
Lens controller for
Biomedical cameras

Siddharth Sharma (sharma62)
Kevin Sha (ksha3)

Jihun Kim (jihunhk2)

TA: Zhicong Fan
Professor : Viktor Gruev

overview
● Introduction & Objective

● Design

● Project Build & Functional Test Results

● Successes & Challenges

● Conclusion & Areas of Improvement

Introduction to project
● Margin of error in many medical operations is very slim

● One prime example is cancer treatment :

○ It requires high degree of accuracy

○ 25% of breast cancer patients, 35% of colon cancer patients, and 40%

of head and neck cancer patients suffer from incomplete tumor removal

● Hence, this is a significant problem and requires

solution.

objective
● To remotely control the camera’s focus and shutter for

use in the operating room

● The desired goal is that the camera’s specifications can

be adjusted to make sure that the entire tumor(s) is

removed

Original design

Changes made since then: PCB Sub-section
● Redesigned sub-section completely since Design Document

● Originally thought that one flexible PCB would be enough

to connect the FPGA and the lens mount

● Found that new system would have to be developed

Project build: PCB Sub-section
● 2 PCBs:

○ A rigid-flex-rigid which would transport the signals through the

tight constraints of the lens mount

○ A flex PCB, which will connect the signals from the FPGA to the the

bottom of the lens mount

Rigid-flex PCBs
● Rigid section with flex section emerging from the middle

● Allows for rigid PCBs to be placed in tight regions

[1]

Emerging flex section connects two rigid sections

Layer stackup
● Important to correctly incorporate layers for optimum

signal integrity

● Flex signal layers need to be properly extended

[2]

Routing and electrical connections
● Rigid and flex sections are on different layers

● Signals transported between different layers using vias

Bend angle/bend radius of flex region
● Bend angles are all 90°,

experimented with bend

direction

● Bend radius was dependent

on bend angle

Flex PCBs
● Used to navigate tight mechanical constraints

[3]

Flex Pcb Specs
● Flex PCB is used to connect the FPGA connector and the

camera body via contact pads and an exposed beveled edge

Flex pcb layer stackup

Routing and wire connections
● Beveled edge and contact pads are on the same layer

Successes and failures: PCB Sub-section
Successes

● Un-bending the CAD model &
making it our board shape

● Using vias to ensure
optimal signal routing

● Implementing different
layer stackups

● Application of rigid-flex
and flex PCB knowledge

Failures

● Biggest setback was that we
believed that the port
mapping of the FPGA
connector was the port
mapping of the lens
connector

● Did not anticipate the
process of actually
ordering the PCB

Project build: FPGA +PC
● XEM7310-A75 (testing purpose)

● XEM7310-A200(in actual design).

● FPGA is for communication between the computer and the lens.
○ Lens - SPI protocol
○ Computer/PC - OK modules & python codes

FPGA

PC
● Users will be sending the commands for the lens to the FPGA

using the python code on their PC.

● It is a common interface used to send data between a
microcontroller and small peripheral devices such as sensors.

● It consists of clock, data lines, and select line.

Serial Peripheral interface (spi) protocol

AsynchronousSynchronous

SPI Protocol
Master Slave

Project build: FPGA +PC
● Commands

○ 0x12 : Change aperture
■ + one 8-bit argument

○ 0x44 : Change focus
■ + two 8-bit arguments

○ 0x05 : Focus to max

○ 0x06 : Focus to min

○ 0x0A : Read/sync

Project build: FPGA +PC
● Python

○ Spyder IDE
■ Enables us to make PC communicate FPGA.

● Verilog
○ Modules to transfer data between FPGA and PC.

■ OkWireIn
■ OkWireOut

○ State Machine
■ Transfer and receive data in between the FPGA and the

lens using SPI protocol

python

Verilog

Verilog (State machine) - Initial version

Command

Argument 1

Argument 2

Start

SPI Core
[AXI QUAD

SPI
LogiCore IP]

8-bit

8-bit

8-bit

8-bit 0751

Verilog (State machine) Verilog (State machine) - second version

Command
8-bit

Verilog (State machine) Verilog (State machine) - second version
Command[7]

Command[6]

Command[5]

Command[4]

Command[3]

Command[2]

Command[1]

Command[0]

Verilog (State machine) Verilog (State machine) - second version
Command[7]

Command[6]

Command[5]

Command[4]

Command[3]

Command[2]

Command[1]

Command[0]

1-bit

1-bit

1-bit

1-bit

1-bit

1-bit

1-bit

1-bit

Verilog (State machine) - Third version
● Setup and Hold Time Violation

Verilog (State machine) - Third version

Command[n] Command[n] Command[n] Command[n]

Output
bit

CLOCK

Project build: FPGA +PC

OK
Modules

State
Machine Command & argument

SPI
Protocol

SPI
Protocol

Successes and failures: fpga Sub-section

Successes and failures: fpga Sub-section

Command

Clock

Successes and failures: fpga Sub-section

Clock

Response

Successes and failures: FPGA + PC
Successes

● Managed to get the lens to
move according to the
command input by the user

● Managed to carry out SPI
protocol using the state
machine through the
verilog code without using
standard IP block

Failures

● There are certain values
that we need to put in for
the argument. We did not
have enough time to figure
out what are the available
argument values.

What did we learn? (Technical)
● SPI Protocol
● General Process of engineering

○ Implementation/Code => Simulation => Testing =>
Debugging => Success

● OK Modules
● Rigid-Flex/Flex PCBs

○ Layer stackup requirements
○ Routing rules
○ Routing debugging
○ Navigating mechanical design constraints
○ Vias and Tented Vias

What did we learn? (soft skills)
● Ask more questions to prevent misunderstandings later

● Being seen as ‘dumb’ for asking certain questions

● Always have a time cushion for every step

● Dealing with setbacks and how to move forward from them

Conclusion and final thoughts
● Proud of what we have accomplished, disappointed we

couldn’t make it a reality
● Learned hard lessons to carry with us into the future
● Enjoyed putting our skills to the test and picked up

necessary knowledge to achieve our goals
● Picked the right team members to do this project with

Ethical concerns
● Privacy concerns using the camera
● Mechanical hazards in the event of an accident

● Illinois BioSensors Lab
○ Professor Viktor Gruev
○ Zhongmin Zhu

● Our TA: Zhicong Fan

SPecial Thanks to

Citations
[1] “Home,” Flex PCBs | Rigid Flex PCBs | PCB Unlimited. [Online]. Available: https://www.pcbunlimited.com/products/rigid-flex-pcbs.
[Accessed: 24-Nov-2022].

[2] “What is Flex PCB? - an overview of Flex and Rigid-Flex PCB - news,” PCBway. [Online]. Available:
https://www.pcbway.com/blog/News/What_is_Flex_PCB____An_Overview_of_Flex_and_Rigid_Flex_PCB.html. [Accessed: 24-Nov-2022].

[3]“Basics of Flex Circuit Design - Minco Products.” [Online].
Available:https://www.minco.com/wp-content/uploads/Minco_BasicsofFlexDesign.pdf [Accessed: 29-Sep-2022].

[4] M. Grusin, “Serial Peripheral Interface (SPI) - learn.sparkfun.com,” Sparkfun.com, 2019.
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/all

[5] “Final thoughts images – browse 2,487 stock photos, vectors, and video,” Adobe Stock. [Online]. Available:
https://stock.adobe.com/search?k=final+thoughts. [Accessed: 27-Nov-2022].

[6] “Ethics issues in the engineering profession,” Railway Age, 12-Sep-2022. [Online]. Available:
https://www.railwayage.com/regulatory/ethics-issues-in-the-engineering-profession/. [Accessed: 27-Nov-2022].

https://www.minco.com/wp-content/uploads/Minco_BasicsofFlexDesign.pdf
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/all

