
Bluetooth Enabled Gloves for

Controlling Music

ECE 445: Design Document

Team Members:

Saicharan Bandikallu (sb35)

Mehul Aggarwal (mehula3)

Oliver Johnson (owj2)

TA: Akshatkumar Sanatbhai Sanghvi

Professor: Viktor Gruev

Due: 2/23/2023

2

Contents

1 Introduction 3

1.1 Problem . 3

1.2 Solution . 3

1.3 Visual Aid . 4

1.4 High Level Requirements . 4

2 Design 6

2.1 Block Diagram. 6

2.2 Subsystems. 7

2.3 Tolerance Analysis. 24

3 Cost and Schedule 26

4 Ethics and Safety 28

5 References 30

3

1 Introduction

1.1 Problem

There are many situations in our lives where we may be wearing gloves. Activities such

as construction, gardening, woodworking, and serving food require gloves. We also wear gloves

when it’s cold outside. Since gloves are often bulky, wearing them makes it difficult for people to

be able to control the music playback on their headphones and accept/decline calls. It’s hard to

press buttons on your headphones, take your phone out of your pocket, or enter touchscreen

commands with gloves on. Thus, people have to take their gloves off if they want to control their

music playback and accept/decline calls. This is very inconvenient.

1.2 Solution

We will create a system of technological gloves that can be used to fix this problem. The

gloves will be able to connect via bluetooth to a user’s phone and allow the user to control their

music settings and accept/reject calls. The music settings the gloves will control are volume

up/down, play/pause, and next/previous track. This will be possible through the use of flex

sensors mounted on all five fingers and an IMU sensor that will be mounted on the hand. The

IMU sensor will allow us to capture movement and changes in orientation at the wrist joint. The

microcontroller will transform this sensor data into useful bluetooth commands, allowing the

user to control their music/phone without having to remove their gloves.

4

1.3 Visual Aid

Figure 1: Visual Aid

1.4 High-Level Requirements List

In order to solve the problem in its entirety, we have three quantitative characteristics of

our ideal system that will accomplish our goals:

1.4.1 Correctly Identify Predetermined gestures From Sensor Readings.

We need to be able to detect when the user provides input that matches any one of the

seven predetermined gestures based on the sensor readings from the flex sensors and IMU

sensor. In order to detect this, we will need to create a model that identifies the correct command

based on a hand gesture. We also want to limit as many false positive gestures as possible to

prevent the user from providing unintended commands to the phone.

5

1.4.2 Correctly Convert Predetermined Gestures into Correlated Bluetooth Commands

Once one of the seven predetermined gestures is detected, the glove will need to provide

the correct bluetooth command to control the phone. We will use HFP protocol to accept and

reject phone calls and the AVRCP protocol to control music. The goal of this requirement is to

correctly use these protocols to send the specified command to the phone based on the gestures

detected by the microcontroller. We will know if the correct bluetooth command is sent based on

the change we see on the phone.

1.4.3 Glove Has Small Form Factor and Battery Life Sustains a Session of Use

We also want to ensure the user has a final product that fits comfortably on their hand

unobtrusively in a small form factor, while also having enough battery life to last a session’s

worth of wearing. We have set a target goal of an average battery life of 3 hours for the glove.

This will be plenty of time for a gloves session. In order to test the battery life, we will hook up

our system to an oscilloscope and measure voltage across a shunt resistor, triggering the

oscilloscope when the current goes to 0A.

6

2 Design

2.1 Block and Physical Diagram

Figure 2: Block Diagram

The four critical subsystems are the power, sensor, control, and output subsystems. The

power subsystem supplies power to the three other subsystems. The sensor subsystem takes data

from the hand motions and sends that data to the control system. The control subsystem takes the

hand motion data and detects when the user has made a relevant gesture. Once a gesture has been

detected, it sends the appropriate signals to the phone and the output system. The output

7

subsystem takes data from the controller. The output subsystem is such that it vibrates when the

user makes the gesture indicating he or she is about to signal.

Figure 3: Physical Diagram

2.2 Subsystems

2.2.1 Sensor Subsystem

The sensor subsystem will consist of the IMU sensor and five flex sensors. The IMU

sensor will detect orientation and movement using an internal accelerometer and gyroscope. The

flex sensors will indicate which fingers are flexed at the knuckle. In conjunction, these sensors

will indicate the current gesture of the user's hand. The IMU and flex sensors will connect to the

data I/O pins of the ESP32.

8

There will be five different gestures to detect. For play/pause, the user will make a

fingers-together gesture that will be detected by the flex sensors exclusively. For the rest of the

signals, the user will point their index and middle finger forward and place their other fingers

down as seen in the following picture.

Figure 4: Point for Signaling Gestures

This gesture will be detected by the flex sensors exclusively. This will trigger a vibration

from the output subsystem. At this point, the user will move their hand up for volume up, down

for volume down, to the right for the next track, and to the left for previous track. This motion

will be detected by the IMU exclusively. The reason for the two-part signal is so users don’t do

an accidental signal. The first part uses exclusively flex sensors and the second part uses the

IMU exclusively to simplify the logic performed by the microcontroller.

The IMU will be biased to 3.3V and the output data will directly connect to the I/O pins

of the ESP32 microcontroller with I2C interface. The flex sensor can take a range of input

voltages up to 5V, so we will bias the flex sensors to 3.3V as well. The output will also connect

to the microcontroller. Since the flex sensor is just a variable resistor, we will construct a simple

voltage divider circuit with a fixed resistance and read the voltage between the two resistors.

This voltage value will change depending on the resistance value of the flex sensor. The more

9

“flexed” the sensor is, the greater the resistance value. The sensor subsystem sends gesture data

to the control subsystem and gets power from the power subsystem.

Figure 5: Sensor Subsystem Circuit Schematic

Flex sensors work as variable resistors and their resistance depends on the amount they’re

flexed. For the flex sensors we’re using, the resistance value is 10kΩ when unflexed and 2kΩ

when flexed 90 degrees. To measure this resistance change, the microcontroller will need to see a

voltage change since it cannot read resistance. In order to do this, we can measure the voltage

drop across a fixed shunt resistor. We approximate a 4.75kΩ shunt resistor will provide us with a

voltage range of 1.0627V to 2.322V at the microcontroller GPIO pin. This is within the

acceptable range of the microcontroller pins. The calculations are as follows:

10

Figure 6: Calculations

Figure 7: IMU Circuit Schematic

11

For the IMU sensor, we will be using the I2C digital communication protocol to

communicate with the microcontroller. As per the data sheet, this requires the SCL and SDA

lines to be pulled up using 10kΩ resistors. We added a decoupling capacitor to the VDDIO and

VDD lines to get a more stable DC voltage. The CS is also pulled high in order to indicate that

we will be operating the IMU in I2C mode.

Table 1: Sensor Subsystem Requirements and Verifications Table

Requirements Verifications

When the flex sensors are
unflexed (flat at 180 degrees), the
resistance value of the sensors
should be 10k ohms ± 100 ohms
and when flexed to a 90 ± 1
degree angle in the center, the
resistance value should be 2k
ohms ± 100 ohms. We need to
ensure that the flex sensor acts as
a potentiometer with a linear
relationship between the
resistance and the bend angle.

1. Ensure the flex sensor is flat at 180 degrees using
a protractor. Connect the 2 probes of an ohmmeter
to the 2 ends of the flex sensor and measure the
resistance.

2. Bend the flex sensor to 90 ± 1 degrees in the
middle using a protractor. Connect the 2 probes of
an ohmmeter to the 2 ends of the flex sensor and
measure the resistance.

3. Calculate the linear relationship between the
resistance and the bend angle of the flex sensor
using these 2 points.

4. Use this linear relationship to determine the
theoretical resistance of the flex sensor at a bend
angle of 45 degrees.

5. Bend the flex sensor to 45 ± 1 degrees in the
middle using a protractor. Connect the 2 probes of
an ohmmeter to the 2 ends of the flex sensor and
measure the resistance.

6. Compare the theoretical value of the resistance at
45 degree bend angle to the experimental value of
the resistance at 45 degree bend angle and
determine the error (difference) between these 2
values. This error should be less than 100 ohms.

The accelerometer readings from
the IMU sensor should be
accurate to within ±5% when
measured under the same motion.

1. Connect the IMU to the microcontroller and
establish the I2C communication between the 2
devices

2. Place the IMU flat on a desk with the z-axis facing
up. Note down the accelerometer value for the
z-axis (this reading should be -9.8 ± 0.1 ms-2).

3. Place the IMU flat on a desk with the y-axis facing

12

up. Note down the accelerometer value for the
y-axis (this reading should be -9.8 ± 0.1 ms-2).

4. Place the IMU flat on a desk with the x-axis facing
up. Note down the accelerometer value for the
x-axis (this reading should be -9.8 ± 0.1 ms-2).

5. Repeat steps 2-4 for another 3 trials. Calculate the
error (percent difference) for each axis, compared
to the first trial.

6. Then calculate the mean error for each axis from
each of the trials. This mean error should be less
than 5%.

The gyroscope readings from the
IMU sensor should be accurate to
within ±5% when measured under
the same orientation.

1. Connect the IMU to the microcontroller and
establish the I2C communication between the 2
devices

2. Place the IMU flat on a desk with the z-axis facing
up and x-axis facing right. Note down the 3
measured values from the gyroscope readings.

3. Randomize the IMU to a different orientation and
then return it back to the previous position and
measure the gyroscope readings. Calculate the
error (percent difference) between each axis for
the readings. Repeat this again another 2 times and
measure the error compared to the first trial.
Calculate the mean error from all of these trials for
each axis. This error should be less than 5%.

4. Repeat this entire process for the following
different orientations:

a. Z-axis facing down and x-axis facing left
b. Z-axis facing right and x-axis facing down

2.2.2 Control Subsystem

The control subsystem contains the microcontroller as well as the bluetooth module,

which is already embedded in the microcontroller we’re using: ESP32-WROOM. The

microcontroller is responsible for taking the sensor input, detecting the user’s hand signal, and

sending the proper bluetooth signal to the phone. The microcontroller will be programmed such

that when turned on, the bluetooth component enters pairing mode. This way, the user can pair

the glove to their phone just by turning it on. If a gesture is detected, the bluetooth module

13

embedded in the ESP32 will translate this gesture into a bluetooth command that is sent to the

user’s phone. It will also connect to the vibration motor, so it can send the signal to buzz when a

buzz-inducing gesture is recognized. The microcontroller will be connected to the IMU sensor,

flex sensor, and vibration motor. The microcontroller will get its power from the power

subsystem.

Figure 8: Control System Flow Chart

14

The controller checks for the play/pause gesture first because it doesn’t require the point.

Once the point is detected, the vibration motor vibrates to provide feedback to the user. There is

then some delay to give the user some time to correct themselves if the point was an accident. At

this point, the user can swipe in any of the four directions to accept/decline calls, skip a track, or

go back to a previous track. The controller will cycle through the questions of “is the user

pointing” or “is the user in a closed fist” until one of the two is detected, so the user will be able

to perform either of those two actions at all times. Once a point is detected and verified, the

controller will cycle through checking for a swipe in any of the four directions until it either

detects a swipe or no longer detects a point. This simplifies the design because the first cycle

only depends on the flex sensor data and the second cycle only depends on the IMU data.

Figure 9: Control System Circuit Schematic

15

The microcontroller GPIO pins are connected to 5 flex sensors. For the flex sensors, we

used the GPIO pins that have an ADC converter. The vibration motor GPIO pin will be set as an

output pin in order to control the motor. The IMU sensor will use 2 GPIO ports as the SCL and

SDA lines for I2C communication. Since we’re already using I2C, these pins do not need to be

connected to an ADC. We’ll use the TX/RX pins for UART communication in order to flash the

microcontroller. We will also connect the EN and IO0 pins to push buttons in order to indicate to

the microcontroller when we want to flash from the computer or read from the microcontroller

memory.

Figure 10: Button Circuit Schematic

When a button, Reset, or GPIO is pressed, the corresponding pin connects to ground.

16

Figure 11: Auto-Reset Circuit Schematic

When the reset pin is pressed, the enable pin of the microcontroller will be connected to

ground, and when released, it will be pulled to high. This button allows us to power cycle the

microcontroller. When the microcontroller is power cycled the microcontroller will read from a

set of strapping pins. For our purpose, we only care about the bootloader configurations, which

will be configured when the GPIO0 pin is set to low. Since we attached a button to the GPIO0

pin, when the button is pressed after the reset button has been pressed, the microcontroller will

enter bootloader mode.

Table 2: Control Subsystem Requirements and Verifications Table

Requirements Verifications

When the RESET button is pressed, the
microcontroller is power cycled and if the
RESET button and GPIO0 button are pressed
together, the bootloader in the microcontroller
is enabled.

1. Connect a DC 3.3V power supply to
the VDD pin of the microcontroller.

2. Connect the channel 1 probes of an
oscilloscope to the enable pin of the
microcontroller and ground of the
microcontroller. Connect the channel 2
probes of an oscilloscope to the
GPIO0 pin of the microcontroller and
ground of the microcontroller.

3. Measure the voltage of the enable pin.
This should measure 3.3V ± 0.1V.

4. Hold down the RESET button. Ensure
that the oscilloscope reads 0V ± 0.1V

17

on channel 1.
5. Hold down the GPIO0 button and then

release the RESET button. This should
power cycle the microcontroller (the
oscilloscope should read 3.3V ± 0.1V
on channel 1).

6. Measure the voltage on channel 2. It
should read 0V ± 0.1V. This ensures
that we are in bootloader mode. The
GPIO0 button can now be released.

Provide at least 15 mA current from a GPIO
pin in order to switch on BJT transistor to
drive the vibration motor.

1. Connect a DC 3.3V power supply to
the VDD pin of the microcontroller.

2. Connect pin GPIO21 on the
microcontroller to the base node of the
BJT transistor in the vibration motor
circuit (specified in the figure 13).
Create the Vibration motor circuit
from figure 13.

3. Program the pin GPIO21 to be an
output pin sending out a digital ‘1’.

4. Using a voltmeter, measure the voltage
drop across the resistor R12 (1k ohm
resistor in figure 13). This measured
voltage divided by 1k ohms should
produce a value greater than 15 mA.

When a predetermined gesture input is
provided to the microcontroller through the
flex sensors and IMU, the microcontroller
should be able to correctly identify the gesture
90% of the time.

1. The gesture inputs that our system will
take are: up swipe, down swipe, right
swipe, left swipe, and close fist (refer
to figure 8 for more information).

2. Perform the first gesture 10 times and
each time determine if the gesture was
correctly identified in the code. Ensure
we get a success rate of 9/10.

3. Repeat step 2 for the other 4 gestures.
This will verify that our thresholds set
for each gesture are correctly tuned.

Translate identified gestures into bluetooth
commands using HFP (Hands Free Protocol)
and AVRCP (Audio/Video Remote Control
Profile) and ensure these commands can be
sent to a user’s iPhone.

1. Establish bluetooth connection
between microcontroller and an
iPhone using the bluetooth protocol as
specified in the ESP32-WROOM
documentation.

2. Send each of our predetermined
gestures as bluetooth commands

18

following the HFP protocol for
answering and rejecting calls and the
AVRCP protocol for music playback
controls (volume up/down, play/pause,
next/previous track).

3. Ensure the commands are correctly
executed on the iPhone when trying to
answer/reject a call or when
controlling music playback.

4. If there are any problems you
encounter, you can debug the
bluetooth protocols using the platform:
WireShark.

2.2.3 Power Subsystem

The power subsystem will be responsible for providing power to all the components in

our design: the vibration motor, microcontroller, IMU sensor, and flex sensors. The power will

come from a portable Li-ion battery the user can charge via a USB charging port. .

The appropriate circuitry to create a rechargeable battery system that delivers 3.3V to the

other subsystems will be in the power subsystem. A 5 V USB charger will be used to charge the

battery. This will input 5 V to the charging IC. The charging IC then takes that DC voltage input

and outputs a steady current to charge the battery. We have a Li-ion battery (3.7 V and 3 Ah) as

our rechargeable battery. We also have a power switch that will be the on/off switch for the

device. We can connect the battery to a voltage regulator to step down the 3.7 V battery output to

3.3 V. This 3.3 V will be delivered to the other subsystems.

19

Figure 12: Power Subsystem Circuit Schematic

To power the circuitry we will be using a Micro-B USB interface to charge the battery.

We will use the 5V line from the USB port and connect that to the VDD of the battery IC. We

will use the charging IC to provide a constant voltage, constant current source to charge the LiPo

battery. The IC we’re using can take the 5V line from the USB as input and output a steady 4.2V.

The current output is also controlled using a resistor. According to the data sheet, a 2kΩ resistor

from the prog pin to ground should output a steady current of 500mA, which should be safe to

charge a LiPo battery which has a capacity of 3Ah. We also added decoupling capacitors to the

input and output of the IC for more stability as well as an LED and resistor to the STAT pin in

order to indicate when the charge is complete. The STAT pin is low when the battery is finished

charging.

Since we will need a 3.3V line from our LiPO battery and the LiPO battery is 3.7 V, we

will use a linear voltage regulator to provide a constant 3.3V output. The 3.3V output is then

connected to a switch the user can activate in order to turn on the device. Also, in order to get

serial communication from the usb port to flash the microcontroller, we will need to use a USB

to UART bridge, which will take the data lines of the USB as input and output the TX and RX

signals that will be sent to the microcontroller.

20

Table 3: Power Subsystem Requirements and Verifications Table

Requirements Verifications

The battery must have a capacity of at least
2.39 Ah (in order to have a battery life of at
least 3 hours) and a nominal output voltage of
3.7V ± 0.1V. The battery should also not
overheat (does not exceed 85 degrees celsius).

1. Connect the terminals of the battery to
a voltmeter and measure the output
voltage (to determine nominal output
voltage).

2. Connect the battery to the final circuit
(as shown in figure 14) and connect an
oscilloscope to the voltage output of
the battery. Set a trigger at 3.5V.

3. Measure the time it takes to hit the
trigger, and ensure that this is at least 3
hours.

4. After these 3 hours, measure the
temperature of the battery using a
non-contact IR thermometer and
ensure that the temperature does not
exceed 85 degrees celsius.

Battery charging IC does not overcharge the
battery (does not provide it with more energy
than it can contain - maximum of 3000mAh).
This is achieved if the output current is less
than 25mA (5% of charging current of
500mA) when the battery is fully charged.

1. Create the LiPo Single Cell Battery
Charging IC from figure 12 with the
battery connected.

2. Connect a power supply with an
output voltage of DC 5V to the VDD
pin and GND pin of the battery
charging IC.

3. Let the battery charge until the LED
Battery indicator turns on.

4. Then use a current probe to connect an
oscilloscope to the VBAT pin of the
Battery Charging IC and VBAT pin of
the battery and measure the current
flowing from the Battery Charging IC
to the battery. This current should
measure less than 25mA

The power switch must safely disconnect and
reconnect the voltage regulator to the rest of
the circuit. When the power switch is in the
ON state, the voltage regulator should output
a voltage of 3.3V ± 0.1V.

1. Create the circuit for the Voltage
Regulator from figure 12.

2. Connect an oscilloscope to terminal 1
of the power switch (from figure 12)
and to ground.

3. In the ON state (switch is connecting
terminals 1 and 2 together), the

21

voltage reading should be 3.3V ±
0.1V.

4. In the OFF state (switch is connecting
terminals 2 and 3), the voltage reading
should be less than 1mV.

Total maximum current draw for all
components is 796.5 mA. Thus, the output of
our voltage regulator must supply a current of
800mA ± 3mA to the rest of the circuit.

1. Create the final circuit from figure 14.
2. Program the microcontroller to

constantly read input from the flex
sensor and IMU and constantly output
to the vibration motor.

3. Use a current probe to connect an
oscilloscope to the output of the
voltage regulator. Measure the current
and ensure that it meets the required
current value.

2.2.4 Output Subsystem

The output system will consist of a vibration motor. The vibration motor will get input

from the microcontroller to control its functionality and will be biased with power from the

power subsystem. The purpose of the vibration motor is to provide haptic feedback to users to

alert them that their gestures have been recognised and sent as a command to their phone.

This subsystem obtains power from the power subsystem at 3.3V, which runs the

vibration motor. There is also a data line connection from the control subsystem to the vibration

motor in order to control when the motor is turned on and off.

22

Figure 13: Output Subsystem Circuit Schematic

Since the output of the microcontroller will not be able to provide enough current to drive the

motor, we will use a BJT transistor as a switch. When the GPIO output is set to high, the

collector and emitter pins will be connected and amplify the current provided at the base pin.

This current will be provided by the 3.3V source connected to the motor. We also added a diode

and capacitor in parallel to the motor in order to prevent any voltage spikes that may occur from

the motor.

Table 4: Output Subsystem Requirements and Verifications Table

Requirements Verifications

Vibration motor vibrates when a digital high
is provided from the microcontroller and the
vibration motor turns off when a digital low is
provided from the microcontroller.

1. Connect a DC 3.3V power supply to
the VDD pin of the microcontroller.

2. Connect pin GPIO21 on the
microcontroller to the base node of the
BJT transistor in the vibration motor
circuit (specified in the figure 13).
Create the Vibration motor circuit

23

from figure 13.
3. Connect an oscilloscope to pin

GPIO21 of the microcontroller and to
ground.

4. Program the microcontroller to send a
digital high to pin GPIO21. Ensure
that the voltage reading is 3.3V ±
0.1V. Inspect the vibration motor to
check if it is vibrating.

5. Program the microcontroller to send a
digital low to pin GPIO21. Ensure that
the voltage reading is 0V ± 0.1V.
Inspect the vibration motor and ensure
it is not vibrating.

2.2.5 Full Circuit Schematic

Figure 14: Full Circuit Schematic

24

2.3 Tolerance Analysis

One risk to successful completion of the project is battery life. The goal is for the gloves

to be able to run for 3 hours. Using some approximations with real components on the market,

we can determine if this is doable. The components we’re using that require power are the 5 flex

sensors, 1 IMU, 1 vibration motor, and 1 esp microcontroller. Looking at datasheets of real

components on the market, we can look at the max current draw from each component, add it up,

and use this as the average current draw of the glove from the battery (1). This way, we avoid

underestimating the power consumption of the glove. Then, this approximate current average,

Iavg, and the battery capacity, Cavg, can be used to find the battery life, Tbat (2).

Iavg = Σ Icomponent (1)

Tbat = Cbat / Iavg (2)

Table 5: Max Current Draw of Each Component

Component Max Current Draw (mA)

1 IMU 16.5 [5.5]

1 ESP Microcontroller 500 [5.4]

1 Vibration Motor 80 [5.3]

5 Flex Sensors 200 [5.2]

Total 796.5

25

Figure 15: Current Draw Component Breakdown

Looking at the pie chart, it seems the flex sensors take up around a quarter of the total

power and the microcontroller takes up around two thirds. For power optimization, we could add

a feature that turns the glove off when no motion is detected for a certain amount of time. Since

the battery has a capacity of 3 Ah [5.1], the approximate minimum battery length is 3 hours, 46.2

minutes. In order to achieve our goal of 3 hours, we would need an average current draw of 1 A.

This calculation was done assuming the highest possible current draw from all the components,

so we have some wiggle room in terms of power.

26

3 Cost and Schedule

The average ECE graduate makes about $80,000 per year, which translates to roughly

$40 per hour. We’re planning on and have been working an average of 12 hours per week

because this is a 4 credit hour class. Not including spring break, that’s 15 weeks. Because there’s

three of us, the total labor costs add up to around $21,600.

A table of all parts we plan to use in the project along with their prices is in the following

table.

Table 6: Overall Costs Table

Quantity Part Price
x1 ESP32 Dev Board 22.50

x1 ESP32 Microcontroller 2.97

x5 Flex Sensor 32.50

x1 IMU Dev Board 24.95

x1 Vibration Motor 2.25

x1 IMU 12.23

x1 Battery IC .69

x1 Battery 14.95

x1 USB-C Port .86

x1 Linear Voltage Regulator .60

x1 Power Switch .52

x1 micro-B USB Receptacle .46

x1 USB-UART Bridge 5.70

x1 Glove 10

Total 131.18

The next table is a timeline for the semester schedule.

27

Table 7: Schedule Table

Week Goals Person

3 1. Project Idea Initial Post Approved 1. Everyone

4 1. Finished Project Proposal
2. Put initial parts order
3. Talked with machine shop about design for

enclosure

1. Everyone

5 1. Finish PCB schematic
2. All parts ordered

1. Mehul and Sai
2. Oilver

6 1. Design Document Finished
2. Edit Project Proposal for resubmission if

needed
3. Finish PCB layout
4. Start breadboard testing components based on

schematic (if parts arrive)

1. Everyone
2. Everyone
3. Mehul
4. Sai and Oliver

7 1. Finish up breadboard testing of parts
2. Find/debug issues with circuit and reflect

changes in schematic/layout
3. Send out PCB gerber files

1. Sai and Oliver
2. Mehul
3. Mehul

8 1. Start microcontroller programming:
a. interface with sensors
b. Determining gestures
c. send correct bluetooth commands

1. Everyone

9 Spring Break

10 1. More Microcontroller Programming
2. Mount all components on PCB when it

arrives
3. Test PCB functionality and edit design if

required
4. Send out updated PCB gerber files
5. Give PCB to machine shop to start working

on enclosure

1. Oliver and Sai
2. Mehul
3. Mehul
4. Mehul
5. Mehul

11 1. More Microcontroller Programming
2. Work on physical model of glove
3. Individual progress reports

1. Oliver and Sai
2. Mehul
3. Everyone

individually

28

12 1. Fully functional software and hardware
interface

2. Finish up mounting parts on glove and attach
enclosure from machine shop

1. Everyone

13 1. Work on, finish Final Report
2. Team Contract Fulfillment

1. Everyone

14 1. Mock Demo
2. Work on, finish Final Presentation

1. Everyone

15 1. Final Demo
2. Mock Presentation

1. Everyone

16 1. Final Presentation
2. Final Report

1. Everyone

4 Ethics and Safety

For section I of the IEEE code of ethics [5.6], our project doesn’t have too many issues.

The gloves don’t connect to the internet, so privacy shouldn’t be an issue. The only thing that can

theoretically be done maliciously is messing with a person’s music, volume, or calls. This will be

mitigated by requiring any established bluetooth connection to be consented to by the user of the

phone. Our group will also uphold a high standard of safety, integrity, and responsible behavior

in the process of working on the project.

For section II of the code of ethics, there are a couple safety concerns. Once concern is

the risk of an accidental rapid increase in volume. This could cause ear damage to the user or

disorientation that could lead to an accident. We will remedy this using a feedback system, which

will notify the user when the glove is accepting inputs. Another safety issue is the PCB and other

electronic components. These components can heat up, which can cause burns to the user if the

components come in contact with the user’s skin. To prevent this, we can mount the electronics

29

in a way that prevents skin-component contact. We also plan to treat each other as well as other

groups fairly and with respect.

For section III, we plan to support and hold to account ourselves as well as other groups

in following the IEEE code of ethics. Effective teamwork is essential in order for us to be able to

successfully create our Bluetooth Enabled Gloves for Controlling Music. Thus, we will all act in

a professional manner whilst not engaging in any discrimination and treating all people fairly and

with respect.

30

5 Citations

[5.1] US Electronics, “Li-Ion Polymer Battery Specification,” USE-104060-3K-PCBJST,

10/08/2021

[5.2] Spectra Symbol, “Flex Sensor,” 2014

[5.3] Pololu, Shaftless Vibration Motor 8x3.4mm, 1637

[5.4] Espressif Systems, “ESP-WROOM-32 Datasheet,” 3/9/2017

[5.5] Epson, “IMU (Inertial Measurement Unit) ,” M-V340PD, 3/2015

[5.6] IEEE code of Ethics (no date) IEEE. Available at:

https://www.ieee.org/about/corporate/governance/p7-8.html (Accessed: February 4, 2023).

