
Refill Dispensary

By: Michael Blyakhman (mlb11), Jackson Wiessing (jtw6), Lyla Zegelstein (lrz2)

Team 18

Final Report for ECE 445, Senior Design, Fall 2022

TA: Jason Paximadas

Professor: Arne Fliflet

7 December, 2022

i

Abstract

We designed a machine where customers can come refill their containers with the liquid
of choice. Our machine holds two different types of liquids. The customer places their
container on the scale and spins the potentiometer located under the liquid of their
choice and then presses the corresponding button to start dispensing. The customer
can see the directions on how to operate the machine as well as the weight increase
during the dispensing process. There are 3 LEDs on the outside that further
communicate the state of the machine to the user as either ready, dispensing, or out of
order.

ii

Contents
1. Introduction 1

1.1 Subsystem Overview 1
1.2 High-level requirements 1

2 Design 2
2.1 Block Diagram 3
2.2 Power 4
2.3 Dispensing System 5
2.4 User Interface 6
2.5 Control Unit 8

3 Subsystem Results 8
3.1 Power 9
3.2 Dispensing System 10
3.3 Control System 12
3.4 User Interface System 12

4 Cost & Schedule 14
4.1 Cost Analysis 14
4.2 Work Distribution 16

5 Conclusion 18

6 References 18

7 Appendices 19
7.1 Software Used in Demo 19

1

1.Introduction
Plastic waste is a massive issue world-wide, particularly as it pertains to the packaging

of food and other household goods. The United States Environmental Protection

Agency estimates that in 2018, 14 million tons of plastic was consumed for packaging in

the USA with about seventy percent of that ending up in landfills[1]. Plastic waste is

detrimental to the environment as it doesn’t decompose naturally on human time scales.

End-user plastic waste is often unnecessary as consumers own containers capable of

being reused.

We built a vending machine that dispenses precise quantities of goods (between 10 g

and 5 kg) into reusable containers. The goal of the machine is to get users to keep

bringing the same container back. In addition to plastic waste, our machine tackles the

issue of waste in general as users are no longer forced to get quantities larger than

desired.

1.1 Subsystem Overview

The machine is broken into 4 parts: User Interface, Dispensing, Control Unit and Power

subsystems. The User Interface is where the user places the order which then gets

communicated to the Control Unit. The Control Unit will monitor the Dispensing

subsystems which executes the order. Finally, the Power subsystem will be supplying all

other subsystems the necessary power type to function.

2

1.2 High-level requirements
1. The user is able to choose an item and quantity to get dispensed via buttons and

rotary potentiometers. Before placing the order, the user will have some

indication of the amount ordered within a tolerance of 10 grams for weights

between .1 kg and 2kg.

2. The machine dispenses two different types of low-viscosity liquids and is able to

perform 2 orders in succession.

3. The machine can deliver another order properly after 1 of the liquids is switched

out or refilled.

Figure 1: The Refill Dispensary

3

2 Design

2.1 Block Diagram

Figure 2: Block diagram for the vending machine

The block diagram has 4 main parts. The user interface interacts with the RP2040 by

signaling button presses and potentiometer changes. The RP2040 then will display the

number from the potentiometer onto the character screen of the user interface. The

dispensing system valves are controlled by the RP2040. Additionally, the pressure

sensor in the dispensing system will notify the RP2040 when to start and stop

dispensing. The flash memory will be used to store program instructions and data about

the containers. Finally, the power subsystem will supply all other subsystems with the

proper power type.

4

2.2 Power

Figure 3: Power Subsystem

The power system consists of several parts: a barrel jack for the 12V line, a 3.3V

voltage regulator, two 10uF capacitors, and a switch to be able to switch from the 5V

USB power line to the 12V line from the barrel jack. The USB power input is necessary

to initially flash the device, but the 12V input is intended as the main power input during

normal usage. The high voltage components(e.g. solenoid valves) are only powered

from the 12V line, but the digital components can be powered from either the USB or

the 12V power supply filtered through the voltage regulator.

5

2.3 Dispensing System

Figure 4: Dispensing Schematic

The dispensing system consists of two halves: solenoid valves and a load cell. The load

cell is composed of a strain gauge (essentially a resistor whose value changes as it is

bent) attached across a Wheatstone bridge. This generates a small differential voltage

that is then fed through an instrumentation amplifier. The solenoid valves are simple

12V 400mA valves that are by default closed, each of which is connected to a

Darlington BJT transistor and a flyback diode.

6

Originally, we planned to feed the load cell values through the AD622 instrumentation

amplifier which would allow the value to be read by an ADC port of the microcontroller.

We added in an analog to digital converter (ADC) protection circuit at the output of the

amplifier to ensure we didn’t overload the ADC on the microcontroller as the

instrumentation amplifier required 12V while the microcontroller could only handle 3.3 V.

After unit testing this section of the design on the breadboard, it was clear that

something was wrong and it wasn’t going to work. Instead, we came up with another

way to get the load cell values over to the microcontroller.

Our new method involved using an HX711 amplifier which had the 24-bit ADC built in.

We used a MicroPython HX711 library to tare the scale and analyze the values coming

from it [2]. This allowed the 2^24 or roughly sixteen million unique values that the ADC

was capable of differentiating. A further advantage was that we could power this

amplifier from the 3.3V line. However, this amplifier complicated our design because it

did not conform to a standard data transfer protocol. We were successfully able to read

values from the load cell this way, however, it was too late to make a spot for the HX711

on the printed circuit board.

7

2.4 User Interface

Figure 5: User Interface Schematic

The user interface consists of two potentiometers, three push-buttons, three LEDs and

a screen. Two buttons are located underneath the bottles which lets the user know

which button to press to dispense an item. The potentiometers are each located

underneath the buttons to signify that turning it controls the amount to be dispensed for

that particular bottle. As the potentiometers are turned the value gets sent to the

microcontroller which sends the proper value to the screen to update the amount to be

dispensed in grams. There is a red button in the middle of the user interface which

resets the machine after a restocking takes place or overflow gets cleaned up. This

button sends the machine back to the beginning where it’s waiting for a user to place an

order. There are three LEDs on the side of the machine which indicate to the user if the

machine is ready for an order (green), the machine is processing an order (orange), or if

the machine needs maintenance (red).

Originally, we planned to use the NHD-C0220BIZ screen from Newhaven Display as we

thought it would interface well with the I2C while consuming little power. Unfortunately,

that was not the case. After carefully building out the circuit specified in the datasheet

and turning on power, the screen would heat up immediately and no text could be

8

displayed. We decided to switch out the screen for an OLED LCD Display Board

Module I2C IIC SSD1306. This screen was easier to use as there were only 4 pins

instead of 12 and the screen worked well with the Machine, SSD1306, and OLED

libraries in MicroPython[3]. The screen communicates the amount to be dispensed to

the user, live-time updates of the amount dispensed, the final amount dispensed, and if

the machine needs maintenance.

2.5 Control Unit

Figure 6: Control Unit Schematic

We used an RP2040 in combination with flash memory on the PCB. Our design is

inspired by the one in the RP2040 Hardware design doc [4]. In order to load code to the

RP2040, a USB connection was made to the computer, the code was downloaded and

stored on the flash memory and then the program would continuously run. We chose

the RP2040 as it was quite powerful for the price, which made it useful for scalability of

the dispensing machines, and it is programmable using a variety of IDEs.

For testing purposes, we used a Raspberry Pi Pico on a breadboard which was cheap

($4), easily replaceable, and allowed us to test each subsystem before placing it on the

PCB. Additionally, since the code relied on GPIO pins instead of physical pin numbers,

we were able to interchange the code on the Pico for the RP2040 seamlessly.

9

3 Subsystem Results

Equation 1: Formula for calculating percent error

3.1 Power
Requirement: Power supply capable of generating 500mA on 3.3V line at +/- 0.2V
Verification: While the machine is running, we will measure the voltage at the voltage
transformer, as well as measuring the current drawn under load.
Results: The power supply worked as intended. We were able to measure a very
consistent 3.289V on the 3.3V line. However, we were unable to test the current
capacity on this line as it would have been difficult to break out a series connection from
the voltage regulator.

Requirement: Power supply capable of generating 1A on 12V line at +/- 0.5V
Verification: While the machine is running, we will measure the voltage at the voltage
transformer, as well as measuring the current drawn under load.
Results: We were able to measure an appropriate voltage on the 12V line. However,
again it would not have been feasible to measure the current as creating a series
connection was difficult.

Line Recorded Voltage

12V 12.0995 V

12V to 3.3V 3.28983 V

5V to 3.3V 3.28974 V
Table 1: Voltage values for Power

10

3.2 Dispensing System

Figure 7: Solenoid Valves Figure 8: Load Cell + Cup Holder

Requirement: The load cell should be able to weigh items with a tolerance of 10 g for
weights up to 5 kg.
Verification: We weighed several objects on our load cell and compared the values to a
scale.

Trial # Experimental
Weight

Actual Weight Percent Error

1 15.63 g 15.2 g 2.83 %

2 200.75 g 202.0 g 0.619 %
Table 2: Load Cell Accuracy Trials

Figure 9: Trial 1 Experimental Results Figure 10: Trial 1 Actual Results

11

Figure 11: Trial 2 Experimental Results Figure 12: Trial 2 Actual Results

Results: The load cell ended up being more precise than expected. The percent error
ended up being very low.

Requirement: The value spun on the potentiometer is the amount that gets dispensed.
Verification: We selected several small values on the potentiometer and then waited
for the amount to get dispensed and weighed the results. The small weights are due to
the slow flow rate of the machine.

Trial # Amount Requested Actual Weight Percent Error

1 12 g 13 g 8.33 %

2 13 g 15 g 15.4 %
Table 3: Dispensing System Accuracy Trials

Results: The user ends up getting slightly more than what they requested. However,
this is acceptable as it is advantageous to the customer.

Requirement: Voltage across inductor should always be less than the specified
maximum voltage (12V) of the BJT
Verification: Measure the voltage across the inductor before and after closing the BJT
switch.

Component Recorded Voltage (V)

Solenoid 1 Diode 11.158

Solenoid 2 Diode 11.176

12

Solenoid 1 Screw Terminal 11.318

Solenoid 2 Screw Terminal 11.202
Table 4: Voltage across the inductors

Results: The drop across the inductor is 0V when it is turned off. When it is on the drop
is under 12V.

3.3 Control System
Requirement: The microcontroller’s ADC should be precise enough to measure 250
unique values from the load cell.
Verification: To test this, we printed readings from the load cell with HX711 setup into
the shell. We used our hands to apply variable force and watched the values go up.
Results: The Pico was able to read 65,536 different values, which goes far above this
requirement.

Requirement: Microcontroller sends proper signals to other subsystems.
Verification: The correct text displays on the screen, the right item is chosen, machine
status gets updated on the UI, and the proper item gets dispensed.
Results: As seen in the demo, we were able to dispense from both bottles by hitting the
respective buttons and get results dispensed in the cup within the allowed tolerance.
Additionally, the user saw the status LEDs change with the machine and screen text
update throughout various parts of the process. Seeing the screen update can be seen
in figures 9, 11, 13, and 14.

3.4 User Interface System
Requirement: The screen should use an I2C connection and be capable of displaying
the item to be dispensed as well as its quantity with appropriate units.
Verification: Check that the correct text is displayed on the screen in 1 second after a
button is pressed or a potentiometer is moved
Results: The screen displays different text for each state, as well as the amount
selected and the amount dispensed, as seen in Figures 13 and 14. The screen is
updated in real time as the amount selected and amount dispensed changes, with
essentially no delay.

13

Figures 13 (left image) & 14 (right image): The left image shows the screen reflecting
the potentiometer values during the selection state. The image on the right shows the

actual quantity that got dispensed from an order.

Requirement: Status LEDS should match machine state within 1s of machine state
changes.
Verification: Check the current machine state and see if the LED is the correct output.
The amount of time required for the correct LED to turn on should be within 1 second of
the state change.
Results: The LEDs changed almost instantaneously after a state change.

Figure 15: The Green LED is on - machine is ready for an order

Requirement: The machine should dispense the proper item.
Verification: Pressing a button will cause the machine to attempt to dispense the
proper item.
Results: As seen in table 3 in section 3.2, after selecting 13 grams of a product to be
dispensed, the machine dispensed 15 grams with a small amount of error.

14

4 Cost & Schedule

4.1 Cost Analysis

Description Part Manufacturer Quantity Extended Price Link

Microcontroller RP2040 Raspberry Pi 1 $1.00 Chicago
Electronics

I2C Screen SSD1306 AiTrip 1 $2.25 Amazon

Instrumentation
amplifier/ADC

HX711 AiTrip 1 $6.63 Amazon

Red LED HLMP3.301 -
Red

Avago
Technologies

1 $0.16 ECE Supply
Center

Green LED HLMP3507 -
Green

Avago
Technologies

1 $0.18 ECE Supply
Center

Yellow LED HLMP3401 -
Yellow

Avago
Technologies

1 $0.21 ECE Supply
Center

Memory IC FLASH
32MBIT

SPI/QUAD
8SOIC

Winbond
Electronics

1 $0.94 Digi-Key

Barrel Jack Breadboard-frien
dly 2.1mm DC

barrel jack

Adafruit 1 $0.95 Adafruit

Micro USB Plug Micro USB Plug
Female

Adafruit 1 $0.95 Adafruit

Voltage Regulator NCP1117 OnSemi 1 $0.67 DigiKey

Push Buttons 0661273664773 Cyclewet 3 $6.29 Amazon

Rotary
Potentiometer

CA-WH148-10KB
K

TWTADE 2 $10.99 Amazon

Diode IN4001 ON
Semiconductor

4 $1.50 Adafruit

Transistor TIP120 Fairchild 2 $2.50 Adafruit

100 nF Decoupling 1C20Z5U103M0 Sprague 4 $0.92 ECE Supply

https://chicagodist.com/products/rp2040?src=raspberrypi
https://chicagodist.com/products/rp2040?src=raspberrypi
https://www.amazon.com/dp/B0B7RQ2RCF?psc=1&ref=ppx_yo2ov_dt_b_product_details
https://www.amazon.com/dp/B07SGPX7ZH?psc=1&ref=ppx_yo2ov_dt_b_product_details
https://my.ece.illinois.edu/storeroom/catalog.asp
https://my.ece.illinois.edu/storeroom/catalog.asp
https://my.ece.illinois.edu/storeroom/catalog.asp
https://my.ece.illinois.edu/storeroom/catalog.asp
https://my.ece.illinois.edu/storeroom/catalog.asp
https://my.ece.illinois.edu/storeroom/catalog.asp
https://www.digikey.com/en/products/base-product/winbond-electronics/256/W25Q32/339733?utm_adgroup=Battery%20Products&utm_source=google&utm_medium=cpc&utm_campaign=Dynamic%20Search_EN_Product&utm_term=&utm_content=Battery%20Products&gclid=Cj0KCQjw7KqZBhCBARIsAI-fTKIBfBburpwFG2WRfgSDYFPRdnA5-OJnyCwcxxiXEAucRhi0GpIJdXsaAkANEALw_wcB
https://www.adafruit.com/product/373
https://www.adafruit.com/product/1829
https://www.digikey.com/en/products/detail/onsemi/NCP1117DT33T5G/921285
https://www.amazon.com/Cylewet-Momentary-Button-Switch-CYT1078/dp/B0752RMB7Q/ref=lp_5739464011_1_4
https://www.amazon.com/TWTADE-Adjustable-Potentiometer-Resistance-XH2-54-3P/dp/B082FCRQS2/ref=sr_1_10?crid=1H0G119IQ4HEJ&keywords=rotary%2Bpotentiometer&qid=1664125205&sprefix=rotary%2Bpotentiometer%2Caps%2C99&sr=8-10&th=1
https://www.adafruit.com/product/755
https://www.adafruit.com/product/976
https://my.ece.illinois.edu/storeroom/catalog.asp

15

Capacitor 50B Center

Solenoid Plastic Water
Solenoid Valve -

12V - 1/2"
Nominal

Adafruit 2 $13.90 Adafruit

12V Power Supply ALITOVE DC
12V 5A Power
Supply Adapter

ALITOVE 1 $12.99 Amazon

Load Cell 4541 Adafruit 1 $3.95 Adafruit

27 Ohm Resistor CMP0805-FX-27
R0ELF

Bourns 2 $0.44 Mouser

1K Ohm Resistor 810-MMZ1608R1
02ATD25

TDK 6 $0.24 Mouser

10k Ohm Resistor 603-RT0603DRE
1010KL

YAGEO 2 $0.24 Mouser

27 pico Farad
Capacitor

C0805X270J5GA
C7800

Kemet 2 $0.68 Mouser

1uF Capacitor 810-C1608X5R1
H105K

TDK 2 $0.14 Mouser

10uF Capacitor CL32Y106KCVZ
NWE

Samsung 2 $2.24 Mouser

100nF Capacitor 810-C1608X7R1
H104K

TDK 6 $0.24 Mouser

12MHz Oscillator ABLS-12.000MH
Z-B4-T

Abracon 1 $0.22 Mouser

Total Cost $71.42

Table 5: Parts List

https://my.ece.illinois.edu/storeroom/catalog.asp
https://www.adafruit.com/product/997
https://www.amazon.com/ALITOVE-Adapter-Converter-100-240V-5-5x2-1mm/dp/B01GEA8PQA
https://www.adafruit.com/product/4541#technical-details
https://www.mouser.com/ProductDetail/Bourns/CMP0805-FX-27R0ELF?qs=sGAEpiMZZMvdGkrng054twKDKoBh%252Bscn3T98mB%2FnVTMgpFBLKQW0ug%3D%3D
https://www.mouser.com/ProductDetail/Panasonic/ERJ-1RHD1001C?qs=I4vekKlxls8ZlmChpDSCCw%3D%3D
https://www.mouser.com/ProductDetail/TE-Connectivity-Holsworthy/CRGCQ0603J10K?qs=sGAEpiMZZMvdGkrng054t7z4BkURc4LzaMND7LQFzEbfaMSKFmdDbQ%3D%3D
https://www.mouser.com/ProductDetail/KEMET/C0805X270J5GAC7800?qs=PqoDHHvF648EdaL1whdDkQ%3D%3D
https://www.mouser.com/ProductDetail/Taiyo-Yuden/TMR107B7105KA-T?qs=TuK3vfAjtkV9UZg3DkHnew%3D%3D
https://www.mouser.com/ProductDetail/Samsung-Electro-Mechanics/CL32Y106KCVZNWE?qs=Li%252BoUPsLEnvjCVdvDH8lMw%3D%3D
https://www.mouser.com/ProductDetail/TDK/C1005X7R1C104K050BC?qs=NRhsANhppD%252BhAGOapA8QKQ%3D%3D
https://www.mouser.com/ProductDetail/ABRACON/ABLS-12.000MHZ-B4-T?qs=yTU0IcKoRlGSQ8ooxPPVnQ%3D%3D

16

In addition to these parts, there is also the fluctuating cost of a printed circuit board. On
our second order, we were able to get five boards for twenty dollars. This comes out to
a price of roughly four dollars per board. Furthermore, we used a considerable amount
of wire and connectors - both JST and screw terminals. We estimate that we used less
than ten dollars worth of connectors and wire.

The largest cost of course was labor. We estimated in our design document that the
cost of our labor would be $34,942.50, as well as a fee from the machine shop on the
order of $400.

This brings our final total cost to $35,417.92

4.2 Work Distribution

Michael Jackson Lyla

9/19 Design Document Design Document Design Document

9/26 Design Document Design Document Design Document

10/3 Ordered components from
online retailers and ECE
supply center

Began PCB design Talked to the machine shop and ordered
components.

10/10 Started writing main loop
code in Arduino

Finished PCB design Started the Software in Arduino. Wrote
code & tests for the user interface.

10/17 Finished main loop Verified components and
ensured they operated at
stated voltages

Broke Picos trying to get software
working.

10/24 Soldered on screw
terminals, pin headers,
and USB onto PCB, set up
dispensing system

Soldered components onto
PCB, tested power system

Broke more Picos while getting the
potentiometer to work.

10/31 Soldered on SMD resistors
and capacitors

Redesigned PCB with larger
components and better
placements.

Began working with the screen and
realized we would need a completely
new one in order to get this to work.

11/7 Switched the main loop to
use more functions and
states, added screen
printing functionality using
an Arduino library, added
ability to calculate weight
from an ADC. Decided to

Began working with software
on PCB, attempted to get
USB to work on PCB, but
ran into many problems

All software parts for the user interface
work with Pico except the screen as I
was waiting for the new one to come in.
Switched to using MicroPython instead
of Arduino IDE because Arduino liquid
crystal screen libraries weren’t
compatible with the Pico. Also realized

17

switch from Arduino code
to MicroPython. Added
switch to power subsystem
and tested it, swapped out
RP2040 to fix voltage
issue

that the instrumentation amplifier wasn’t
going to work so I ordered the HX711.

11/14 Added screen printing
functionality with all errors
and warnings to
MicroPython code using a
MicroPython library for the
new screen. Soldered
components and RP2040
onto redesigned PCB,
tested power system,
attempted to install
software onto RP2040
using USB. Replaced
some chips to get the USB
connection working.

Calibration and finalizing
PCB construction. Redid
complete design on pico at
last second as amplifier fried
PCB.

Got the new screen to display text and
the load cell to print values with the
HX711.

11/21 Debugged main loop
python code, made sure it
compiled on a pico

Fall Break Fall Break

11/28 Tested all subsystems
together on PCB. The
PCB broke, replacing all
the chips didn’t fix it.
Switched to pico and got
all subsystems to work on
it instead for the demo.

Pivoted to pico when PCB
failed. Constructed
temporary 12V power
distribution system. Final
Demo

Pieced together all the code from unit
tests until the machine finally worked!

12/5 Presentation/Report Presentation/Report Presentation/Report

Table 6: Work Schedule

18

5 Conclusion
Overall, this project was successful as we have completed all the requirements that we

set for ourselves. Along the way we have encountered many challenges which have

made us stronger engineers in the end. When we realized that some parts wouldn’t

work -such as the original screen, and AD622- we found other solutions to get the job

done. The countless times we have spent resoldering parts of the board and Pico

headers, have only made us faster and extremely familiar with the parts we were

working with. The successes from this project came from unit testing and slowly putting

pieces together. The day before the project was due, the PCB broke which was

unfortunate as all subsystems were working on it as intended except the load cell part.

Instead of giving up, we went back to using the Raspberry Pi Pico with the breadboard

and were able to rebuild the circuit and have it working in a few hours. The

breadboarded circuit was largely the same as the PCB version. If we were to do another

PCB order, we would add two GPIO pins to be able to use the HX711. Based on the

results from the Raspberry Pi Pico tests with the HX711, we are confident that this new

PCB would work perfectly. In addition, to be able to rebuild the machine faster in the

future, we would add more through-hole components to make soldering easier. We

would also change the tubing with the valves to allow liquids to get dispensed in a more

timely fashion. Although the machine was accurate, liquids came out way too slowly and

made it very difficult to test dispensing large amounts. Lastly, we would swap out the

RP2040 for a microcontroller with integrated flash to reduce the complexity of the

design. When bad code got uploaded to the PCB, it would break both the RP2040 and

the flash which made us spend time replacing two chips on the PCB instead of one. If

we were to turn this project into a business, we would add in more risk mitigation by

incorporating a draining system in the cup holder part.

5.1 Ethics:
Ethics are of paramount importance to our project. Our design aimed to reduce plastic

waste in the environment, thereby complying with the sustainability clause of the IEEE

code of ethics [5]. Dealing with products people put in their bodies only increases our

19

responsibility. We have done our best to reduce the chances of cross contamination, but

the fatal flaw in our design is that both items get dispensed in a common funnel, where

it is possible for the liquid to hit the sides. This increases the chances of cross

contamination between different orders. If we had to do this project again, we would

forgo the funnel in favor of a different component to isolate the liquids from each other.

In order to give users a proper understanding of the implications of using the machine,

we have added the following warning label.

Figure 16: Warning Label

5.2 Safety:

Since the machine lacks a Food Sanitation Certification and Food Handler Training, we

will not permit anyone to consume anything coming out of the machine. Our machine

has a status bar which indicates to the user whether it may be used or not. On the

exterior of the machine, warnings and allergy information are posted. Additionally, in our

design, we made sure that food and wires didn’t not mix. We also have a reset button

that ignores all orders until the machine can be properly serviced. If we were to design

this machine again, we would make it so people could bump into the machine without

the fear of wires mixing with liquids. To do this, we would hollow out the walls of the

machines and have all wires properly sealed in there. Lastly, we would include an

emergency shut-off button that kills the power in the machine.

20

6 References
[1] “Containers and Packaging: Product-Specific Data,” EPA. [Online]. Available:

https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/conta

iners-and-packaging-product-specific#PlasticC&P. [Accessed: 14-Sep-2022]

[2] S. Piskunov, “micropython-hx711,” GitHub. [Online].Available:
https://github.com/SergeyPiskunov/micropython-hx711 [accessed Dec. 07, 2022].

[3] Stlehmann, “Stlehmann/micropython-SSD1306: A fork of the driver for SSD1306
displays to make it installable via UPIP,” GitHub. [Online].Available:
https://github.com/stlehmann/micropython-ssd1306. [Accessed: 07-Dec-2022].

[4] “Hardware Design with rp2040,” Raspberry Pi Foundation. [Online]. Available:
https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf.
[Accessed: 25-Sep-2022].

[5] “IEEE code of Ethics,” IEEE. [Online].

Available:https://www.ieee.org/about/corporate/governance/p7-8.html.

[Accessed: 14-Sep-2022].

https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/containers-and-packaging-product-specific#PlasticC&P
https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/containers-and-packaging-product-specific#PlasticC&P
https://github.com/SergeyPiskunov/micropython-hx711
https://github.com/stlehmann/micropython-ssd1306
https://datasheets.raspberrypi.com/rp2040/hardware-design-with-rp2040.pdf
https://www.ieee.org/about/corporate/governance/p7-8.html

21

7 Appendices

7.1 Software Used in Demo
from machine import Pin, I2C, ADC

from ssd1306 import SSD1306_I2C

from oled import Write, GFX, SSD1306_I2C

from oled.fonts import ubuntu_mono_15, ubuntu_mono_20

from hx711 import HX711

import utime

CHECK ALL THE PINS AGAIN BEFORE RUNNING THE CODE

screen setup

WIDTH = 128

HEIGHT = 64

i2c = I2C(1, sda = Pin(2), scl = Pin(3), freq = 200000)

oled = SSD1306_I2C(WIDTH, HEIGHT, i2c)

text = ''

port declarations

pot_1 = machine.ADC(27)

pot_2 = machine.ADC(28)

button_1 = Pin(9, Pin.IN,Pin.PULL_UP)

button_2 = Pin(10, Pin.IN,Pin.PULL_UP)

reset_button = Pin(11, Pin.IN,Pin.PULL_UP)

green_led = Pin(12, Pin.OUT)

yellow_led = Pin(13, Pin.OUT)

red_led = Pin(14, Pin.OUT)

valve_1 = Pin(0, Pin.OUT)

valve_2 = Pin(1, Pin.OUT)

load_cell = ADC(26)

This class is from https://github.com/endail/hx711-pico-c

class Scales(HX711):

def __init__(self, d_out, pd_sck):

super(Scales, self).__init__(d_out, pd_sck)

https://github.com/endail/hx711-pico-c

22

self.offset = 0

def reset(self):

self.power_off()

self.power_on()

def tare(self):

self.offset = self.read()

def raw_value(self):

return (self.read() - self.offset) / 4.057

def stable_value(self, reads=10, delay_us=500):

values = []

for _ in range(reads):

values.append(self.raw_value())

#sleep_us(delay_us)

return self._stabilizer(values)

@staticmethod

def _stabilizer(values, deviation=10):

weights = []

for prev in values:

if prev == 0:

weights.append(0)

else:

weights.append(sum([1 for current in values if abs(prev - current) /

(prev / 100) <= deviation]))

return sorted(zip(values, weights), key=lambda x: x[1]).pop()[0]

------- end of HX711 class

This function turns on and off the machine status LEDs on the user interface

def updateLEDS(green_status, yellow_status, red_status):

green_led.value(green_status)

yellow_led.value(yellow_status)

red_led.value(red_status)

This function changes the text on the screen to keep the user informed

def updateScreen(text, pot_1_state, pot_2_state, w = 0):

if (w < 0): # prevents noise from making values go negative

w = w * -1

23

if text == 'Select': # show both products, vals of potentiometers for both

oled.fill(0)

oled.text("Product 1 ", 0, 10)

oled.text("quantity: " + str(pot_1_state), 0, 20)

oled.text("Product 2: ", 0, 30)

oled.text("quantity: " + str(pot_2_state), 0, 40)

oled.show()

elif text == 'Dispense': # called while the machine is in dispensing mode to

continuously update the screen with the current amount

oled.fill(0)

oled.text(str(w) + " grams", 5, 10)

oled.show()

elif text == 'SUCCESS': # Shows how much was dispensed as soon as machine is done

oled.fill(0)

oled.text("Dispensed ", 0, 10)

oled.text(str(w) + "grams", 0, 20)

oled.show()

elif text == 'NormalA': # Shown after the button for product A is pressed

oled.fill(0)

oled.text("Selected ", 0, 10)

oled.text("Product 1", 0, 20)

oled.text("Quantity = ", 0, 30)

oled.text(str(pot_1_state) + " grams", 0, 40)

oled.show()

elif text== 'NormalB': # Shown after the button for product B is pressed

oled.fill(0)

oled.text("Selected ", 0, 10)

oled.text("Product 2", 0, 20)

oled.text("Quantity = ", 0, 30)

oled.text(str(pot_2_state) + " grams", 0, 40)

oled.show()

elif text == 'NoContainer': # Shown if there's no container detected in the cup

holder

oled.fill(0)

oled.text("Error: ", 0, 10)

oled.text("Must Place", 0, 20)

oled.text("Container!", 0, 30)

oled.show()

24

elif text == 'NoQuantity': # Shown if the user tries to display

oled.fill(0)

oled.text("Error: ", 0, 10)

oled.text("Must Select", 0, 20)

oled.text("Quantity!", 0, 30)

oled.show()

elif text == 'Reset': # Shown if the reset button is pressed

oled.fill(0)

oled.text("Maintence ", 0, 10)

oled.text("Required", 0, 20)

oled.text("Out of order!", 0, 30)

oled.show()

elif text == 'OVERFLOW': # shown if overflow has been detected

oled.fill(0)

oled.text("Overflow", 0, 10)

oled.text("Detected", 0, 20)

oled.show()

elif text == 'OUTOFSTOCK': # shown if the item requested is out of stock

oled.fill(0)

oled.text("Item is ", 0, 10)

oled.text("out of stock", 0, 20)

oled.show()

opens the respective valve

def openValve(v):

if v == 1:

valve_1.value(1)

elif v == 2:

valve_2.value(1)

closes both valves

def closeValves():

valve_1.value(0)

valve_2.value(0)

this function is called as soon as a valve opens.

It constantly checks the weight of the container with the weight of the load cell

25

def fillUp(w):

updateLEDS(0, 1, 0) # turns on yellow LED

scales = Scales(d_out = 5, pd_sck = 6) # prepares the scale

scales.tare()

count = 0

prev_value = 0

load_cell_val = round(scales.raw_value() / (2**22) * 30000, 2) # converts to grams

utime.sleep(1)

reset_state = not (reset_button.value())

while (load_cell_val < (0.9 * w) and load_cell_val != w):

reset_state = not (reset_button.value())

if reset_state: # if the reset button is pressed, enter the reset state

resetState()

load_cell_val = round(scales.raw_value() / (2**22) * 30000, 2)

if (load_cell_val > (3 * w)):

updateScreen('OVERFLOW', 0, 0, 0)

updateLEDS(0, 1, 0)

closeValves()

return 'OVERFLOW'

if (count == 50):

updateScreen('OUTOFSTOCK', 0, 0, 0)

updateLEDS(0, 1, 0)

closeValves()

return 'OUTOFSTOCK'

if prev_value == load_cell_val: # used to determine if product is out of stock

count = count + 1

else:

count = 0

if load_cell_val < prev_value: # preventing noise

load_cell_val = prev_value

else:

updateScreen("Dispense", 0 , 0, load_cell_val)

prev_value = load_cell_val

utime.sleep(0.01)

updateScreen('SUCCESS', 0, 0, round((scales.raw_value() / (2**22)) * 30000, 2))

26

updateLEDS(1, 0, 0) # set green LED

closeValves()

return 'SUCCESS'

sends the machine into a waiting state, in order to re-enter the main loop,

the reset button must be hit again

def resetState():

closeValves()

utime.sleep(3)

while True:

reset_state = not (reset_button.value())

if reset_state:

refillDispensary()

def refillDispensary():

res = ""

button_1_state, button_2_state, reset_state, pot_1_state, pot_2_state = 0, 0, 0, 0,

0

scales = Scales(d_out = 5, pd_sck = 6)

scales.tare()

updateScreen('Select', pot_1_state, pot_2_state, 0)

updateLEDS(1, 0, 0) # green LED

closeValves()

while True:

button_1_state = not (button_1.value()) # gets in UI values

button_2_state = not (button_2.value())

reset_state = not (reset_button.value())

pot_1_state = pot_1.read_u16()

pot_2_state = pot_2.read_u16()

if pot_1_state > 50000: # max value for load cell is 5 kg

pot_1_state = 50000 # cap values that are larger

elif pot_1_state < 400: # anything less than 400 could have noise

pot_1_state = 0

if pot_2_state > 50000:

pot_2_state = 50000

elif pot_2_state < 400:

pot_2_state = 0

pot_1_state = int(pot_1_state / 50) # convert to grams

pot_2_state = int(pot_2_state / 50)

27

if (button_1_state): # button 1 pressed

if pot_1_state < .01:

updateScreen('NoQuantity', pot_1_state, pot_2_state)

else:

updateScreen('NormalA', pot_1_state, pot_2_state)

updateLEDS(0, 0, 1) # set orange LED

valve_2.value(1)

res = fillUp(pot_1_state)

utime.sleep(10)

elif (button_2_state): # button 2 pressed

if pot_2_state < .01:

updateScreen('NoQuantity', pot_1_state, pot_2_state)

else:

updateLEDS(0, 0, 1) # set orange LED

updateScreen('NormalB', pot_1_state, pot_2_state)

valve_1.value(1)

res = fillUp(pot_2_state)

utime.sleep(10)

elif (reset_state): # reset pressed

updateLEDS(0, 1, 0) # set red LED

updateScreen('Reset', pot_1_state, pot_2_state)

valve_1.value(0)

valve_2.value(0)

resetState()

else:

updateScreen('Select', pot_1_state, pot_2_state)

refillDispensary() # starts the software for the refillDispensary

