
Lens Controller for Biomedical
Cameras

By
Kevin Sha (ksha3)

Jihun Kim (jihunhk2)
Siddharth Sharma (sharma62)

TA: Zhicong Fan
Professor: Viktor Gruev

Final Report for ECE 445, Senior Design, Fall 2022

7 December 2022

Team 26

Abstract

This paper gives an overview of the design process and the results of a Lens Controller system,
which aims to provide the ability to manipulate the lens remotely. This paper begins with
describing the problem and the proposed solution to the problem as well as any approaches we
have taken to reach the solution. The paper ends with the results of the project and future steps.
Despite some failures, we managed to achieve most of our goals of the lens controller project
as we were able to successfully control the lens.

ii

Table of Contents

1. Introduction………1
1.1 Problem……1
1.2 Solution……1
1.3 Visual Aid……… 2
1.4 High-level Requirements List and Functionality…………………………………………………………………………………..2

1.4.1 Aperture Functionality…….2
1.4.2 Focus Functionality………. 2
1.4.3 Long Term Operation Reliability……………………………………………………………………………………………...3
1.4.4 Functionality ……..3

2. Design ……….4
2.1 Block Diagram………4
2.2 Subsystem Overview……4

2.2.1 FPGA ……4
2.2.1.2 State Machine for SPI protocol……………………………………………………………………………………………..5
2.2.2 PCB Sub-Section ……..5
2.2.2.1 Rigid-Flex-Rigid PCB……6
2.2.2.2 Flexible PCB……8
2.2.3 Lens……10
2.2.4 Program…….11

3. Cost and Schedule……….12
3.1 Cost……….12
3.2 Schedule………12

4. Verification……...13
4.1 FPGA ……..13
4.2 Lens ………14
4.3 PCBs……...15

5. Conclusion ……..17
5.1 Successes…….17
5.2 Failures………..17
5.3 Future Works………17
5.4 Ethics and Safety ………18

5.4.1 Safety ……….18
References……19
Appendix A State Machine Changes ……21
Appendix B Modified Version of SPI protocol……..……………………………………………………………………………………….23
Appendix C Lens Pin Ports……..24
Appendix D Level Translation/Shift Circuit……………………………………………………………………………………………...….25
Appendix E Python Code ………26
Appendix F Requirements & Verification Tables …………………………………………………………………………………………..27
Appendix G Tolerance Analysis ……30

G.1 FPGA ……30
G.2 PCBs…….30

Appendix H Cost of Parts Used…….31
Appendix I Project Schedule………..32
Appendix J Rigid-Flex-Rigid PCB Figures …………………………………………………………………………………………………..34
Appendix K Flex PCB Figures……….38

iii

1. Introduction

1.1 Problem
In many operations, the margin for error is very slim. This is especially true for cancer

treatment, where operation on tumors is considered one of, if not the only solution to cancer
sickness. Operating on tumors requires a high degree of accuracy and so, the use of cameras
to aid surgeons in the operating room would significantly reduce the risks associated with any
mistakes involved in the removal of tumors. According to a study, incomplete tumor removal
occurs in 25% of breast cancer patients, 35% of colon cancer patients and 40% of head and
neck cancer patients [1]. From this, it can be seen that the problem is significant and requires a
solution to this problem.

1.2 Solution
The solution to this problem is to develop a system where the lens of the camera can be

adjusted based on a user input (A surgeon or surgery assistant) remotely, which would then
help the surgeons in identifying any cancerous tumors and fully removing the tumors.

We are planning to use the FPGA to move the lens of the camera so that users can
remotely control the lens from their computer. The PCBs will provide the connections between
the FPGA and the lens due to the incompatible port assignments of the two components, which
the PCBs will be responsible for correctly handling. We will be implementing a finite state
machine and using the FPGA to control the overall operation of the camera. Users will be
interacting with the movement of the camera using python code from their computer, by
inputting their preferences for camera operation.

1

1.3 Visual Aid

Figure 1: Visual Aid [2] [3] [4] [5] [6]

1.4 High-level Requirements List and Functionality

1.4.1 Aperture Functionality

Requirement : The lens must be able to change the aperture by the correct
amount based on the command input by the user.

1.4.2 Focus Functionality

Requirement : The lens must be able to change the focus length by the correct
amount on command input by the user.

The correct functionality of the camera lens will also be indicative of the correct mapping
of the ports. This is important as it would indicate that the lens is receiving the correct signals
from the FPGA and also outputting the correct signals back to the FPGA for user feedback.

2

1.4.3 Long Term Operation Reliability

Requirement : The system can run for at least 6 hours.

1.4.4 Functionality

Users will type in the command and any corresponding arguments required, into a
Python program. Using the Spyder IDE, they will run the Python code and send the data to the
FPGA. The FPGA will interpret the data using the Opal Kelly modules, which will be responsible
for interpreting the command and arguments and storing them in the FPGA’s registers. The
FPGA will instantiate a clock cycle and will then send the command and arguments to the lens
through the PCBs using the SPI protocol. After the lens has successfully carried out the
command, the FPGA will instantiate another clock cycle to retrieve the response back from the
lens, once again using the SPI protocol, which will be sent back to the PC for the users to view
the response.

Depending on the command and arguments that the users input on the python program,
the lens will execute the command accordingly. There are two main commands that we will
focus on: changing focus and changing aperture. In addition to these commands, our design
also supports a synchronization command as well.

We need to ensure that the camera can operate correctly for a long period of time. More
specifically, the FPGA program should not be entering into any forbidden states during an
operation. We decided to implement our system for at least 6 hours as that seems to be roughly
the average time for cancer operations [7]. This is an important task as the camera lens needs
to work in an operation-like setting and operations can last multiple hours.

3

2. Design
This section gives a description of each subsystem of the project.

2.1 Block Diagram

Figure 2: Block Diagram

2.2 Subsystem Overview

2.2.1 FPGA
The FPGA board component for our project is the XEM7310-A75 (for testing) and

XEM7310-A200 (for actual design) by Opal Kelly. The FPGA will interact with the PC through
the USB 3.0 port and control the lens using I/O pins through the flexible PCB board. The FPGA
board will be receiving a power supply of 5 V from the computer through the USB 3.0 port.

2.2.1.1 ok modules
There are two Verilog modules that we will be using to enable the communication

between the FPGA and the python code on the PC. The first one is the okWireIn module which
allows us to input 32-bit data in the specified register location on the FPGA to the PC. The last
one is the okWireOut module which sends 32-bit data from the registers on the FPGA to the PC.

4

Because of the interaction between the python code and the Verilog code, we need to ensure
that the register location that we specify must be consistent between the two codes.

2.2.1.2 State Machine for SPI protocol
The SPI protocol is for the communication between the lens and the FPGA. After the

FPGA receives the command, sometimes with the arguments, it will transfer those bits to the
lens and receive response back from the lens using SPI protocol.

The state machine design underwent several design changes. First, we started off with a
simple state machine where we have a start state and when users input a command, we move
on to the command state. If the command requires additional arguments, it will move on to the
argument1 and argument2 states, otherwise, it will return back to the start state. Each state will
output an 8-bit signal which will be input to an SPI IP block which will do the job of SPI protocol.
However, it was too difficult for us to instantiate the block and because the Canon lens is using a
modified version of the SPI protocol, we had to implement it by ourselves.

The explanation for the modified version of SPI protocol is in Appendix B.

So in the new design, we decided to separate the single state into 8 different states and
have each state output one bit of the command or argument starting with the most significant
bit.

To prevent setup and hold time violations, we then replicated each state into 4 states
and have each state control the clock signal that we will be using for our SPI protocol.

The state flow diagram of the overall state machine is in Appendix A.

2.2.2 PCB Sub-Section
For our finalized project, our PCBs ended up being vastly different from what we had

originally planned. To start, we had a rigid-flex-rigid PCB that connected the preexisting camera
PCB with the contact pads on the other side of the camera mount. This complicated flexible
circuit would be the first of two connectors that brought everything together into one entity with
properly transmitting signals. The second rigid section served as the contact through contact
pads and pins to the second flexible PCB, which would then connect to the FPGA connector. As
you can see, the use of these two PCBs carried out the work of what we thought one PCB could
do when we were originally designing the project.

As for the PCBs themselves, they did not have any electrical circuit components besides
wires and connecting contact pads. This is because all we were looking to do was properly
transmit the signals to and from the camera and the FPGA, which had incompatible port
mappings to begin with. It fell on us to figure out the proper schematic and wiring so that the
corresponding signals from each component would line up with one another, and the commands

5

sent executed accordingly. However, the reasons for using the flexible PCBs remained the
same: extremely restrictive mechanical constraints.

Our reasoning can be realized from our original design proposal: the contacts on the
lens are very thin and also the port assignments between the FPGA and lens are incompatible.
A flexible PCB would be better suited as it can handle multiple port assignments and through
the specific sub-model of the flexible PCB known as a flat flexible cable, be able to perform the
function of wires in transporting data signals. This will allow better connection with the fine
contacts on the lens and allow the FPGA and lens to communicate through the reworked port
assignments. Furthermore, this data will be transferred using an 8 bit modified SPI protocol
which will be responsible for handling the seven data signals involved.

Some advantages of the flexible PCB include the fact that it is very flexible and thus can
be used in a wider range of applications. In addition, there is very little wire connection which
increases its reliability by preventing accidental shorting as with traditional PCBs which have
that possibility. They take up less physical space and are much easier to use and transport,
however their storage procedure is much more complicated and must be done properly. Going
off those same lines, these flexible PCBs are very easily damaged and hard to repair, as they
take a longer time to manufacture in the first place due to its complexity and eventual simplicity.
The cost of resources is higher, but as such there can be greater circuit density on the boards.

In our implementation, we can use the concept of the flexible PCB in multiple ways. In
one way, the flexible PCB would be implemented in its full capability where we would bend the
circuit board in order to reduce space and to accommodate the lens’ inconvenient port setup.
This would involve calculating and designing the mechanical parameters of a flexible circuit
board such as the bend angle, appropriate thickness, bend radius and the frequency of flexing
[2]. This would be our ideal option as it would allow the camera lens to be used without any
further changes.

2.2.2.1 Rigid-Flex-Rigid PCB

The design of the rigid-flex-rigid PCB had two aspects: Mechanical and electrical. The
mechanical aspect involved analyzing the lens mount, adjusting our design to the mechanical
constraints by determining any bending angles and regions that were required to ensure proper
signal transport through the lens mount. The electrical aspect of the design was composed of
routing and wire connection debugging and choosing the correct materials for the PCB.

6

Figure 3: CAD Drawing of Lens Mount

The rigid-flex-rigid PCB would be placed in between the mounted screws as seen in
Figure X. The thickness of the semicircular region, below the screws, is exactly 1 mm, which
means that the maximum thickness of the rigid section would be 1 mm as well. The rigid section
would also need to have a connector, which would connect the gold flexible PCB (As seen in
Figure 3) to pass on the signals from the lens ports. As a result, the connector would have to be
placed on the rigid region, further limiting space for making the relevant port connections.

The flex region would have to be bent in certain ways to navigate the lens mount. Shown
below in Figure 4, is a bottom view of the lens mount which shows the contact pins of the lens
mount.

Figure 4: Bottom View of Lens Mount

7

From the connecting rigid PCB that takes the signals from the orange camera PCB, the
flex region will have to extend outwards and essentially hug the wall of the lens mount so that it
can reach the contact pad area. This means many 90 degree bends, going in many orientations.
The flex region first bends downward, then to the side a few times, then back upward to go back
into the second rigid PCB that has the contact pads. Through this process of bending the PCB
in the designer, we realized that the bend radius was dependent on the bend angle: the bigger
the angle, the bigger the bend. However this was not accurate enough for us, as we needed an
exact replica of the 3D model. Thus we calculated the bend radius by going into a 3D modeling
software and checking it from there. You can see the results in Appendix J as shown in our
model. Finally, we were able to bend the PCB to their desired specifications.

The signals will travel from the gold flexible PCB, connect to the first rigid section of the
rigid-flex-rigid and then flow across the flex region, reaching the second rigid section, which will
have the contact pads to latch onto the contact pins. These contact pads will connect to the top
of the contact pins, which will allow the signals to travel through the contact pins and out of the
lens mount, thereby accomplishing its goal.

The electrical aspect of the design focused on optimizing signal integrity. This was done
in two ways: routing the traces and considering the layer stackup. Routing was important
because we had to take into consideration many factors. The first one was that there were
constraints on the space between the wires, and we had to ensure that there was no potential
wire breakdown where the PCB was going to be bent. The next factor was that we had to make
the width of the power and ground traces bigger, again pushing the limits on the space between
the wires. We also had to utilize vias to wire between different layers. This was crucial in solving
our wiring problems as we were able to take the signals from the top/bottom layer, which would
be where the connector was, and send the signals through the middle of the PCB, which was
obviously the flex region. The routing schematic is shown in Appendix J.

The layer stackup was important as it allowed the rigid-flex-rigid PCB to function
properly. As stated before, the flex layers emerge from the rigid layers, which means that the
flex layers are consistent across all regions. The layer stackup used is seen in Appendix J,
which shows Layers 2 and 3 as the flex layers, being identical across all the regions. The core
layer provides the flexibility while the plane and signal layers carry the signals to the destination.
As stated before, the rigid sections need to be less than 1 mm thick, which is accomplished in
the layer stackup as the rigid sections are 0.8 mm.

2.2.2.2 Flexible PCB

The same design approach was used for the flexible PCB. This PCB was responsible for
taking the signals from the contact pins of the lens mount and connecting it to the FPGA. It will
start with connecting onto the contact pins on the bottom side of the lens mount through its
contact pads (Identical in design as the ones used in the Rigid-Flex-Rigid PCB Subsection).

8

This is seen in Figure 5, which shows a top view of the camera body, which will attach to the
lens mount. The small engraved area on the left will serve as the contact area, where one end
of the flexible PCB (Mounted with the contact pads) will be placed. Once the lens mount is
placed, the contact pins will make contact with the contact pads and the signals are ready to the
FPGA.

Figure 5: Top view of Camera Body

Now that the signals are ready to be transported, another challenge comes into play. The
FPGA connector is directly beneath the contact area shown in Figure 5. This is shown in Figure
6, shown below, which displays a side view of the camera body. The FPGA connector is the
white component shown in the figure.

9

Figure 6: Side View of Camera Body

As a result, it was determined that the bend angle of the design would be 180 degrees,
due to the FPGA connector being directly beneath the contact area on the top of the camera
body.

The electrical aspect of this PCB was similar to the previous PCB, but with a few major
changes. This PCB is a flex-only PCB and so only has two layers in its stackup. The materials
used were the exact same as the flex region in the previous PCB, but had different thicknesses
due to there being no rigid section. The overall thickness of the flex PCB is 0.13 mm. The layer
stackup for this PCB is in Appendix K.

The edge that is being connected to the FPGA connector will be beveled and
electroplated with gold to ensure better connection with the FPGA connector. This edge also
had to be stiffened with FR-4 in order to ensure it stays inserted. On the other edge, contact
pads were used but since this PCB is a flex PCB, it was more optimal to etch in contact pads
with the same dimensions as those in the previous sub-section. The routing schematic is in
Appendix K.

2.2.3 Lens
There are 5 main commands that our FPGA is able to send to the lens :

- 0x12 : Change focus + 2 argument
- 0x44 : Change aperture + 1 arguments
- 0x05 : Change focus to MAX
- 0x06 : Change focus to MIN
- 0x0A : Synchronization command

Each command and arguments will be 8-bit length data.

10

The lens will have an aperture motor which will control the aperture of the lens, and it will
also have a focus motor which will change the focus length of the lens.

The change focus command and change aperture command will require additional
arguments to tell the lens how much to open the aperture and how much to change the focus
by. The change aperture command requires an 8-bit value, so we send an 8-bit argument
whereas change focus command requires a 16-bit integer. Hence we send in two 8-bit
arguments to the lens which will combine the two values to form a 16-bit integer.

The camera lens will have the focus mode switch set to manual so that the user can
change the focus according to their own specifications.

The lens will interact with the power supply subsystem as it will be powered through a 6V
supply and will also interact with the flexible PCB to receive instructions on how to adjust the
appropriate camera features.

2.2.4 Program
The users are able to input command and argument values for the lens operation using

python code on their PC. We are using a Spyder IDE due to its simplicity in the debugging
process. There will be two main functions that we will be using that enables the PC to
communicate with the FPGA.

1. SetWireInValue function
This function enables us to write data to one of the registers on the FPGA board.

2. SetWireOutValue function
This function enables us to read data from one of the registers on the FPGA
board.

The program component will be implemented through the use of a personal computer or
laptop. The PC will be connected to the FPGA using the USB port.

The program component will mainly be communicating with the FPGA subsystem to
effectively operate the camera lens.

The sample python command is in Appendix E.

11

3. Cost and Schedule

3.1 Cost
See Appendix H for Parts Cost table

The average hourly salary of a graduate electrical engineer is $38. [8]

We will be working approximately 13 hours per week for 10 weeks. Therefore:

$38/ℎ𝑜𝑢𝑟 × 130 ℎ𝑜𝑢𝑟𝑠 = $4, 940 𝑝𝑒𝑟 𝑝𝑒𝑟𝑠𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝐿𝑎𝑏𝑜𝑟 𝐶𝑜𝑠𝑡 = $4, 940 * 3 * 2. 5 = $37, 050

Our project does not require any labor from the machine shop.

Hence:

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝐶𝑜𝑠𝑡 = 𝑇𝑜𝑡𝑎𝑙 𝐿𝑎𝑏𝑜𝑟 𝐶𝑜𝑠𝑡 + 𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑟𝑡𝑠 𝐶𝑜𝑠𝑡 = $39, 497. 52

3.2 Schedule
See appendix C for the table.

12

4. Verification

4.1 FPGA

For the FPGA portion, we used two main tools for testing. The first one was the
simulation tool in the Vivado program that helped us simulate the state machine before we can
actually test on the FPGA board. We had to undergo several simulations and debugging to
ensure that our state machine works as expected.

Figure 7:Using Vivado’s simulation tool
We had to write a testbench that sets the inputs for the state machine. With each input

set by the testbench, we need to check if the clock signals are correctly operating and if the
output command and argument bits are the same as the input bits for the command and
arguments.

As for the testing on the lens, we had to use an oscilloscope to test the signals coming
from the FPGA breakout board. We also needed to build a level translation circuit to convert 3V
signal to 5 V signal as the lens only accepts 5 V signals.

Figure 8: Observing signals using Oscilloscope

13

We initially tested signals coming out of the FPGA breakout board. After confirming that
correct signals are captured, we made the signals coming out of the breakout board the input to
the level translation circuit. The additional circuit will transform a 3.3 V signal coming out of the
breakout board to 5 V signal. We had to build two level translation circuits, one for the clock and
the other for the command signal. Unlike some level translation circuits, the one that we built is
unidirectional. And because it is going through a MOSFET, we do not get a perfect square
waves at the output of the circuit.

Figure 9: The command signal (yellow) on top of clock signal (green)
We had to check that the clock is always capturing the command signal when it is

constant (either high or low) on the rising clock edge to prevent glitch. Using the scale, we also
can verify that the clock period is at around 12.5 us.

The circuit schematic for the level translation circuit is given in Appendix D.

4.2 Lens
We also used an oscilloscope to test if the lens is operating correctly. We used an

oscilloscope to check if the lens is responding with the correct set of bits for the command that
we are sending to the lens.

The same rule applies with the response bit. The response signal should be captured on
the rising clock edge when the response signal is constant. Unlike the command and clock
signals going into the lens, which are the outputs of the level shift circuits, the response signal is
almost a perfect square wave.

14

Figure 10: Response signal (yellow) on top of clock signal(green)

We can verify if the response is correct by checking what command that we have sent.
The response for the synchronization command is 0xAA, and for other commands, the response
is the same as the command. So by checking the responses for each command that we sent,
we have verified that the lens is operating correctly and responding with correct response bits.

The lens pin-out ports are shown in Appendix C.

4.3 PCBs
The PCBs’ designs were verified while we were designing the PCBs. Altium Designer

looks out for any design violations and promptly alerts the user if there are any issues. This was
implemented both in designing the schematics and routing. Furthermore, the design constraints
in our Tolerance Analysis would have to be accounted for and thoroughly verified before the
PCBs were sent for fabrication. With the type of PCBs that are being used, the fabrication time
is much longer and so, any errors in the design stage would not be easy to fix.

In the schematic portion of the design, the major errors were incorrect allocation of input
or output status, short-circuit violations and broken netlists. For our finalized schematic designs,
Altium did not detect any errors and thus, this verified that the schematic was implemented
correctly.

In the routing and stackup stage, there was even more verification required. For the
stackup, several checks had to be conducted. The flex layers had to be properly extended, the

15

rigid sections had to be at most 1 mm, the signal layers had to be placed correctly and for the
flex region and flex PCBs, coverlay was required to act as the solder mask. Appendices J and K
can be used to verify that these requirements for the design were met.

For the routing stage, there were some considerations that had to be fulfilled. The trace
width for the camera signals had to be at least 8 mils and 20 mils for any power signals such as
the 6V signal or VDD. Furthermore, the trace separation had to be at least 8 mils. The via
diameters had to be at least 10 mils in order for safe transport between the layers. These were
all checked by Altium as being fulfilled and so, can conclude that it was verified.

When implementing the bend angles and the bend radius, Altium also checked whether
the bend angle was too severe or not. Altium checked our design for any mechanical violations
and did not report back any, verifying that our needs were met. Throughout this entire process
as described above, we learned about design rule management through the Constraints Editor
within Altium, where we could change the tolerances and specifications of everything mentioned
above and more to ensure that the PCB would pass the verification and file generation checks.

16

5. Conclusion

5.1 Successes

For the FPGA and PC subsection of the project, we managed to make the lens
move according to the command input by the user on their PC using python codes. This
was possible because we managed to implement the modified version of the SPI
protocol that Canon lenses use using the state machine in Verilog code.

For the PCB side of the project, some of our key successes include: un-bending
the CAD model & making it our board shape, using vias to ensure optimal signal
routing, implementing different layer stackups, and application of rigid-flex and flex PCB
knowledge.

5.2 Failures

One thing that we failed to do with the lens operation is that we did not manage
to figure out the argument values that we can put in together with the change aperture
and change focus commands. It seems like there are certain values that can be
accepted by the commands depending on what state the aperture or the focus is at
when sending the command to the lens.

On to the hardware components, our biggest setback was that we believed that
the port mapping of the FPGA connector was the port mapping of the lens connector,
and we did not anticipate the process of actually ordering the PCB.

5.3 Future Works

There are other lens commands that we did not implement such as extracting
information regarding the lens such as aperture and focus states. In order to support
these commands, we need to change the state machine. This is because the current
state machine is only able to receive a byte of command. We need to modify the state
machine in such a way that it is able to accept responses with varying responses
coming from the lens as different commands have different lengths of the response. If
our state machine is able to support this, it would be possible for us to figure out what
arguments we can put in for the changing focus and aperture commands. These can be
written as python functions to improve the usability of the users.

17

5.4 Ethics and Safety

5.4.1 Safety
As with any mechanical contraption, there is always a risk of the machine

malfunctioning and worst case scenario, exploding. The PCB will need to be structured
properly, as any mismatching connection can cause a short circuit. The camera
breaking down during its intended operation will also pose a risk to the patient, and we
most definitely want to avoid this. However, for the scope of our project, this will not be a
main concern.

Regarding the camera lens, there are a few precautions that the manufacturer
themselves have warned about in the manual. To quote the Canon manual “Whether it
is attached to the camera or not, do not leave the lens under the sun without the lens
cap attached . This is to prevent the lens from concentrating the sun’s rays, which could
cause a fire. If the lens is taken from a cold environment into a warm one, condensation
may develop on the lens surface and internal parts. To prevent condensation in this
case, first put the lens into an airtight plastic bag before taking it from a cold to warm
environment. Then take out the lens after it has warmed gradually. Do the same when
taking the lens from a warm environment into a cold one. Do not leave the lens in
excessive heat such as in a car in direct sunlight. High temperatures can cause the lens
to malfunction.” [9]

Another potential risk that they have stated in their disclaimers is the fact that
there is no guarantee that the interference will not occur in any particular installation. It
is of course tested and compliant with part 15 of the FCC regulations for a class B
digital device, designed to provide reasonable protection against harmful interference in
a residential installation. As such, the camera can generate, use, and radiate radio
frequency energy, and if not adhered to the proper usage regulations, may cause
harmful interference to radio communications or television reception. Should this
happen, there are instructions for the user to attempt and correct the complication.

18

References

[1] “Hexachromatic bioinspired camera for image-guided cancer ... - science.”
[Online]. Available: https://www.science.org/doi/10.1126/scitranslmed.aaw7067.
[Accessed: 15-Sep-2022].

[2] “Computer Graphics cliparts #2809421 (license: Personal use),” animated
picture of computer - Clip Art Library. [Online]. Available:
http://clipart-library.com/clipart/621480.htm. [Accessed: 07-Dec-2022].

[3] A. Bahl, “Avoiding common flexible PCB errors,” Sierra Circuits, 19-Oct-2022.
[Online]. Available: https://www.protoexpress.com/blog/avoiding-
common-flex-pcb-errors/. [Accessed: 07-Dec-2022].

[4] “Home,” Flex PCBs | Rigid Flex PCBs | PCB Unlimited. [Online]. Available:
https://www.pcbunlimited.com/products/rigid-flex-pcbs. [Accessed: 07-Dec-2022].

[5] Opalkelly.com, “XEM7310,” Opal Kelly, 16-Nov-2022. [Online]. Available:
https://opalkelly.com/products/xem7310/. [Accessed: 07-Dec-2022].

[6] “Canon EF lens mount,” Wikipedia, 22-Nov-2022. [Online]. Available:
https://en.wikipedia.org/wiki/Canon_EF_lens_mount. [Accessed: 07-Dec-2022].

[7] S. Watson, “Lung cancer surgery recovery time: How long does it take?,”
Healthline, 11-Jan-2021.Online].Available:https://www.healthline.com/health/lung-
cancer/surgery-recovery-time?fbclid=IwAR1y1RB5a07RPHhE-MB3Av2rNQrBs9l
45UcHLqTW0GCW6TspK91zgSEsjfY#surgery-length. [Accessed: 07-Dec-2022].

[8] Grainger Engineering Office of Marketing and Communications, “Salary
averages,” Electrical & Computer Engineering | UIUC. [Online]. Available:
https://ece.illinois.edu/admissions/why-ece/salary-averages. [Accessed:
28-Sep-2022].

[9] “EF-S 18-55mm f/3.5-5.6 is STM,” User manual Canon EF-S 18-55mm f/3.5-5.6
IS STM (English - 14 pages). [Online]. Available:
https://www.manua.ls/canon/ef-s-18-55mm-f35-56-is-stm/manual. [Accessed:
15-Sep-2022].

19

[10] “Photo tech canon EOS-EF protocol - JP79DSFR.FREE.FR.” [Online]. Available:
http://jp79dsfr.free.fr/_Docs%20et%20infos/Photo%20Tech%20_%20Canon%20
EOS-EF%20Protocol.pdf. [Accessed: 06-Dec-2022].

[11] Y. Bando, “How to move Canon EF lenses ,” MIT Media Lab. [Online]. Available:
https://web.media.mit.edu/~bandy/invariant/move_lens.pdf. [Accessed:
07-Dec-2022].

[12] “Electronic circuit design - MOSFET logic level shift,” MOSFET level shift -
Electronics information from PenguinTutor. [Online]. Available:
http://www.penguintutor.com/electronics/mosfet-levelshift. [Accessed:
07-Dec-2022].

20

Appendix A State Machine Changes
The initial state machine design was simple. It starts at the start state. It then transitions

to the command state. If the command requires some arguments, it moves to argument 1 state.
It will move to argument 2 state if required. Each state will output 8-bit data which would go
to the standard SPI core IP block which will carry out the SPI protocol and send the 8-bit
values to the lens bit-by-bit.

Figure 11: Initial State Machine Flow Chart

However, instantiating the block was a difficult process. So we decided to
implement the SPI protocol by using the state machine. Instead of having a single state
for the command, we separated that into eight different states that output one bit of the
8-bit data starting with the most significant bit.

Figure 12: Changing a single state into 8 different states

21

Another change that we made was that in order to prevent setup time and
hold-time violation, we needed to replicate the single command state to four states. And
have the command bit to be constant throughout the four states. In addition, the
command states will also control the clock signal that will be used for the SPI protocol.

Figure 13: Replicating the state into 4 states

Figure 14: New state machine design to prevent setup and hold-time violation

22

Appendix B Modified Version of SPI protocol
The Canon lens that we are using uses a modified version of the SPI protocol. In

addition to eight clock cycles, we need a ACK/busy state (acknowledgement cycle) which
typically lasts for 15 us and the signal needs to stay high for another 110 us.

Figure 15: Modified version of the SPI protocol that Canon lens uses [10]

23

Appendix C Lens Pin Ports

Figure 16: Pin-outs on the lens ports [11]

24

Appendix D Level Translation/Shift Circuit
The level translation/shift circuit translates a logic from one level to another. For our

circuit, the level is translated from 3.3 V to 5 V signal. The circuit schematic is shown below.

Figure 17: Circuit schematic for level translation circuit [12]
This is a one-directional MOSFET level shifter. The MOSFET is n-channel, the resistor

RL is a pull-up resistor, and RG resistor is a resistor at the gate of MOSFET to prevent damage
to the FPGA.

The output of the FPGA breakout board is fed into the input port of the level shifter, and
the level shifter will output a 5 V signal. The signals that are fed into the level translation circuit
are command and the clock signals.

We need a level shifter circuit in between the lens and the FPGA breakout board
because the lens does not accept 3.3 V signals as it sees them as low. Translating the signals
to 5 V signals ensures proper operation of the lens.

25

Appendix E Python Code

Figure 18: Python code we used in our project

The SetWireInValue function is the function that enables us to write into the register on
the FPGA board. It requires two arguments; the address of the register and the value that we
want to write with.

The GetWireOutvalue function enables us to read from the register on the FPGA board.
It requires one argument, the address of the register on the FPGA that we want to read from.

26

Appendix F Requirements & Verification Tables
Table 1 FPGA R & V Table

Requirement Verification

1. The FPGA must be able to control
the operation of the lens when the
users type in commands in their
PC

2. The FPGA must be able to
communicate in between the
camera lens using the 7-pin ports
and the PC through the USB port.

1. Plug the FPGA board to the
computer through the USB port.

2. Load the program to the FPGA
board.

3. Send the command to the FPGA
from the PC using python code.

4. Users will have to check whether
the lens functions correspondingly.

3. The FPGA must be able to maintain its
operating temperature with the prolonged
sustained work without overheating. (~6
hours)

1. Create a python code that runs the
FPGA for a specified time.

2. Connect the FPGA to the PC and
load the program.

3. Attach temperature sensor to the
FPGA board

4. Run the program
5. Monitor the temperature of the

FPGA

4. The FPGA must not enter a forbidden
state after prolonged operation.

1. Create a testbench in Verilog that
contains loops (while or for) that
runs the FPGA for a prolonged
period of time.

a. The testbench should be
able to keep track of how
many times it enters into
each state and show how
many times it did not enter
the required states.

2. Run the testbench and check
output generated by the testbench.

Table 2 PCB R and V Table

27

Requirements Verifications

1. Series resistance 1. Prepare the multimeter.
2. Use the probes of the multimeter to

test two points on the PCB board
to check the series resistance.

2. Capacitance between two lines 1. Prepare the multimeter.
2. Use the probes of the multimeter to

test two points on the PCB board
to check the capacitance between
the two lines.

Table 3 Lens R and V Table

Requirements Verifications

1. The lens can adjust focus to
maximum and minimum values

2. The lens can adjust aperture to
maximum to minimum values

1. Run the Verilog code on FPGA
2. Run Python code
3. Observe if the camera focuses or

changes aperture according to the
user input

3. The lens shutter opens
within one second of running
code

The lens is able to execute the
commands with less than 0.5s of latency.

1. Run the Verilog code on FPGA
2. Run Python code
3. Observe if the camera properly

opens its shutter. Successful
observation will be enough to pass
this test

4. All the instructions are executed
reliably over 6 hours

1. Run the Verilog code on FPGA
2. Run Python code
3. Check the correct operation after

running the program for 6 hours.

28

Table 4 Program R and V Table

Requirements Verifications

The machine has to run for 6 hours 1. Run the program on the PC for 6
hours.

2. Check power usage, memory
usage, and other metrics that a
computer runs on.

The Python code has to be
implemented correctly

1. Run Python code
2. Check visually to see if lens

responds to commands

The machine has to power and run
programs on the FPGA.

1. Write a testbench to check if the
Verilog code that we wrote is
correct.

2. Compile the program and run the
program with testbench.

3. Check the waveforms to see if we
are going through the correct
states and send correct signals to
the lens

4. Measure power drawn by the
FPGA as the program is running to
ensure it is within limits.

29

Appendix G Tolerance Analysis

G.1 FPGA

As our project involves a lot of programming, we need to ensure the reliability of
the operation even after running the program for an extended period of time. An
operation would be multiple hours in length, if not more and so we must make sure
there are no unexpected crashes or errors. By doing this, we minimize the chance of
ineffective tumor removal as discussed in the Introduction. In particular, the Finite State
Machine, which is mainly responsible for the implementation of the various instructions
put into the camera, has to continuously run for as long as the operations take, and we
need to ensure that nothing breaks down in the middle of its functions.

This will be done by simulating the Finite State Machine to make sure that it
steps through all the states effectively. Furthermore, the ability to simulate will also allow
us to see the entire operating cycle of the Finite State Machine which will allow us to
more effectively diagnose and solve any potential errors or faulty states.

G.2 PCBs

There will be many factors that will need to be considered across both PCBs. The
rigid-flex-rigid PCB would have more constraints due to its placement in the lens mount.

For the stackup, there are several factors to consider. The flex layers need to be properly
extended throughout all the regions so that the signals can reach the bottom of the lens mount.
The other important consideration is the rigid sections having to be at most 1 mm, otherwise the
PCB would not fit in the mount.

For the routing, the trace width for the camera signals has to be at least 8 mils and 20
mils for any power signals such as the 6V signal or VDD (Logical High) so that the impedance is
lowered sufficiently such that it does not affect signal transport. Furthermore, the trace
separation had to be at least 8 mils in order to make sure that there is no possibility of
short-circuits between the traces. When utilizing the vias, the via diameter has to be at least 10
mils in order for safe transport between the layers.

30

Appendix H Cost of Parts Used
Table 5 The cost of components

Component Manufacturer Quantity Price

XEM7310-A75 Opal Kelly 1 $569.95

XEM7310-A200 Opal Kelly 1 $734.95

BRK7010 Opal Kelly 1 $49.95

Camera lens Canon 1 $199.99

857-10-010-10-002000
Milli Max 1 $3.81

TF13BSA-SERIES (800)
Hirose 1 $1.55

Rigid-Flex-Rigid PCB
Fabrication Cost

PCBWay 1 $686.35

Flex PCB Fabrication Cost
PCBWay 1 $200.97

Total Parts Cost = $2,447.52

31

Appendix I Project Schedule
Table 6 Schedule Table

Week Task Person

Oct 3-7 1. Start reviewing
project equipment
and documentation.

2. Disassemble
camera to analyze
lens ports for PCB
design.

3. Start PCB ideation
and design in
preparation for
ordering.

4. Start working on
FSM and run
through reviews with
BioSensors lab staff

Kevin: 1, 2

Jihun: 1, 3, 4

Sid: 1, 3, 4

Oct 10-14 1. Oct 11th deadline to
submit orders.

2. Continue working on
FSM.

3. Complete Team
Evaluations.

4. Continue working on
PCB

Kevin: 1, 3

Jihun: 2, 3

Sid: 2, 3

Oct 17-21 1. Implement PCB (if it
arrives) into the
system to test
functionality and
synergy.

2. Simultaneously
work on the flat PCB
as a backup.

3. Start Python code to

Kevin: 1

Jihun: 3

Sid: 2

32

control user features
and experiment with
separate
components.

Oct 24-28 1. Integrate all
systems together for
an initial prototype
of the final camera
system.

Kevin: 1

Jihun: 1

Sid: 1

Oct 31-Nov 4 1. Nov 1st second
deadline to submit
orders if needed.

2. Finalize initial
design details and
refinement
iterations.

Kevin: 1, 2

Jihun:1, 2

Sid: 1, 2

Nov 7-11 1. End of initial design
process.

Kevin: 1

Jihun: 1

Sid: 1

Nov 14-18 1. Mock demo.
2. Improve on the

design based on the
feedback from the
mock demo.

Kevin: 1, 2

Jihun: 1, 2

Sid: 1, 2

Nov 28-Dec 2 1. Final demo. Kevin: 1

Jihun: 1

Sid: 1

Dec 5-9 1. Final presentations
+ papers

Kevin: 1

Jihun: 1

Sid: 1

33

Appendix J Rigid-Flex-Rigid PCB Figures

Figure 19: CAD Model for Rigid-Flex-Rigid PCB

Figure 19 is the 3D Model showing the Rigid-Flex-Rigid PCB and the bends that the flex
region will have to navigate the lens mount. Furthermore, the contact pins can be seen
protruding from the second section. This will be replaced with contact pads in our PCB.

34

Figure 20: Layer Stackup for Rigid-Flex-Rigid PCB

Figure 20 shows the layer stackup for our Rigid-Flex-Rigid PCB. It has four rigid layers
and two flex layers, which will emerge from the rigid layers and carry the signals using vias. The
warning labels in the figure can be ignored as adhesive and coverlay will not be interacting with
Prepreg layer in actual design, but in stackup, Altium cannot see the difference. The Thickness
of the rigid section is 0.8 mm and the thickness of the flex section is 0.37 mm.

The signals will be transported using signal layers and it will begin on Layer 1, with the
signals coming from the gold flex PCB. Using vias, it will be connected to Layer 3 as Layer 2
serves as a ground reference and flows to the second rigid section which will emerge back to
Layer 4 using another set of vias.

35

Figure 21: Routing Schematic for Rigid-Flex-Rigid PCB

Figure 21 shows the routing schematic of the Rigid-Flex-Rigid PCB. The contact pads
are seen in the top left with the footprint having a pink and blue color scheme. The blue pads
indicate that the pads are on the bottom layer (Layer 4), which makes sense since they would
have to press down on the contact pins emerging from the lens mount. The light blue wires
represent Layer 3, the signal layer in the flex region, responsible for transporting the signals
through the lens mount.

As Figure 21 shows, some traces have different widths. The widths of the lens signals
(DCL, DLC, LCLK) are 8 mils wide while the widths of the power signals (VDD, VBAT and
D-GND) are 20 mils wide. This design choice was made since the lens signals would not draw
much current and thus, for signal speed purposes, can be kept to be narrow. However, the
power signals would draw too much current for an 8 mil trace and would risk breaking the PCB,
due to the large impedance that the power signals would have to encounter. In order to reduce
it, the traces are made wider.

The transportation of signals is made possible by vias, seen in the schematic as purple
pads. Another visual aid is the traces suddenly changing colors: This indicates that the signals
have changed layers. It was intentional to keep the vias directly away from any components if
we could, since it is a hole in the PCB and could result in current leaking and causing
short-circuit problems.

36

Figure 22: 3D View of Rigid-Flex-Rigid PCB

Figure 22 shows the final 3D view of the Rigid-Flex-Rigid PCB. In the top right corner, we
can see the connector used to connect to the gold flex PCB. In the flex region (Coloured blue),
we can see the signals being routed to the contact pads and the bends, they have to go through
to navigate the lens mount. Finally, while the contact pads are themselves not visible, their
outline can be in the bottom left corner. The signals are now at the base of the lens mount and
need to be transported to the FPGA inside the camera body.

37

Appendix K Flex PCB Figures

Figure 23: Layer Stack Up of Flex PCB

Figure 23 shows The layer stack up for the flex PCB. The materials used are virtually
identical to the flex region in the Rigid-Flex-Rigid, but there are a few differences. Because this
is a fully flex PCB, it is only composed of two flex layers. The thickness is also much lower, with
it being 0.13 mm, compared to the flex region being 0.37 mm, and the reason that is the case, is
that for a rigid-flex-rigid PCB, the flex layers needed to be consistent throughout all regions.
Normally, a flex PCB has a much thinner core but if attached to a rigid section, like in our case,
has to have a thicker core to maintain the layer consistency. With this constraint removed for
this PCB, the thickness drops dramatically.

38

Figure 24:Routing Schematic for Flex PCB

Figure 24 shows the routing schematic for the flex PCB. On the left, we have the etched
contact pads, which will latch onto the contact pins once the camera body and lens mount are
attached, The pads have been designed to have the same specifications as the contact pads
used in the rigid-flex-rigid and the reason why we did not just surface mount the same
component in this case, was that we would have to dramatically increase the thickness of the
flex PCB. A constraint that was present was that the FPGA connector has a thickness of 0.5 mm
and while the thickness of the flex PCB is 0.13 mm, surface mounting the component would not
guarantee, we can fulfill this constraint.

The same trace requirements are implemented as in the rigid-flex-rigid and the vias are
used in a similar way to transport the signals. In the figure, the top layer (In red) was used to
transport the signals to prevent short-circuits which would have been caused if only the bottom
layer (In blue and where the contact pads and beveled edge are) was used.

The other side of the connector has a beveled edge, done to ensure proper insertion into
the FPGA connector. The width of the beveled edge matches the width of the FPGA connector
and that is why the PCB suddenly reduces its width. The edge is electroplated with gold to aid in
conduction and ensure proper signal transport.

39

Figure 25: 3D View of Flex PCB

Figure 25 shows the final 3D view of the flex PCB with the contact pads being visible as
the gold circles. As seen in the figure, the bend angle is 180 degrees due to the FPGA
connector being directly beneath the contact area on the lens mount. Another design factor was
that the PCB had to be long enough to maintain proper alignment between the FPGA connector
and the contact area. Using CAD software, we determined that the PCB would have to be at
least 47 mm. This measurement takes into account the arc of the PCB and thanks to the flex
PCB’s ability to bend ensures that the PCB can still function properly even if it exceeds the
measurement. The design reason as to why the length would have to be exceeded is that the
contact pins and the contact pads may slide against each other, causing subtle shifts in the
PCB. If the PCB was fabricated with the exact length, it may slide out and sever the connection
completely. That is why, the length of the PCB is actually 59 mm, with the extra 12 mm given as
room for error.

40

