

REMOTELY ADJUSTABLE CAST

By

Alice Getmanchuk,

Jack Burns,

Saloni Garg

Final Report for ECE 445, Senior Design, Fall 2022

Professor: Viktor Gruev

TA: Stasiu Chyczewski

7 December 2022

Project No. 10

ii

Abstract

Every type of cast has its own limitations, The Remotely Adjustable Cast maximizes benefit while

minimizing these limitations. It is designed to be clean, mobile, and auto-adjusting to keep you on the

road to recovery. Our product is an innovation on the AirCast boot that is traditionally worn on broken

limbs. Our innovation involves strap adjustment with one push of a button on our web application and

assistance with correctly pumping the air cells. Additionally, all of our upgrades can be powered easily

by a portable battery pack, so putting on or taking off the boot is easy and portable. The cast design was

a success, The Remotely Adjustable Cast resolved the problems associated with traditional casts on the

market to provide the patient with consistent doctor-prescribed healing. It is our hope that after further

research about optimally using it, the Remotely Adjustable Cast leads to better patient outcomes.

iii

Contents
1. Introduction .. 1

1.1 Problem ... 1

1.2 Solution ... 1

1.3 High-Level Requirements .. 1

1.4 Block Diagram ... 2

2 Design ... 3

2.1 Design Procedure .. 3

2.1.1 Control Module Procedure .. 3

2.1.2 Pressure Module Procedure .. 3

2.1.3 Strap Adjustment Module Procedure ... 4

2.1.4 Power Module Procedure .. 4

2.2 Design Details .. 5

2.2.1 Control Module Details .. 5

2.2.2 Pressure Module Details .. 5

2.2.3 Strap Adjustment Module Details .. 6

2.2.4 Power Module Details .. 7

3. Design Verification .. 9

3.1 Control Module ... 9

3.1.1 User Interface Control .. 9

3.2 Pressure Module ... 9

3.3 Strap Adjustment Module ... 10

3.3.1 Stepper Motor Verification .. 10

3.3.2 Motor Driver Verification ... 10

3.3.3 Communication Verification .. 11

3.4 Power Module ... 11

4. Costs .. 12

4.1 Parts .. 12

4.2 Labor ... 12

4.3 Total Cost of Project .. 12

4.4 Team Schedule .. 13

5. Conclusion ... 15

iv

5.1 Accomplishments .. 15

5.2 Uncertainties ... 15

5.3 Ethical considerations ... 15

5.4 Future work ... 16

References .. 17

Appendix A Requirement and Verification Table ... 18

1

1. Introduction

1.1 Problem
Several types of casts can be prescribed to patients who have broken their limbs including plaster, splint,

fiberglass, and AirCasts [2]. While the general purpose of these varying types of casts remains the same

– to be an assistive device in the healing process for broken limbs – they each come with different

benefits and drawbacks. While plaster, splint, and fiberglass casts are sturdier on the limb, they are also

bulkier and may inhibit mobility [9]. Additionally, if the inside of these casts is not cared for properly,

they may develop mold since they are irremovable in nature. AirCasts deal with the issues of mobility

and removability but come with the issue of improper replacement of strap tension and air cell pressure

when the cast is taken off then put back on. AirCasts in general may require more visits to the doctor

for progress monitoring, and improper adjustment by the patient has the potential of leading to a longer

healing process.

1.2 Solution
To address the problems explained above, we designed a remotely adjustable AirCast. This solution

involves providing patients with the ability to control the strap tension adjustment, using motors, and air

cell pressure values, using force resistive sensors, through a simple user interface. By automating the

AirCast replacement process, users are still able to reap the benefits of the AirCast in terms of

removability and mobility, while ensuring that cast components are properly adjusted, such that doctor

visits may be limited. The intention of this solution is to allow for doctors to input the proper strap

tension and air cell pressure values into a user interface based on their own discretion. These values can

then be stored, and the user is able to take the AirCast on/off using the user interface as well. Not only

does this solution allow for users to keep their broken limbs clean and as mobile as possible but

improves the overall experience between doctors and patients.

1.3 High-Level Requirements
1. The cast’s straps are adjusted/tightened per doctor’s settings without manual adjustment.

2. The doctor’s cast adjustments for pressure and tightness can be stored.

3. All necessary components for auto-adjustment of the cast fit on the cast without extreme

addition to the original weight of the cast.

2

1.4 Block Diagram

Figure 1 is the block diagram of the various subsystems necessary for the remotely adjustable AirCast.

The diagram displays the components included in each individual subsystems, as well as how

components communicate with one another across and within different subsystems. Finally, the block

diagram depicts how much power is being provided components of each subsystem from the original

power supply unit.

Figure 1. Remotely Adjustable Cast Block Diagram

3

2 Design
This section will go over the design procedures and details for each module of this project, including the

control, pressure, strap adjustment, and power modules.

2.1 Design Procedure
The design procedure for each module will be an overview of how and why we designed each module as

we did.

2.1.1 Control Module Procedure

The control module was designed with the intention of being able to adjust the boot mechanically and

to communicate with the patient. We wanted to be able to trigger the boot triggering via Bluetooth

initially, to be able to control the motors, and to be able to read air cell pressure pins. We ended up

choosing the ESP32 WROOM32D to fit all our needs. With this microcontroller, we can utilize the ADC

(analog-to-digital converter) pins in order to read and send information to the adjustment modules. We

can also use the Bluetooth capabilities of the microcontroller to connect to a web application to control

the status of the boot as well. Our overall goal in mind with designing this module was to try to make it

as simple as possible so that it is easier for our patient. If the control component is too complex, we risk

making our project too complicated (and therefore not helpful) for our users.

While more technical specifications of the control module are covered in section 2.2.1, our control

module was designed with the intention of being able to interface with all other modules in our project

simultaneously. For example, it is powered by the power module (cut down from 5V to 3.3V to not fry

the microcontroller). It reads the pressure values constantly when the boot is powered to allow for

adjustments to be made. Also, the control module instantiates the strap adjustment module which also

being mounted on the boot. This module was designed to accomplish all our high-level requirements

and bring together all of the functionality of the other modules.

2.1.2 Pressure Module Procedure

Our goal with the pressure module was to read the pressure of the air cells. This way we know the

pressure being exerted on the patient’s ankle which is critical for the boot to fit snuggly, aid in

rehabilitation, and to not allow the patient to hurt themselves further. Our initial design was to

somehow fit a pressure sensor within the air cells in order to read the pressure. This would be the most

accurate way to get the pressure cell measurements from air pressure within the cell and from the

external pressure exerted on the air cell by the patient’s ankle. However, puncturing these air cells was

out of the question. We only have 2 air cells to work with, and if we were to improperly seal or puncture

the air cells, we risk losing the ability to use the air cells altogether and they are an essential part of the

AirCast treatment. We also considered going a step further and installing pumps on the air cell ports to

automatically inflate/deflate the air cells, however that was beyond the time span of the project.

We completed our design for the pressure adjustment module by settling for a non-invasive way to

measure pressure. Since these air cells were removable and sat on the walls around the patient’s ankle,

we decided to install force sensing resistors (FSRs) between the air cell and the wall of the boot. Based

on the pressure exerted on the FSR, we are able to convert its resistance to pressure since we know the

4

active area of the FSR, the range of Newton reading for the pad, and the linear relationship between

resistance and force for this FSR. The control module is responsible for this conversion and for displaying

the value of the cells on the user interface which will tell the user whether to inflate/deflate each cell

more. The pressure adjustment module overall consists of the FSRs on the boot transmitting data to the

control module.

2.1.3 Strap Adjustment Module Procedure

The strap adjustment module was designed to allow for patients to utilize the user interface to

tighten/loosen the straps on the AirCast. The patient can click on a switch on the user interface to

tighten/loosen the straps, after which the user interface will communicate with the control unit to run

the motors in the necessary direction and speed to complete the action it is being asked to complete. To

create this module, we had to begin by working with UIUC ECE’s machine shop to have stepper motors

mounted onto the AirCast itself, with a pulley through which the cast strap could be threaded.

After working with the machine shop on where to place these motors and how the strap needed to be

threaded to properly run the module, we had to work on controlling the motors such that the tension

they were applying on the straps as the program was running, was a value we could precisely measure

and display on the user interface. This was done by finding the relationship between the motor’s pulling

torque based on the RPM it was running at and correlating these factors with the strap length and

pulling angle to calculate the tension. The details of these calculations will be discussed further in

sections 2.3.3 and 3.3.

After understanding how to control the motors such that they were performing the necessary action of

tightening/loosening the straps of the AirCast, and applying the necessary tension, we had to complete

the final step of providing users with the ability to tighten or loosen the straps via the user interface.

This was done by implementing communication between the motors and ESP32 microcontroller via ADC

pins, and between the ESP32 Microcontroller and user interface via Wi-Fi. We were able to program a

switch into the user interface which communicated to the ESP32 about which ADC pins we wanted to

control. This way, we were able to specify when we intended to control each motor individually and turn

it off/on accordingly.

2.1.4 Power Module Procedure

The power module has one function only, and that is to power all the other modules. One of the appeals

of AirCast boots is how mobile they are, and we wanted to maintain that by using a portable power

supply. If the patient had to plug their boot into a wall outlet each time they needed to take off or put

on the boot, that would be majorly inconvenient for them. Therefore, we decided to have the power

module be a portable battery pack (like a phone power bank) that could power all other modules and

also be mounted on the boot or on a belt. More technical specifications are provided in section 2.2.4.

5

2.2 Design Details
The design details for each module will be more technical specifications and calculations we did to

design each module.

2.2.1 Control Module Details

Multiple things were considered when designing the control module: interacting with motors,

interacting with pressure module, and interacting with the user interface. When interacting with the

motors, we need to be able to (1) control the tension of the straps based on prescribed tensions and (2)

control which motor we are tightening. For the first motor control requirement, we can control the

tension that we are setting the motors to by modifying the speed at which we are running the stepper

motors (more in section 3.3.1) so all we needed was our control module to have a microcontroller with

ADC pins to send signals to the motors. For the second motor requirement, we need to have enough

ADC pins so that we can control each motor separately (therefore 8 pins total for motor interactions).

For the pressure module interactions, we needed to have ADC pins to read the resistance of the FSRs

when pressure is exerted so that means we need at least 10 usable ADC pins to interact with the boot

adjustment modules. The ESP32 WROOM32D was the choice we made.

For the user interface, we initially wanted to have Bluetooth capabilities to interact with a React Web

App with Bluetooth in-browser functionality. In the end of our research, we decided to use Wi-Fi to

interact with our web app. Now our requirements changed to be able to host a web server via our

microcontroller to create a web application that can be updated with our sensor values.

The last thing we needed to do was construct a programming circuit for our ESP32 WROOM32D. This

was an essential part of the control module that we initially neglected. Using the development kit

bypassed this requirement for testing, but for a production grade product and being able to mount the

modules on the boot we included a programming circuit to our PCB so that we can upload code onto the

microcontroller via micro-USB B.

2.2.2 Pressure Module Details

As mentioned in section 2.1.2, we want to be able to measure the pressure exerted on the patient’s

ankle while wearing the boot after tightening the straps and pumping the air cells. Although we are not

medical professionals and cannot claim that our remotely adjustable boot is a medical device yet (will

require testing), we can try to make this boot as safe as possible. Therefore, we conducted research into

the safe tightness around a human limb. Based on a study we found regarding external pressure and

blood flow [5], the external pressure exerted on a limb should not exceed around 20 mmHg relative to

the environmental pressure. This can be seen in Figure 2 below from the previously mentioned study.

6

Based on this find, we must ensure that our pressure sensing module must be able to detect pressure of

each air cell up to at least 20 mmHg reliably. We originally wanted to use small barometers inside of the

air cells, but we landed on using force sensing resistors (FSRs) to calculate the pressure of each air cell as

to not modify the air cells (mentioned more in 2.1.2).

Since we know the active area of our FSR (38.12 mm2), and that the maximum Newtons sensed by this

FSR (10 N) we can find that the max pressure that can be measured is 51.671mmHg.

10(𝑁)

38.12(𝑚𝑚2)
∗

1(𝑚𝑚𝐻𝑔)

0.000133322(
𝑁

𝑚𝑚2)
= 51.671 𝑚𝑚𝐻𝑔

(1)

Given that the force on the FSR is linearly related to the resistance read, we can map the resistance

obtained from the FSR which is in a range of 0 to 4095 to a measurement in mmHg from 0 to 51.671

mmHg. Given the tolerances of the FSR we found that the readings we were getting would be accurate

±1.55 mmHg. This fits our constraint of reading safe pressure measurements on the ankle of the patient

so that we do not over tighten the boot.

2.2.3 Strap Adjustment Module Details

Several considerations were taken into account when developing this module throughout the overall

procedure. In the original design of this module, we planned to include a load cell or force sensor which

would be placed underneath each of the straps on the AirCast, to measure the tension being applied by

the motors as it tightened the straps. However, as we began the research and development phase of the

project, we found that this tension could be calculated without the force sensors, as there was research

Figure 2. Relative Blood Flow vs. External Compression [5]

7

available correlating the motor’s RPM to its pulling torque. Using this relationship, the length of the

strap, and the angle the strap was being pulled at, we were able to use Equation 2, as below, to

calculate the tension being applied to the straps, without the need for a force sensor or load cell.

𝜏 = 𝐹 ∗ 𝑟 ∗ 𝑠𝑖𝑛𝜃 (2)

Additionally, consistent communication with the machine shop was necessary for this portion of the

project, as the stepper motors being used for strap adjustment needed to be mounted onto the AirCast

directly. This meant speaking with the machine shop about where the motors needed to be placed on

the AirCast, ensuring that the straps could pull at the desired angle, and that the pressure, power, or

control modules would not be disrupted by the addition of the motors on the cast. After communicating

with the members of the machine shop about these details, we found that the straps of the AirCast

needed to be replaced altogether, to straps which could be threaded through the pulleys on the stepper

motors properly.

Additionally, making sure that the ADC pins being used to connect the ESP32 to the stepper motors

were usable was a vital part of the process. To confirm they were, we used the ESP32 datasheet [3] as

well an ESP32 pinout reference [4], to choose the ADC pins to use and tested the signals going in and out

of the motor drivers using an oscilloscope and multimeter. For this module, the L293D motor drivers

were used between the stepper motors and ESP32. In the original design, we intended to use DMV8833

motor drivers, but after having issues putting the PCB together – we had to quickly switch to a stepper

motor driver which was still available to us through the ECE445 lab and could be breadboarded. The

signals tested to ensure the ADC pins of the ESP32 were usable, and that the motor drivers were

receiving the correct amount of power were those going in/out of the motor driver, as well as into the

ESP32 ADC pins.

Furthermore, the strap adjustment module required communication between the ESP32

microcontroller, user interface, and stepper motors. The implementation of this involved working with

the Arduino IDE to interface between these different components. Several unipolar and bipolar stepper

motor methods were available for use through the Arduino IDE within the Stepper class [11]. This made

controlling the motors through the ESP32 simple, with our primary focus being on ensuring the torque

and speed values correlated with the desired pulling tension force by the motors. In the final program

used, the motors were controlled by setting the speed based on the torque correlation and making the

motor step through 3 full revolutions at that speed to tighten the straps and move the same number of

revolutions in the opposite direction to loosen the straps. While the direct implementation was simple,

this module required several rounds of verification, as will be discussed further in section 3.3.

2.2.4 Power Module Details

As mentioned previously, the goal of the power module is to be able to power all other modules with a

single portable battery pack. Therefore, the constraints of this power pack are that the voltage must be

3.3V or higher to power the ESP32 properly (we will cut down the voltage to 3.3V) and the power rating

must be high enough for all modules (meaning we have to have enough current to power the motors,

pressure module, ESP32, etc.). Based on the datasheets for the FSRs and the NEMA-23 motors, we

8

estimated the total current usage to be around 2A. Therefore, a traditional phone power bank which is

5V and 2A should be powerful enough to power the whole project. We also plan to include a linear

voltage regulator to cut down the voltage from 5V to 3.3V so that we do not fry the microcontroller.

9

3. Design Verification

3.1 Control Module
Verification of the control module has a few different requirements. Verifying that the user interface is

communicating with the ESP32, the ESP32 is correctly reading the analog inputs that are being

communicated from the pressure module, and the ESP32 is communicating with the strap adjustment

module properly. The user interface verification will be described below while the communication

verifications will be described in the respective subsystem design verification sections to avoid

repetition.

3.1.1 User Interface Control

The user interface is a local host server, hosted on a Wi-Fi that the ESP32 connects to. By connecting to

the same Wi-Fi that the microcontroller is connected to, and accessing the server that the ESP32 is

hosting, we verify that the control component can be accessed by the user. By creating a switch on the

user interface that controlled an LED on the ESP32 development board we were able to verify that the

switches on the user interface operated correctly and would control the motors correctly.

3.2 Pressure Module
Verification of the pressure module requires that both force sensing resistors (FSR) operate efficiently

and that they are communicating properly with the ESP32. The force sensing resistors are used by the

pressure module to determine the pressure that the air cells are applying to the leg of the user. Each

FSR is connected to a voltage divider. The voltage divider is connected to an ADC pin of the

microcontroller. Since we know the voltage before the voltage divider, we can easily determine the

resistance of the FSR by reading the voltage at the division point with the ESP32 thus finding the voltage

drop across the resistor, and since we know the value of the other resistor in the voltage divider, we can

then determine the resistance value of the FSR. We can use the user interface to display the calculated

resistance values of the FSRs. By using a multimeter to measure the resistance across the FSRs and

looking at the UI displayed values, we were able to verify that the pressure module was capable of

accurately calculating the resistance that the FSR was providing, and that the control module was

capable of communicating successfully with the pressure module. Based on the research we found [5]

we need the pressure module to apply pressure within 10-20mmHg of additional pressure. As above we

know that the resistance values being measured by the ESP32 are accurate to what is being measured

by the multimeter. Given the tolerances from the datasheet, the measured resistances are accurate

±1.55 mmHg allowing us to confidently land within the 10-20mmHg range.

10

3.3 Strap Adjustment Module
Verification of the strap adjustment module can be divided into three subcomponents, including stepper

motors, motor drivers, and communication between the user interface, ESP32, and other strap

adjustment module components. The verification for each will be discussed below.

3.3.1 Stepper Motor Verification

The stepper motors used for the strap adjustment module, the NEMA-23 bipolar motors in this case,

included measuring the tension force being applied to the straps by the motors and ensuring enough

power was being provided to the motors. The first requirement of this module was being able to

calculate the tension of the straps such that the motor would only run until the holding tension value

was +/- 3N of the doctor’s prescribed strap tension value (Appendix A, Table 5). This was to be verified

originally by reading the tension applied by the straps through a force sensor which would be placed

underneath each strap. However, after finding research correlating the speed of a NEMA-23 stepper

motor and its pulling torque as in Figure 3 below, we were able to eliminate the need for a force sensor

in this verification process.

By combining information from Figure 3 and Equation 2, we calculated the tension force being applied

by the motor on the straps, to verify that the applied force was within +/- 3N of the doctor’s prescribed

value. Furthermore, verifying that enough power was provided to the motors was calculated by probing

the output of the motor drivers using a multimeter, and confirming the values against the NEMA-23

datasheet [1].

3.3.2 Motor Driver Verification

Verifying the motor driver portion of the strap adjustment module included hooking all components up

to the driver correctly based on the datasheet and ensuring that power going in/out of the driver was

within the range of what the motor driver could handle, while still providing the motors with enough

power to run properly. Once the connections to the motor driver were verified using the L293D

datasheet [10], voltages going in/out of the driver were assessed through multimeter probing – in which

the voltage going into the driver was 5V directly from the power source, and the voltage going out to

Figure 3: NEMA-23 Speed
(RPM) vs Torque (Nm)

11

the stepper motors was 1.5V per coil of the motor, aligning with the necessary power consumption for

proper running of the motors.

3.3.3 Communication Verification

The final portion of the strap adjustment module to be verified was communication between the ESP32

and stepper motors. The requirement outlined at the start of the design process for this was to ensure

the motor could be toggled on/off through a signal from the microcontroller. This was verified by

programming the ESP32 microcontroller such that a toggle switch on the user interface would cause the

speed of the motor to change from 0 to a value > 0 (Appendix A, Table 5). We were able to confirm this

verification was met by demonstrating the motor tightening/loosening the straps based on the toggle of

two separate switches for each action on the user interface, therefore verifying that the motor was

moving at a speed greater than 0 RPM when either switch was toggled on.

3.4 Power Module
Verification of the power module was done by checking that all the components of device were

receiving the correct amount of power. By using a multimeter, we were able to check that the voltage

and current values throughout the circuit, and make sure that the measured values were as expected.

We were able to verify that the power bank was supplying 5 volts and that the linear regulator that we

chose was cutting that voltage down to around 3.3 volts. The ESP32 was receiving 3.3 volts and was

grounded correctly. We were also able to verify that the motors had enough current to successfully

operate. While the PCB was never fully working, the power circuitry on the board was confirmed to

work properly, by probing different parts of the board we were able to verify that components were

receiving the correct voltages.

12

4. Costs

4.1 Parts
Table 1: Parts Costs

Part Manufacturer Quantity Link Cost ($)

AirCast boot DJO Global 1 Link $13.37 – just shipping,
preowned

ESP32 MCU Module Adafruit 1 Link $8.95

NEMA-23 Stepper
Motor

Adafruit 2 Link $49.90 - both

SEN-09376 ROHS
Pressure Pad Sensor

Sparkfun 2 Link $25.00 - both

USB Battery Pack KMASHI 1 Link $15.99

Linear Voltage
Regulator -

LM3940IT-3.3

Digi-Key 1 Link $2.63

Power jack Digi-Key 1 Link $0.69

0.2 Ohm Resistor Digi-Key 2 Link $4.38 - both

ESP32 Dev Kit Amazon 4 Link $44.00 - all

Micro-USB B port Digi-Key 2 Link $1.40 - both

CP2102 –
programmer

Digi-Key 1 Link $5.06

Motor driver –
L293D

Adafruit 2 Link $17.90 - both

Total $189.27

4.2 Labor
On average, University of Illinois at Urbana-Champaign Engineering graduates make around $87,000 a

year [7]. This translates to $41.83 per hour for labor of one of our engineers. While our initial estimate

was that this project would take around 200 hours collectively to complete, we ended up spending

around 22 hours a week each in the ECE 445 Laboratory to do work for 10 weeks which is a grand total

of 660 hours on the project by our group members. The duration of this project was longer than 10

weeks, however this number should account for some slower weeks and some more intense weeks.

Using a 2.5 overhead factor for this project, we can calculate the total cost of labor for accomplishing

our project:

$41.83

ℎ𝑜𝑢𝑟 ∗ 𝑝𝑒𝑟𝑠𝑜𝑛
∗

22 ℎ𝑜𝑢𝑟𝑠

𝑤𝑒𝑒𝑘
∗ 10 𝑤𝑒𝑒𝑘𝑠 ∗ 2.5 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 ∗ 3 𝑝𝑒𝑟𝑠𝑜𝑛𝑠 = $𝟔𝟗, 𝟎𝟏𝟗. 𝟓𝟎

4.3 Total Cost of Project
The overall cost of completing of our project is the sum of the parts cost and the labor cost:

$189.27 + $69,019.50 = $𝟔𝟗, 𝟐𝟎𝟖. 𝟕𝟕

https://www.djoglobal.com/products/aircast/airselect-short
ESP32%20MCU%20Module
https://www.adafruit.com/product/5117
https://www.sparkfun.com/products/9376
https://www.kmashi.com/products/kmashi-10000mah-universal-external-power-bank
https://www.digikey.com/en/products/detail/texas-instruments/LM3940IT-3-3/3695215
https://www.digikey.com/en/products/detail/cui-devices/PJ-037A/1644545
https://www.digikey.com/en/products/detail/ohmite/43JR20E/1125008
https://www.amazon.com/HiLetgo-ESP-WROOM-32-Development-Microcontroller-Integrated/dp/B0718T232Z
https://www.digikey.com/en/products/detail/gct/USB3076-30-A/9859635
https://www.digikey.com/en/products/detail/silicon-labs/CP2102-GM/696598
https://www.adafruit.com/product/807

13

4.4 Team Schedule
Table 2: Team Schedule Breakdown

Week Task Person

September 25 - 30 Talk with ECE Machine Shop about motors for strap

adjustment and placement

Everyone

Begin PCB design (list of components needed on board) Alice + Saloni

Sensor data ↔ microcontroller transmission design Jack

Complete Design Document Everyone

October 3 - 7 Continue PCB design (& PCB Board Review) Alice + Saloni

Design Review with Instructor & TAs Everyone

Start designing strap adjustment module with motors and

sensor data readings

Jack

Soldering Assignment Individual -

Everyone

October 10 - 14 Place PCBway Orders (Need to pass audit by 10/11) Everyone

Teamwork Evaluation I Everyone

Visit Machine Shop (Revisions) Everyone

October 17 - 28 Place Second PCB Order (with programming circuit) Everyone

Continue strap adjustment module with motors + Sensor

data testing

Alice + Saloni

14

Begin pressure sensor module sensor testing Jack

October 31 -

November 4

Create Web Server on ESP32 (WiFi not Bluetooth) Alice

Work on PCB and other modules Everyone

Individual Progress Reports Individual -

Everyone

November 7 - 11 Work on PCB board Alice + Saloni

Finalize strap adjustment and pressure subsystems Jack

November 14 - 18 Finalize PCB board and all subsystems Everyone

Mock Demo to TA Everyone

November 21 - 25 FALL BREAK N/A

November 28 -

December 2

Final Demo to Instructor and TAs Everyone

December 5 - 9 Final Presentation Everyone

Complete Final Papers Everyone

Complete Lab checkout + Lab Notebook Everyone

Final teamwork evaluation Everyone

15

5. Conclusion
The Remotely Adjustable cast was a successful design allowing users to remove the cast without

compromising the consistency of their treatment. Since the design was a success, more research on how

this technology affects patient recovery can be done, and the design could be further developed to be

more portable and lighter for users before being released to the public.

5.1 Accomplishments
The main accomplishments are that the remotely adjustable cast fulfilled all of the high-level

requirements and all of the subsystems operated as we intended them to. The cast was able to store the

doctor prescribed tension and pressure values, and the strap adjustment module tightened the straps to

the prescribed tension with only the click of a button on the user interface. While the motors added a

larger than expected weight, the addition of all of the components required for auto adjusting the cast

did not add excessive weight to the cast. The cast worked as we imagined it would. By simply clicking a

button on the user interface the straps were tightened or loosened, and the pressure applied by the air

cells was measured and displayed to the user. There was text on the user interface that informed the

user that the air cells were inflated to the proper values. Finally, the tolerances for the tension and

pressure measurements were within an acceptable range, so our measurements are accurate. Overall,

the project was a success.

5.2 Uncertainties
Since we were unable to obtain small weights to test the force sensing resistors, we were not able to

verify that the part was measuring force as it was designed too. We used our hands to test the

sensitivity and deemed that it was accurate in determining light to hard presses and relied on the data

sheet and the provided part tolerances. Another uncertainty was with our PCB and why a successfully

programmed ESP32 that seemed to be soldered and powered correctly was not connecting to Wi-Fi. We

programmed an ESP32 on a devkit, desoldered it from the devkit and soldered it to the PCB and

measured that the ESP32 was receiving 3.3 volts and that it was grounded correctly but for some reason

it was not connecting to Wi-Fi.

5.3 Ethical considerations
In terms of ethical considerations of our product, there are many. Since we are upgrading a medical

device, we must consider the safety aspects of our product to the user, especially. Section I.1 of the IEEE

Code of Ethics [6] says that we must “hold paramount the safety, health, and welfare of the public.” The

goal of our remotely adjustable cast is to help with the rehabilitation of patients’ limbs. It is critical to

not harm the user more than they already are. The main ethical concern of our project is malfunction. If

the strap tightening module were to malfunction and accidentally tighten the straps too much, it could

cut off the blood circulation to the foot which could extend the recovery time for the patient even more.

The same goes for not tightening the straps enough and accidentally causing the patient to roll an ankle.

In order to mitigate this risk, we disclose any and all possible risks to the user. We also have carefully

chosen the motors so that we cannot provide too much tension to the bootstraps with the motor

specifications.

16

Another ethical concern is that of data privacy and hackers. Since the user interface is storing patient

medical data it is important to make sure that only the patient and doctors can access that data. Since

our design has the user interface hosted on a local server connected to WiFi it is important that the user

is using a password protected WiFi so that hackers can’t connect to it and loosen the boot or access the

medical data. A password protected personal mobile hotspot is perfect because the user can make sure

that only allowed people have access to the WiFi and this is the most likely case since the user may want

to take off or adjust the cast at a place that is not their home.

Additionally, while we are trying to improve upon the AirCast boot to make it an even better experience

to the user, we must make sure that these added benefits are worth the added cost. Upgrading the

AirCast boot to have remotely adjustable functionality comes at an increased price, however we do not

want to increase the cost too much to the patient if they were prescribed it. Thankfully, if this boot were

to go to production it would cost significantly less than $69,000 (or even $189) to produce each boot.

The added benefits of the cast that we are providing must be substantial enough from testing to warrant

the price increase that it would take for the patient.

5.4 Future work
Given the opportunity to continue working with this product, some changes would be made to ensure a

cleaner better product. The PCB would be re-organized (for example, the programing circuit would be

moved to the edge of the board to be more easily reached) and would be adjusted so that it works

properly. A belt attachment would be made to house the PCB and power bank, so they don’t have to be

mounted to the cast. The cast would also have clamps attached to the side that clamp down on the

straps allowing the user to turn off the motors when wearing the cast instead of relying on the holding

torque of the motors. This would increase the life of the battery pack and the life of the motors. The cast

would also utilize smaller motors that were out of stock since these motors would weigh less and still

provide the necessary torque. If we could control the manufacturing of the air cells, we would switch

back to the original design of inserting a barometer in the air cells to get a more consistent reading of

the pressure. We would also like to partner with medical professionals to allow for testing of our cast to

see how it affects treatment. If professions could administer tests to see what the ideal strap tension

and air cell pressure is it could improve treatment for people. After this more tests would need to be

done to see whether or not this cast provides a distinguishable enough increase in treatment. If it was

found that it did provide a distinguishable increase in treatment, we would get final approval and move

to production.

17

References

[1] A. Industries, “Stepper motor - NEMA-23 size with 9mm GT2 pulley,” Adafruit Industries blog RSS.
[Online]. Available: https://www.adafruit.com/product/5117. [Accessed: 07-Dec-2022].

[2] “Air Cast Vs. Plaster”. Healthfully. [Online]. Available: https://healthfully.com/air-cast-vs-plaster-
6618746.html (August 24, 2022).

[3] “ESP32 Series” Espressif Systems. [Online]. Available:
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf.
[Accessed: 07-Dec-2022].

[4] “GPIO & RTC GPIO,” Espressif Systems. [Online]. Available: https://docs.espressif.com/projects/esp-
idf/en/latest/esp32/api-reference/peripherals/gpio.html. [Accessed: 07-Dec-2022].

[5] H.V. Nielsen. “External pressure – blood flow relations during limb compression in man.” National
Library of Medicine. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/6659990/ (September
15, 2022).

[6] “IEEE Code of Ethics.” IEEE. [Online]. Available:
https://www.ieee.org/about/corporate/governance/p7-8.html (September 7, 2022).

[7] “Illini Success All Campus Report.” University of Illinois. [Online]. Available:
https://uofi.app.box.com/s/aoply09y5kf6i36es8v3bl758n2lfl08 (December 5, 2022).

[8] “PART 814 - PREMARKET APPROVAL OF MEDICAL DEVICES”. Code of Federal Regulations. [Online].
Available: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-H/part-814 (September 7,
2022).

[9] “Plaster or Fiberglass? A Guide to Casts”. Healthline. [Online]. Available:
https://www.healthline.com/health/types-of-casts (August 24, 2022).

[10] “Quadruple half-H drivers (rev. C) - Adafruit Industries,” Adafruit. [Online]. Available: https://cdn-
shop.adafruit.com/datasheets/l293d.pdf. [Accessed: 07-Dec-2022].

[11] “Stepper,” Stepper - Arduino Reference. [Online]. Available:
https://www.arduino.cc/reference/en/libraries/stepper/. [Accessed: 07-Dec-2022].

https://uofi.app.box.com/s/aoply09y5kf6i36es8v3bl758n2lfl08

18

Appendix A Requirement and Verification Table

A. Control Component

The microcontroller chosen, an ESP32, will communicate with the Bluetooth/WiFi chip, force sensor for
the strap adjustment module, and pressure sensor for the pressure module via UART interfaces.
Additionally, the microcontroller should send signals to the motor for the strap adjustment module via
I2C bus and receive sensor readings from the force and pressure sensors via UART as well.

Table 3: Control Component Requirements and Verifications

Requirement Verification

Microcontroller implements control
system for the motor of the strap
adjustment module by taking inputs
from force sensors and outputting
motor speed.
Microcontroller also translates
pressure data to the web interface
telling the user if they need to pump
the air cell more.

If the Bluetooth/WiFi functionality of the microcontroller is
enabled, the proper sensor readings from the pressure sensor
and force sensors will be displayed on the web application
after being read by the microcontroller. The measured force
and pressure readings displayed on the app will match doctor
prescription.

Microcontroller must be able to
interface with a web application via
Bluetooth.

Controls enabled on the developed web application can
properly change functionality of the microcontroller, and
therefore of the strap adjustment and pressure modules as
intended.

B. Pressure Module

The pressure module will sense the air pressure inside of the air cells via a SEN-09376 barometric
pressure pad sensor between the air cell and the wall of the boot. The force exerted on the pressure pad
gives us a sense of how inflated our air cells are. The pressure on the pressure pad will be
communicated to the microcontroller. If the stretch goal is hit it will also automatically fill the air cells up
until it has reached the prescribed pressure (controlled by microcontroller).

Table 4: Pressure Component Requirements and Verifications

Requirement Verification

Pressure pad sensor must be able to indicate
to the user when they have inflated/deflated
the air cells to the intended pressure, while

When the user views the web application, they should
be able to view the correct pressure value of the air
cells such that as they inflate/deflate the air cells using

19

staying within 10-20 mmHg of the local
environment pressure value such that the
user’s blood circulation is not cut off.

the included pump, the reported value in the front-
end interface displays the value changing accordingly,
and a warning is shown to users if the pressure value
reaches 20 mmHg above the local environmental
pressure value. The local environmental pressure
value will be measured by a separate pressure sensor
located directly mounted on PCB.

C. Strap Adjustment Module

The strap adjustment module should be able to utilize a force sensor to find the tension of the straps on
the cast and communicate this tension reading with the microcontroller. The microcontroller should in
turn communicate back with the motor in this module to properly adjust the straps based on the force
read, and strap tightening necessary based on the stored strap adjustment value.

Table 5: Strap Adjustment Component Requirements and Verifications

Requirement Verification

The tension of the straps must be able
to be calculated such that the motor
runs until the calculated tension value
is within the prescribed value ± 3N
(estimated maximum value will be
~26N)

When the intended torque is applied to the strap of the
boot via the stepper motor at a given angle, the
microcontroller receives the tension read by the force
sensor and stops the motor when the prescribed tension is
reached, while displaying a reading that is accurate to this
tension value. The maximum possible value displayed should
be no more than 26N according to the maximum torque
provided by the motor (~0.8 N*m) at the angle the motor
will be pulling the strap at (12°).

Motor must be able to be toggled
on/off by receiving a signal from the
I2C bus from the microcontroller.

Utilizing the Arduino IDE compatible with the ESP32
microcontroller, the microcontroller is programmed to
control the motor, such that a specific command leads to
the motor speed changing from 0 to a value > 0.

D. Power Subsystem

The power supply chosen must be able to power the microcontroller as well as the pressure and strap
adjustment modules. Additionally, the power supply should be easily rechargeable by the user and be
placed in a safe location on the boot where physical damage cannot come easily.

20

Table 6: Power Component Requirements and Verifications

Requirement Verification

Power must not exceed 3.6V ± 0.3V
when feeding into the
microcontroller

Measure voltage going into the microcontroller at different
power supply charges to make sure this is always true

Must be able to power all chips on
the board and the adjustment
modules

Measure voltage input to all parts that receive power from the
power supply & make sure all receive enough power to
function based on data sheets

