcontroller will take input
signals from the Pi, and the output signals will be to any combination of the 3 H-bridges.
Requirements

10

In order to conserve power, the nSLEEP pin on each H-bridge will be activated when the
corresponding motors haven’t been used for 1-5 minutes. We expect this to save up to 3.2-4.8
mAh for each motor (assuming that the motors are never used for one whole hour of the design
being active). The absolute maximum value of the current at the microcontroller’s I/O pins is
40mA, but our design does not have the ability or need to supply current at or above this value
to any of the I/O pins. The microcontroller will use 9 total outputs to control all of the
H-bridges/motors. The outputs from the microcontroller to each H-bridge will be the ENABLE,
PHASE, and nSLEEP signals. ENABLE supplies power to the motors when high and doesn’t
when low. PHASE makes the H-bridge supply the input voltage through the Vout+ pin when high
and the Vout- pin when low. The PHASE pin will use -20-20 microAmps at 0.3V-2.5V, the
ENABLE pin will use 10-105 microAmps at 0.3V-2.5V, and the nSLEEP pin will use -5-55
microAmps at 0.3V to 3.0V. The microcontroller will have enough power (from the power
subsystem) to send signals within each of these ranges even after the battery can no longer
supply sufficient power to move the motors. The inputs to the microcontroller from the Pi will be
in the range of 0mA-20mA at 2.7V-3.9V, which is within the expected range of current/voltage
values for inputs to the GPIO pins for Vcc = 2.7V-5.5V.
Verification
Equipment: Measurements relevant to the control subsystem will be done using a multimeter. A
user-controlled, RC version of the control subsystem will be used to perform unit tests. This RC
version will be hosted on the Raspberry Pi.
Procedures:

- Initial setup: Connect the battery to the car, run the RC program on the Pi, and remove
the wheels.

- Microcontroller:
- Without using the motors (all 3 pins low for all 3 H-bridges), check the voltage

and current across the microcontroller (VCC to GND) and across the 3 output
pins to the H-bridges. If all 10 current measurements and all 10 voltage
measurements are within the required ranges for each connection, then the
requirements for the microcontroller at low power output are all met.

- Repeat the previous step with all 3 pins high on all three H-bridges (reverse the
car and activate the pincers). If all 10 current measurements and all 10 voltage
measurements are within the required ranges for each connection, then the
requirements for the microcontroller at high power output are all met.

2.3.3 - Sensor Subsystem
This block will use different sensors in order to identify key objects throughout the duration of
the fetcher car’s procedure. A camera will be used in order to identify the ball, the user’s
position, and the position of the designated “waiting” point. The ball will be given a special color
that is unique to the given scenery so that the camera can easily distinguish it from the rest of
the environment and focus in on it. The user and the “waiting point” will be given APRIL tags so
that the camera can locate which of the 2 it has to travel to after the fetcher car either catches
the ball or drops it off. Once the fetcher car gets close to the ball, ultrasonic sensors will be used
to figure out when the pincers should close in on the ball.
Requirements

11

This subsystem has 2 types of sensors that each have to send the appropriate data to the
raspberry pi used in the fetching subsystem. The first sensor type is a camera. The main design
considerations for our camera include frame rate and resolution. Since we are tracking moving
objects, it is important that the frame rate we choose for our camera is high enough so that the
target object never falls outside the scope of the camera. To make the car able to see both in
the front and back, we will have two cameras in total, and a camera multiplexer will be used for
connection. In addition to this, we need to have the proper resolution scaling so that we can also
differentiate between the pixels of the target we are tracking and the background that the target
is located in. Because we have different uses for the front and rear cameras, the front camera
will use Raspberry Pi Camera Module V3, which has 66 degrees field of view horizontally, and
allows us to crop in for far objects based on its 4.6k image resolution. The rear camera will be
using Raspberry Pi Camera Module V3 Wide, which has 106 degrees field of view, wider
enough to detect everything in the back, and acknowledge the car to turn around for a better
scan. In the case of the user and the “waiting point”, we can keep the resolution and frame rate
relatively low as both of these targets will have little to no movement. The ball, on the other
hand, will be moving at varying speeds depending on how it is thrown. Since we are fetching
balls that are often rebounding off of different surfaces, we can guarantee that the ball will not
be moving at high speeds. As such, we estimate that the minimum frame rate we can use is 2
frames per second. This should be sufficient in many cases as we are mainly using our fetcher
car in indoor environments where walls will keep the ball relatively close to the area of training.
In terms of resolution, we have to consider the storage space of the raspberry pi. Since the
raspberry pi we are using has 8GB ram, we can ensure resolutions up to 8 megapixels, which
should be sufficient for our given testing environment. The system will switch to the ultrasonic
sensors when the car gets close enough to the ball, in other words, when the ball appears to be
big enough in the camera, to get an accurate measurement of when to catch the ball. The
ultrasonic sensors will take their TRIG inputs from the Raspberry Pi, and the ECHO outputs will
be connected to the microcontroller. This will preserve pins on the microcontroller needed for
the pincer motors in the control subsystem.

Verification
Equipment:Measurements of the effectiveness for cameras and ultrasonic sensors to detect the
ball object. We do the test using real simulation, connect the camera module and ultrasonic
sensor to the Raspberry Pi, put the tennis ball in a real basketball court, and test its
effectiveness. The test version will be close to the final setup.

Procedures:
We will put the ball in several different places in basketball field, such as right under the basket,
near each of the four corners, at the top of the key point, wing, and high post, to simulate the
movement of the ball from throwing out of hand, dropping down to the ground, getting picked up
by the RC Car, and returned to either the user or ball storage box.

For the camera, to lower the risk of system failure so far, we will connect the camera to the
Raspberry Pi one by one, instead of using a multiplexer. First we'll be testing the effectiveness
of the rear wide camera’s ability to detect the existence of the ball, and we only want a 70%

12

confidence in detecting it. Then, we will connect the front standard camera module, and we
want to make sure there is a 95% of detecting confidence.

Last, we will be testing the correctness of detecting the ball within 40 centimeters. The
ultrasonic sensor will connect to the Raspberry Pi via breadboard, and we put the ball on the
ground, the same as the picking up process. We will test every 5 centimeters within the 40
centimeters range till 10 centimeters.

2.3.4 - Fetching Subsystem
All of the logic needed in order to utilize the control and sensor subsystems with the objective of
acquiring a ball within a given time frame will be implemented in the fetching subsystem. This
subsystem will consist of 2 software components. The first will be on the Raspberry Pi. This first
component (C1) will be responsible for:

1. Defining the current objective/destination.
2. Identifying the position of the objective/destination relative to the camera view and

relaying this information to the microcontroller with 2 bits.
3. Activating the TRIG inputs on the ultrasonic sensors to send information about the

distance between the objective and the front of the car when the objective is not in the
camera view or in the center of the bottom half of the screen.

The second software component (C2) will be on the microcontroller. It will be responsible for
deciding the direction in which the motors must move in order to get in position to acquire the
ball. This will be done by applying logic to the input data from the Pi and the sensors.
Requirements
C1.1 will be implemented as a Finite State Machine. The state of the FSM and the information
necessary to handle state changes will be stored as global variables. These variables will be
updated whenever an image has been processed completely, and checked whenever image
processing starts on a new image. In order to accomplish C1.2 and C1.3, we will divide the
images from the camera into upper and lower halves and 3 vertical portions of equal size (total
6 segments of the image). If the objective/destination is within the camera view, then the
destination is designated as present in the segments of the image in which it was detected.
These designations will be kept in an array of 6 values, which will be discarded if the state
changes or replaced when a new image has been fully processed. In order to keep up with the
minimum frame rate of the camera, the image processing, state maintenance, communication
between the Pi and the microcontroller, the logic on the microcontroller for deciding how to
move the motors, and the code to communicate with and use the H-bridges must take less than
500 ms to execute in order and to completion on a given a single image. We expect the Pi
software to take at least 100 ms on average to execute to completion, and we expect the
microcontroller software to take 50% to 80% of the time taken for the Pi software to execute to
completion on average.
States and transitions
State 1 - Wait: It will be assumed upon activation of the design that the car has been placed in
its designated location where it will wait for a fetchable ball to enter the camera’s view. The car
will only transition out of this state when an apparently acquirable ball is detected. The car will
return to this state/location once when it has completed a ball fetching task successfully, failed

13

to acquire a fetchable ball within 30 seconds of said ball becoming acquirable, or failed to
acquire an apparently acquirable ball. For our purposes, a “fetchable” ball is any ball detected at
or below a user-selected lower threshold on the camera’s view. An “apparently acquirable” ball
will be any ball that stays within at least one of the 6 regions on the screen for at least 30
seconds, but can’t be reached by the car after 1 minute of the car attempting to reach it. An
“acquirable” ball is any ball that can be reached by the car within 1 minute of attempts, but
cannot be acquired after 30 seconds of being reached.
State 2 - Chase: When a ball becomes apparently acquirable in state 1, the design will transition
to this state. The car will use the camera and control subsystem to navigate to the ball from a
distance outside of the ultrasonic sensors’ range of about 0.5 square meters in front of the car.
Once the ball is observed at or beneath a certain (non user-specified) threshold of the camera’s
view, the Pi will activate the ultrasonic sensors to send data to the microcontroller. If the car
can’t reach the ball within 1 minute in this state, then the fetching subsystem will transition to the
“Return” state. Otherwise, the fetching subsystem will enter state 3.
State 3 - Acquire: When the ball is within range of the ultrasonic sensors and in one or both of
the horizontal center regions of the screen (a.k.a when the ball has been reached in state 2), the
fetching subsystem transitions to this state. In this state, the car will adjust itself so that the ball
is centered in the lower region of the 2 regions at the horizontal center of the screen, and so that
the ball’s distance from the ultrasonic sensors is small enough that the pincers can close around
it. We expect this range of acceptable distances from the sensors to range from 3cm-8cm
depending on the final placement of the sensors in the design and the length of the pincers. The
car will not spend more than 45s in this state. If the time expires before the ball is acquired, then
the fetching subsystem will enter the “Return” state. Otherwise, the car will enter state 4.
State 4 - Fetch: When the ball is acquired in state 3, the Pi will stop triggering the sensors and
use a second, rear-mounted camera to search for the APRIL tag that identifies the user. When
the APRIL tag has been located, the car will travel to the user, release the pincers and enter the
“Return” state.
Return: When the car fails to complete states 2 or 3, or when it successfully fetches the ball for
the user, the fetching subsystem will enter the Return state. In this state, the car will use the rear
camera to search for the APRIL tag that identifies the initial waiting location decided by the user.
Upon identifying the waiting location, the car will traverse to it and align itself so that the APRIL
tag is aligned near the center of the horizontal central region of the rear camera’s view.
Verification
Equipment: The measurements taken for the fetching subsystem will be divided into 2 parts:
one for the Pi software and GPIO output time, and one for the microcontroller. We will do final
measurements on the Pi using the attached cameras, but measurements could also be taken
using sample images on a VM configured to match the specs of a standard Raspberry Pi 4B.
The microcontroller software will be tested and measured using manual control inputs from the
Pi. During testing, we will have the Pi generate an extra output at a reserved GPIO pin
whenever it changes its output signals to the microcontroller, which will power an LED when
activated.
Raspberry Pi: Since the cameras are attached directly to the Pi, the speed of the code can be
tested by running the code using GDB in an IDE such as VS Code. A breakpoint must be set at
the last line of code executed in order to fully process an image and send control signals to the

14

GPIO pins. Run the code with this breakpoint set. If the code stops at the breakpoint in at least
100 ms and leaves about 50%-80% of its execution time for the microcontroller software to run
to completion within less than 500 ms, then the requirements for the Pi software are satisfied.
Microcontroller: Remove the wheels from the car. Since the microcontroller software can’t be
seen on a screen or controlled with GDB, we will use a special approach for testing it. We will
record video of ourselves manually sending signals to the microcontroller from the Pi. The
moment that the LED lights up will be the start of the microcontroller software’s runtime, and the
moment that the motors start to turn will represent the end. If the difference between these 2
times is less within the specified range of 50%-80% of the Pi software’s runtime and the sum of
the microcontroller’s runtime and the Pi’s runtime is less than 500ms, then the requirements for
the microcontroller are satisfied.

2.4 - Tolerance Analysis
One of the main problems we might come across is the total weight of our fetcher car. This is
due to the fact that an increase in weight will mean that the motors will need to pull more current
from the batteries in order to move. If there is too much weight, then the wheels won’t be able to
rotate quick enough to both move the chassis and push the ball. Additionally, if the current that
the wheels are taking is too high, then the battery will be depleted quickly and the total run time
of the fetcher car will be very low. As such, we analyzed the current a single motor would
require when under different loads. The table from figure 9 shows the current that a single wheel
needs when there is no weight on the car.

Voltage (V) Current (A)

2.5 0.15

3 0.15

3.5 0.15

4 0.15

4.5 0.16

5 0.17

5.5 0.17

6 0.17

8 0.18

Figure 9: Table of Voltage vs Current of the motor (motor rotated freely in the air)

A few things can be noted from the table above. First of all, we can see that the motor began to
operate when given 2.5V of power. At this voltage, the motors required 0.15A of current and
were rotating at a slow rpm. As we increased the voltage of the power source, the rpm of the
motors increased as well, however the current required stayed relatively the same.

15

When weight was finally added to the chassis, the motor began to pull more current from the
power supply. Figure 10 displays a graph of current vs weight at different voltage levels. This
data was collected by having a motor connected to the chassis and having the wheel on that
motor drive into a wall. We then took note of the current required by the motor as more weight
was added onto the chassis. In this stationary position, we concluded that if the wheel was still
rotating that it would still be able to push a ball. Now, since the motor was already pushing
against a stationary object, the overall current required increased to around 0.21 amps (pushing
into the wall without any weight). The required current in this situation differed from when we
had the wheels in the air, displaying how making the car push anything already increased the
current. With the car in its stationary position, we began to add weight to the car and, as the
weight increased, we noticed that the required current also increased.

Figure 10: Graph of Current vs Weight at different Voltage Levels

As weight increased, the required current increased as well. Additionally, as the voltage applied
was increased, the motors used more current in order to maintain their speeds. Since we plan to
test our fetcher car with balls up to the size of a volleyball, we can conclude that the 4 motors
we have will be strong enough. This is due to the fact that a volleyball weighs around 0.28 kg,
which is far less than the weight that was tested with a single motor. We also will be able to
handle all of the weight added to our car which shouldn’t be more than 1kg. Again, we can say
this with confidence as a single motor was able to handle weights up to 0.8 kgs with a
reasonable amount of current drawn from the power source.

16

3 - Cost and Schedule

3.1 - Cost Analysis
We found that the typical post-graduate salary of an ECE student at UIUC is about $90,000.
Based on this value, the hourly salary we would receive would be about $44. Each individual on
our team would make $44/hour x 2.5 x 60 (hours to complete) = $6600. The total labor cost
would then be 3 x $6600 = $19,800 for all 3 group members.
For the parts we plan on using, the total cost comes out to $310.95 which was calculated using
figure 11. Assuming we add additional costs from 5% shipping tax and 10% sales tax, we get a
new total of $357.60. Adding up labor costs and part costs, our final project cost would be
$20,157.60.

Description Manufacturer Part # Quantity Cost

Ultrasonic
Sensor

SparkFun SEN-15569 2 $9.00

Raspberry Pi
Camera Module
V3

Raspberry Pi SEN-21331 1 $25.00

Raspberry Pi
Camera Module
V3 Wide

Raspberry Pi SEN-21332 1 $35.00

Raspberry Pi 4
Model B

Raspberry Pi DEV-16811 1 $75.00

Tenergy Li-ion
Rechargeable
Battery Pack

Tenergy Power P/N 31827-05 1 $140.00

DC/DC Buck
Converter

Mouser
Electronics

495-TEC2-1211
WI

1 $11.19

Resistors Mouser
Electronics

652-PWR163S-
25-2R50F

4 $15.76

Figure 11: Table of Components used in Project

17

3.2 - Schedule
The link below is a Gantt chart that displays the weekly schedule we plan to follow as well as
what each individual will be working on. A few screenshots of the chart are displayed in figures
12 and 13 to show off a quick view of what they look like.
Link:
https://docs.google.com/spreadsheets/d/11F2bXZBZZVbTl17Cs0ifYs-3oXvgZa6a/edit?usp=shar
ing&ouid=103313886692512844099&rtpof=true&sd=true
Images:

Figure 12: Screenshot of Gantt Chart

Figure 13: Screenshot of Gantt Chart

18

https://docs.google.com/spreadsheets/d/11F2bXZBZZVbTl17Cs0ifYs-3oXvgZa6a/edit?usp=sharing&ouid=103313886692512844099&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/11F2bXZBZZVbTl17Cs0ifYs-3oXvgZa6a/edit?usp=sharing&ouid=103313886692512844099&rtpof=true&sd=true

4 - Discussions of Safety and Ethics
Our experiences with working on a design project of this kind are limited and, as such, we will
have to make sure that the work we undertake is assigned appropriately to each individual in
the group according to their experiences and/or their desire to learn. However, this will make it
the responsibility of each individual in the group to clearly state the limitations of their
experience, knowledge, or other factors that would contribute to completion of the project before
the due date. This falls under IEEE code of ethics section I.6 that states that we should
“maintain and improve our technical competence and to undertake technological tasks for
others only if qualified by training or experience, or after full disclosure of pertinent limitations.”
With our project, there are concerns relating to our pincers. Since they will be powered by
motors that have a decent output torque, we have to make sure that they don’t injure any users
or potential bystanders. We will do so by designing rounded pincers that won’t be able to cut or
pierce any individual. On top of that, we plan on closing the pincers at a slow enough pace so
that individuals near them have enough time to back away (i.e., pull away their fingers if they
see the pincers closing). Following such procedures will ensure that we follow IEEE code of
ethics section I.1 that states that we should “hold paramount the safety, health, and welfare of
the public, to strive to comply with ethical design.”

19

References

1. IEEE Code of Ethics, IEEE, 2020. [Online]. Available:
https://www.ieee.org/about/corporate/governance/p7-8.html

20

