
TispyTracker

Ece 445 Design Document - Spring 2023

Akash Patel

Sumedh Vemuganti

Eshrit Tiwary

Contents

1. Introduction

1.1. Problem ………………………………………………… 3

1.2. Solution ………………………………………………… 3

1.3. Visual Aid ………………………………………………… 4

1.4. High Level Requirements ………………………………… 4

2. Design

2.1. Block Diagram ………………………………………….. 5

2.2. Schematic and PCB Layout ………………………………… 6

2.3. Subsystem Overview and Requirements/Verification

2.3.1. Subsystem 1 ……………………………………….. 8

2.3.2. Subsystem 2 ……………………………………….. 10

2.3.3. Subsystem 3 ……………………………………….. 12

2.3.4. Subsystem 4 ……………………………………….. 13

2.4. Tolerance Analysis ……………………………………….. 15

3. Cost and Schedule …………………………………………… 16

4. Ethics and Safety……………………………………………... 19

5. References ……………………………………………………. 22

2

1. Introduction

1.1. Problem

Irresponsible drinking is a widespread problem, especially among university students.

Unfortunately, many people often lose control of their alcohol consumption simply due to

a lack of awareness of how much they have consumed. The statistics are clear: according

to the Centers for Disease Control and Prevention (CDC), excessive alcohol consumption

leads to the deaths of more than 140,000 individuals each year (NPR 2022). By

promoting responsible drinking habits and encouraging individuals to take control of

their own actions, we can work towards reducing the harm caused by this preventable

issue. Our mission is to proactively tackle this challenge head-on, particularly during

social gatherings and parties, by developing a cutting-edge system that monitors alcohol

intake.

1.2. Solution

To address this, we have developed TipsyTracker, a system that encourages responsible

drinking and keeps individuals informed about their blood alcohol content (BAC) levels.

Upon arrival, guests will sign-in to the registration station (the host’s computer) and will

be given an RFID-enabled wristband/card that is attributed to their name and phone

number. After a certain time period, the guest will be notified (via text) to scan their BAC

levels at the TipsyTracker device. The device is controlled by an ESP32 microcontroller

and consists of an RFID sensor, breathalyzer sensor, and an LED. The guest will scan

their RFID tag, and once the LED turns on, breathe into the breathalyzer module that

calculates their BAC levels. This information is then sent to an off-PCB Raspberry Pi.

The Pi maintains the necessary software and databases, handles communication between

the device and registration station, and sends notifications. If a guest's BAC level exceeds

a predetermined limit, the host and guest will be notified, which encourages safe

drinking. By promoting awareness and responsibility, TipsyTracker is an effective

solution to the issue of excessive alcohol consumption.

3

1.3. Visual Aid

1.4. High-Level Requirements

1. Accurate Alcohol Monitoring: The device must provide precise and reliable

alcohol monitoring, ensuring that Blood Alcohol Content (BAC) readings are

consistent and accurate within a +/- 10% tolerance of standard values.

2. Instant Results: The device must enable quick and convenient testing, delivering

instant results that are available on the web-portal in less than 10 seconds.

3. User capacity: The device must be able to accommodate and store BAC test

results for at least 500 partygoers.

4

2. Design

2.1. Block Diagram

The system comprises several critical subsystems that work together to ensure seamless

operation. The ESP32 microcontroller acts as the central processing unit, collecting and

processing data from various sensors. The RFID subsystem uses an RFID reader to

identify partygoers and associate their BAC levels with their respective accounts. The

breathalyzer subsystem leverages the MQ-3 alcohol sensor to measure partygoers' BAC

levels and uses an LED light to indicate the readings. The power subsystem, which

consists of a Micro USB 5V&USB-UART and voltage transformer, provides a stable and

consistent power supply to the system. The data management subsystem collects data

from the ESP32, manages the communication between the device and the registration

station, and sends notifications to partygoers and the host. Each of these subsystems is

5

crucial to the system's overall function, and any malfunction or deviation from

requirements can result in adverse outcomes.

2.2. Schematic and PCB Layout

Schematic

6

PCB Layout

PCB 3d View

7

2.3. Subsystem Overview and Requirements

2.3.1. Subsystem 1: RFID Identification

Overview:
This subsystem will be responsible for identifying each partygoer by reading their

RFID-enabled wristband/card when they initiate a breath test, utilizing the MFRC522

RFID sensor. Ultimately, the sensor's readings will attribute the Breathalyzer

Measurement subsystem's readings to an individual partygoer. This happens because

the ESP32 will wirelessly transmit the RFID data to the data management subsystem

(off-pcb and on the Raspberry Pi), which will correlate the RFID to the user's name and

phone number for further analysis.

The subsystem will be connected to the ESP32 microcontroller via IO5, IO18, IO23,

IO19, and IO22. It will be powered by the 3.3V output of the voltage transformer.

Schematics:

8

Requirements and Verification:

Requirements Verification

● The RFID subsystem must be

able to read RFID tags within a

range of at least 10 cm.

● Use a known RFID tag and place it at

varying distances from the RFID reader

antenna within the required range.

Confirm that the tag is successfully read

each time via the board microcontroller

serial debugging, by printing the outputs

with the Arduino IDE.

● The RFID subsystem must be

able to distinguish between

different RFID tags.

● Use multiple known RFID tags and

place them within the required range of

the RFID reader antenna. Confirm that

the board microcontroller identifies each

tag and displays its unique identification

number via serial debugging by printing

the outputs with the Arduino IDE.

● The RFID subsystem must be

reliably polled by the

microcontroller to ensure no

missed scans and accurate

monitoring of tag readings.

● Set up a test scenario where multiple

RFID tags are present within range of

the reader.

● Configure the microcontroller to poll the

RFID subsystem at a specific interval,

and record the tag readings received by

the microcontroller.

● Increase the speed of the RFID tags

passing through the reader and repeat

the test.

● Confirm that the microcontroller

continues to poll the RFID subsystem at

9

the configured interval and all tag

readings are accurately recorded by

serial debugging (through the IDE).

2.3.2. Subsystem 2: Breathalyzer Measurement Subsystem

Overview:

The breathalyzer subsystem is responsible for measuring the BAC levels of the

partygoers using the MQ-3 breathalyzer sensor. It is connected to the ESP32

microcontroller, which communicates with the RFID identification subsystem to ensure

that the test results are associated with the correct partygoer. When a partygoer initiates

a breath test, the ESP32 sends a signal to the breathalyzer subsystem to begin reading

the BAC levels. The subsystem then analyzes the sample and sends the result back to

the ESP32. The ESP32 uses the RFID data received from the identification subsystem

to associate the BAC reading with the correct partygoer, and wirelessly transmits this

data to the Raspberry Pi for further analysis. A light will turn on to indicate when the

breathalyzer subsystem is ready for a partygoer to take a test, and is when the ESP32

will begin reading data from the MQ-3 sensor.

The MQ-3 sensor will be connected to the ESP32 microcontroller via IO4. It will be

powered by the 5V output of the voltage transformer. The testing LED will be

connected to the ESP32 microcontroller via IO32. It will be powered by the 3.3V

output of the voltage transformer.

10

Schematics:

Requirements and Verification:

Requirements Verification

● The MQ-3 sensor shall be
able to accurately measure
BAC levels with a deviation
of less than 10% of
standardized values.

● The MQ-3 sensor shall be calibrated using
a known alcohol concentration and verified
for accuracy within a tolerance of ±10% of
the intended value. We will test this by
utilizing an official breathalyzer and
comparing results. We will view the output
of the MQ-3 sensor by serially debugging
it with the Arduino IDE.

● The Breathalyzer
Measurement subsystem must
synchronize with the LED
timing, ensuring that the
ESP32 starts logging BAC
levels precisely when the

● Connect the Breathalyzer Measurement
subsystem and LED subsystem to the
ESP32 microcontroller.

● Upload a test program to the
microcontroller that turns on the LED for a
specified duration and logs BAC levels

11

LED illuminates. during that time.
● Observe the LED to ensure that it turns on

at the correct time and for the correct
duration.

● Observe the BAC logging data to ensure
that it corresponds with the timing of the
LED turning on.

● If the timing does not match, use the
Arduino IDE serial monitor to debug the
code and adjust the timing until the LED
and BAC logging are synchronized.

2.3.3. Subsystem 3: Data Measurement Subsystem

Overview:

This subsystem will be responsible for handling the communication between the device

and the registration station, as well as sending notifications to partygoers and the host.

It will be powered by a Raspberry Pi, which will handle data storage, analysis, and

management of the entire system. The ESP32 microcontroller will interface with the

Raspberry Pi via MQTT, sending data collected from the breathalyzer and RFID

sensors. The data management subsystem will then process the data and generate

notifications to partygoers at set intervals to remind them to test their BAC levels, as

well as notify the host of any concerning readings. This seamless integration between

the subsystems is crucial for the overall accuracy and efficiency of the system.

Requirements and Verification:

Requirements Verification

● The Raspberry Pi must receive
and store data from the ESP32
through MQTT.

● Configure the ESP32 and Raspberry Pi
to communicate through MQTT.

● Transmit test data from the ESP32 to the
Raspberry Pi and ensure it is received
and stored correctly

● Monitor the data stored on the

12

Raspberry Pi and verify that it matches
the data transmitted from the ESP32

● In case of communication errors, use
debugging tools such as MQTT Spy to
identify and resolve issues.

● The Raspberry Pi must send
notifications to partygoers and
the host.

● Set up a test notification schedule and
ensure that notifications are sent to
partygoers and the host at the designated
times.

● Monitor the notifications received by
partygoers and the host and verify that
they match the notification schedule

● In case of notification failures, use
debug the notification sending program
on the Raspberry Pi

2.3.4. Subsystem 4: Power Control

Overview:

The Power Subsystem will be a crucial component in ensuring the seamless functioning

of the entire system. The Micro USB 5V & USB-UART will serve as the primary

source of power, providing the necessary voltage to establish a stable connection with

the ESP32. The 5V voltage from the USB-UART will be then transformed through a

voltage transformer to a consistent 3.3V, which will sustain the operational needs of the

ESP32, LED, and RFID sensor. However, the MQ-3 peripheral will need to be directly

powered by the 5V output. This subsystem will play a vital role in ensuring the

components on the PCB are powered.

13

Schematics:

Requirements and Verification:

Requirements Verification

● The Power Subsystem must be
able to supply the MQ-3
sensor with a steady 5V

● Measure the current and voltage output of
the Power Subsystem (when drawing from
USB power) using a multimeter during
MQ-3 sensor operation to ensure that it
meets the requirement of 5V.

● Must convert 5V to 3.3V to
power the ESP32, LED, and
RFID sensors.

● Measure the current and voltage output of
the Power Subsystem using a multimeter
during ESP32, LED, and RFID sensor
operation to ensure that it meets this
correct output voltage. We can probe
different areas in the PCB (exposed
copper areas) to see if it’s receiving the
correct output.

14

2.4. Tolerance Analysis

Datasheet Conversion from MC3 Voltage to PPM

Let X’ and Y be the analog readings from the MQ-3 sensor and a standardized

breathalyzer tool, respectively. X will be an analog value 1023. We will map X’ to a

number between 0V and 5V linearly. Using the data sheet above, we will convert from

Volts to ppm, the inverse of which will give us X in mg/dL (BAC units). We will then

perform the following analysis between X and Y.

The Pearson correlation coefficient, denoted by r, is calculated as:

r = cov(X, Y) / (std(X) * std(Y)) [Eq1]

where cov(X, Y) is the covariance between X and Y and std(X) and std(Y) are the

standard deviations of X and Y, respectively. The covariance is calculated as:

cov(X, Y) = E[(X - E[X])(Y - E[Y])

where E[X] and E[Y] are the expectations of X and Y, respectively. The standard

deviation is calculated as:

15

std(X) = sqrt(var(X))

where var(X) is the variance of X.

The Pearson correlation coefficient is a measure of the linear relationship between X and

Y. If the correlation coefficient is close to 1, it indicates a strong positive relationship

between the two measurements, which is necessary for the TipsyTracker to work reliably.

On the other hand, a correlation coefficient close to -1 indicates a strong negative

relationship, while a correlation coefficient close to zero indicates a weak relationship

between the two measurements. The correlation coefficient should be calculated and

analyzed to assess the accuracy of the MQ-3 sensor and ensure that the TipsyTracker

works reliably.

3. Cost and Schedule

Parts:

Description Quantity Manufacturer Extended
Price

ESP32-WROOM-32E 1 Espressif $5.99

Mifare RC522 1 HiLetgo $5.69

MQ-3 Alcohol Sensor 1 Sparkfun $2.31

C0402 10uF Capacitor 2 Samsung Electro-Mechanics $0.014

C0402 100nF Capacitor 9 Samsung Electro-Mechanics $0.0613

C0402 4.7uF Capacitor 1 Samsung Electro-Mechanics $0.067

C0805 22uF Capacitor 1 Samsung Electro-Mechanics $0.067

USB Connector:
MICRO-USB-SMD_1050

17-0001
1 Molex $0.24

5.1kΩ R0402 1 UniOhm $0.0005

16

https://easyeda.com/component/0821ed6ea50c44f4909e4be7610e4198
https://easyeda.com/component/dda72f4b9c6d44759875f1c4322eb86d
https://easyeda.com/component/176eead66a5c45e698aceb33a5f6fe97
https://easyeda.com/component/ca94110f4544769d36adda4b0515e409
https://easyeda.com/component/0821ed6ea50c44f4909e4be7610e4198
https://easyeda.com/component/2d114b556a5b46f6a6022e1b69598878
https://easyeda.com/component/2ee8eb13a0124a108e622ce40c0c25a8
https://easyeda.com/component/feca5de016994e80bda4909251e6a8d0
https://easyeda.com/component/feca5de016994e80bda4909251e6a8d0
https://easyeda.com/component/9a1dab2264ee9c0dd27f0d885a0978e6
https://easyeda.com/component/fafd024f554e426eb74cf4a204aa88b0

560Ω R0402 1 UniOhm $0.0005

1kΩ R0402 2 UniOhm $0.001

10kΩ R0402 5 UniOhm $0.0025

22.1kΩ R0402 1 UniOhm $0.0005

47.5kΩ R0402 1 UniOhm $0.0005

PTS64 Switch 2 C&K $0.258

AMS Voltage Regulator 1 Youtai Semiconductor Co.,
Ltd. $0.0383

CP2102N USB-IC 1 Silicon Labs $3.63

Parts Cost: $18.37 / unit

Labor:

Assuming a reasonable salary for an ECE graduate in Illinois of $35 per hour, and a total of

150 hours of work for three partners, the total labor cost is:

$35/hr/person * 150 hrs * 3 people = $15,750

Total Labor Cost: $15,750

Total Cost: $15,768.37

Schedule:

Week Task Person

February 20th - February
27th

Review and order necessary parts and
components Everyone

17

https://easyeda.com/component/e274d57aea27aff595cbe34e3cf83681
https://easyeda.com/component/fafd024f554e426eb74cf4a204aa88b0
https://easyeda.com/component/0162c93b05c079a4f063ffb73f50c063
https://easyeda.com/component/fafd024f554e426eb74cf4a204aa88b0
https://easyeda.com/component/6c2bedbae9fbd358441dfb9948555b9c
https://easyeda.com/component/fafd024f554e426eb74cf4a204aa88b0
https://easyeda.com/component/9ba5517f5d6bdff957812fb032a081cb
https://easyeda.com/component/fafd024f554e426eb74cf4a204aa88b0
https://easyeda.com/component/a1d78dd0ddda6e33ae8706afb53deaa5
https://easyeda.com/component/fafd024f554e426eb74cf4a204aa88b0
https://easyeda.com/component/0563abaf02fc4d4b99de8bab7b9949bf

Finalize the system architecture Everyone

Develop initial schematics for the printed
circuit board (PCB) Akash

February 27th - March 3rd

Layout the PCB design Everyone

Develop and test the embedded software
for the system using ordered parts Sumedh

Begin research of the enclosure for the
system Eshrit

March 6th - March 13th

Order the PCB from a manufacturer Akash

Finalize the enclosure design and begin
construction Eshrit

Test and debug the embedded software for
the system Sumedh

March 13th - March 20th

Receive the PCB from the manufacturer Everyone

Begin soldering and assembling the
components onto the PCB Eshrit

Continue construction of the enclosure for
the system Eshrit

March 20th - March 27th

Complete the PCB assembly and testing Everyone

Begin integrating the PCB and enclosure Akash

Begin testing the system as a whole Everyone

March 27th - April 3rd

Continue testing and debugging the system Sumedh

Finalize the user interface design and
implementation Sumedh

Develop any necessary documentation for
the project Everyone

April 3rd - April 10th

Complete testing and debugging of the
system Sumedh

Finalize the documentation for the project Eshrit

18

Prepare for any necessary demos or
presentations Everyone

April 10th - April 17th

Conduct final testing and quality control
checks Everyone

Address any final issues or bugs that arise Everyone

Prepare the system for shipping and/or
deployment Everyone

April 17th - May 2nd

Conduct any necessary follow-up work or
troubleshooting Everyone

Complete any necessary paperwork or
administrative tasks Everyone

Wrap up the project and submit for grading
or review Everyone

Final checks before submission. Time to
account for unexpected complications Everyone

4. Ethics and Safety

The ethics and safety of our system, TipsyTracker, are of utmost importance. There are

potential ethical and privacy concerns surrounding the collection and use of data. To

ensure that privacy is maintained, we will temporarily collect and store the minimum

necessary data and promptly remove it after every party. Furthermore, notifications will

only be sent to guests and the host in accordance with the set intervals and BAC

thresholds, and will not be shared with third parties or easily exported by the host. To

ensure transparency, we will have clear and open policies regarding data collection and

storage, providing users access to all their data. This aligns with the IEEE Code of Ethics,

which states: "to accept responsibility in making engineering decisions consistent with

the safety, health and welfare of the public, and to promptly disclose factors that might

endanger the public or the environment" (IEEE, 1).

19

It is our duty to ensure that our users are fully informed and kept up-to-date in the event

of any outages. In situations where individuals may have relied on our system to monitor

and regulate their alcohol intake, it is of utmost importance that we promptly

communicate any system failures. This not only helps to protect our users' health and

well-being, but it also aligns with our moral obligations to provide accurate and timely

information. In the event of a system shutdown, it is our responsibility to immediately

notify users and advise them to closely monitor their behavior until the system is fully

restored.

To combat misuse of TipsyTracker, we will make a clear emphasis on the system’s proper

utilization. The ACM Code of Ethics and Professional Conduct highlights the importance

of responsible behavior, stating: "Maintain high standards of professional

competence, conduct, and ethical practice" (ACM, 1). The instructions for using

TipsyTracker will emphasize its intended purpose of promoting responsible drinking and

avoiding any malicious use, such as deliberately not informing guests of their BAC

levels, which could put them in danger by misleading them into thinking they are

drinking responsibly.

Overall, TipsyTracker is a highly safe product. TipsyTracker will not include batteries,

high-powered components or circuits, or any dangerous chemicals apart from the alcohol

from users’ breath. The only close human interface with the device will be the users

blowing into the breathalyzer.

Apart from the following, there are no physical safety concerns and no other risk factors

to users or developers that require special consideration:

1. Liquid damage occurring from drinks being spilled on the device

2. Users consuming excessive alcohol in the event of an outage

The potential for electrical equipment being near liquids is a concern. To mitigate this

risk, we will enclose our system in a casing, and also protect the power source. The

20

RFID, Breathalyzer, and Power Control Subsystems are the only ones that have a high

risk of being exposed to liquid. The data management subsystem does not require a

special enclosing as it will be kept at the registration station, far away from the other

three subsystems.

In the event of a system outage, if people are relying on TipsyTracker to monitor their

consumption, they may dangerously over consume. To prevent this, the moment an

outage is detected on the TipsyTracker device, a notification will be sent out to all

registered users to take extra caution and monitor their drinking.

When developing our system, we will make sure to adhere to safety standards and

regulations. By prioritizing ethics and safety, we aim to promote responsible drinking and

reduce harm caused by excessive alcohol consumption, while upholding the standards set

by the IEEE and ACM Codes of Ethics.

21

