
Efficient Light Control System for Plant Growth

By

Christelle Seri (seri2),

Heonjang Lee (hl8),

Sungjoo Chung (sungjoo2)

ECE 445 Senior Design Document

Fall 2022

TA: Zhicong Fan

09/29/2022

Project 5

2

Contents

Introduction 3

Problem 3

Solution 3

Visual Aid 4

High Level Requirements 4

Design 4

Block Diagram 5

Subsystem Overview 5

Plots 16

Overall Schematics 17

Tolerance Analysis 21

Cost and Schedule 22

Cost Analysis 22

Schedule 24

Ethics and Safety 25

References 26

3

1. Introduction

1.1. Problem

Greenhouses in the industry are essential in the agricultural fields, but also costly.

Greenhouses are proven to be an effective solution to growing plants, but over time, the

electricity costs will begin to add up. According to research, a 200ft * 100 ft greenhouse

costs about $6000 per month [1].

1.2. Solution

This project proposes an energy efficient blinds system with UVA lights as a solution to

simulate a cost effective greenhouse system. A sensor would be placed on the plant vase

to measure the amount of light received. The blinds would adjust via the attached motor

so as to optimize the amount of light to the plant. The UVA lights will turn on when the

maximum sunlight from the blinds is insufficient.

Thus the UVA lights would only be used when strictly necessary, cutting down on

electricity costs as a result. Additionally, the blinds system could be scheduled and

adjusted to user needs as well.

This system will be easily controlled by a user using a mobile application, and also

statistics will be provided on the application.

4

1.3. Visual Aid

Figure 1: Model of the system

1.4. High Level Requirements

❖ The artificial light-source, combined with available natural light, should provide

light of wavelength 400-700 nm, which has been proven to be optimal for plant

growth [2], and a maximum of 3,500 lux over a 12 hour period [3], to provide

sufficient light for high-light plants, when needed.

❖ The photosensors on the vase should correctly calculate the illumination on the plant

to minimize the discrepancy between the actual illumination on the plant and the

expected illumination within ±5%.

❖ The application should have enough modes to cover various types of plants

including cactus, tropical plants, conifers, etc

2. Design

5

2.1. Block Diagram

Figure 2: Block Diagram of the Project

2.2. Subsystem Overview

Photosensor

The photosensor used will be a BH1750FVI Luminosity sensor. The advantage of this

sensor is that it is a precise digital device, and compact in size as well. There will be an

ESP32-WROOM-32E which will communicate directly with the BH1750FVI via I2C.

Luminosity data will be transmitted to the app through bluetooth. The ESP32 was chosen

as it is a well documented microcontroller with both bluetooth and wifi capabilities. The

ability to communicate with the microcontroller over both I2C and SPI allows for a lot of

flexibility in our design. Additionally, it can be programmed reliably using the Arduino

IDE, and there are a lot of prior project implementations to reference. This subsystem

will share a microcontroller with the grow light subsystem.

6

Figure 3: Photosensor Schematic

Requirements Verification

1. The photosensor subsystem will transmit real

time luminosity data to the rest of the system

via bluetooth (every second)

2. The photosensor’s measurements will reflect

changes to the light to the plant with a delay no

greater than 2 seconds

1. The data from the photosensor will be

polled for a period of 30 seconds at the

end of which 30 accurate measurements

should be uploaded to the server

2. A phone’s flashlight will be used to

adjust light to the plant, in a range of

none to the maximum possible light.

The readings from the photosensor

should reflect changes in the flashlight

intensity.

Table 1: Requirements and Verification for Photosensor subsystem

Grow Lights

To maximize the energy efficiency of the system, an adjustable LED light circuit will be

implemented. LEDs were chosen for their energy efficiency, low cost and low heat

emission [4]. Implementing an LED grow light circuit allows for optimization of the light

provided to the plant. Below is a table showing the benefits of different types of LEDs [2].

7

Blue Light: increases chlorophyll production Yellow-Red Light: improves chlorophyll

absorption, germination and bud development

Green Light: helps with photosynthesis and can

improve plant size

UVA Light: can enhance plant pigmentation,

and thicken leaves

Table 2: Improvement on Plant Growth from Different LEDs

As such, the design includes a UVA, Yellow-Red, Green and Blue LED. The combination

of these four different wavelengths of light should provide light optimal to plant

development. These arrays of four LEDs will constitute individual grow light modules in

our overall circuit design.

Figure 4: Single Grow Light Module

These grow light modules will be switched on and off using relays. The microcontroller

will switch modules on and off accordingly to adjust the light to the plant. To provide

sufficient light to the plant, 18 of these grow light modules will be implemented as shown

below.

8

Figure 5: Overview of Grow Light Modules

To power the microcontroller used in the grow light and photosensor subsystems, the

following circuit will be used. 120V AC will be drawn from the wall and be converted to

3.3V using the LM25-23B03 AC to DC converter. As a safety precaution, there is a

failsafe emergency shutoff included. If the circuit were to need to be turned off in an

emergency, a manual switch could be flipped to cut all power to the LEDs. Additionally,

there will be a setting in the app to shut off the power via a relay as well.

Figure 6: Power Schematics with Emergency Shut Off

9

In order to be able to program the microcontroller properly, a USB peripheral as well as

Enable and Boot circuits have to be implemented. Referencing the design of Team 47

from Spring 2022, the boot and enable circuit will be implemented as it proved successful

for programming their ESP-32 [5]. To flash the code, both the Enable and Boot buttons

will be pushed.

Figure 7: Microcontroller Connections

Requirements Verification

1. The grow lights should be able to

adjust to either increase or decrease

the light to the plant

2. The grow light subsystem will

transmit real time data on the power

used (every second)

1. All of the grow light modules will be gradually

switched on. The light to the plant should increase

visibly. Additionally, the photosensor measurements

should show an increase.

2. The data from the microcontroller will be polled for a

period of 60 seconds, during which each of the grow

lights will be switched on/off. At the end of this period,

10

60 measurements accurately reflecting the changes

should be uploaded to the server.

Table 3: Requirements and Verification for Grow Light Subsystem

Motorized Blinds

The motorized blinds subsystem will be in charge of controlling the tilt angle of the

blinds for the plants to receive the desired amount of light. The system includes a ESP32

microcontroller, c stepper motor, A4988 motor driver, LM2596 buck converter and a

12V DC power supply.

The decision was made to use a stepper motor, more specifically the 28BYJ-48 stepper

motor, rather than a servo motor, due to the requirements of this subsystem. In our

system, the blinds will be adjusted mostly at low speed, which the stepper motor excels at

as it provides high torque, reliability and precision, at a much affordable price than the

servo motor [6]. This motor will be used to control the tilt of the blinds.

To stay consistent with the choice of microcontroller, this subsystem will also be

operating through the ESP32 microcontroller due to the reasons discussed in the above

section. The microcontroller will be in charge of receiving instructions from the

application, and controlling the tilt of the blinds via the motor depending on the current

state of the system.

A motor driver is implemented between the microcontroller and the stepper motor

because the microcontroller operates in low current whereas the motor operates in high

current. The A4988 Stepper Motor Driver was chosen as it is compatible with our stepper

motor, it allows the control of maximum current output which translates to maximum

voltage for the motor and that it has an over-temperature thermal shutdown system for

safety measures [7].

11

The LM2596 buck converter and 12V DC power supply are needed in order to supply

appropriate voltages to the components above.

Lastly, for the same reasons that we’ve included UART for the microcontroller of the UV

light subsystem, they have been included in this subsystem as well.

The following figures are the schematics of the motorized blinds subsystem.

Figure 8: Microcontroller Circuit Schematic for the Motorized Blinds Subsystem

12

Figure 9: Motor Circuit Schematic for the Motorized Blinds Subsystem

Figure 10: Power Circuit Schematic for the Motorized Blinds Subsystem

Figure 11: Peripherals Circuit Schematic for the Motorized Blinds Subsystem

13

The following table includes the requirements for this subsystem to function properly and

methods to verify such functionality.

Requirements Verification

1. The microcontroller should instruct

the motor to rotate in the desired

direction to tilt the blinds

2. The microcontroller should be able to

instruct the motors to angle the blinds

at a desired angle within an error no

bigger than , which is half the± 2. 5°

minimum increment the blinds will be

adjusted at

3. The motor should start rotating within

5 seconds, for both directions, of the

ESP32 receiving instruction from the

application

1. Verification step for requirement 1

a. Have application to instruct ESP32* to

tilt the blinds in a specified orientation

b. Confirm if the motor rotates in

appropriate direction to perform its

instruction

c. Repeat steps a~b but with opposite

orientation

2. Verification step for requirement 2

a. Have application to instruct ESP32* to

angle the blinds at an arbitrary angle

b. Verify that the blinds are at an angle

within the error margin using a

protractor

3. Verification step for requirement 2

a. Have application to instruct ESP32* to

tilt the blinds in one orientation for an

arbitrary amount

b. Start the timer, preferably a stopwatch

app or a digital timer

c. Stop the timer when the motor starts

rotating

d. Repeat steps a~c but with opposite

orientation

14

Table 4: Requirements and Verification for Motorized Blinds Subsystem

Phone Web Application

To let a user control and monitor the entire system, a phone web application will be built.

The application consists of a backend and a frontend.

1. Frontend

- This part is where the user makes an interaction with the system. Users will

enter the mode they want to run in the system, and this frontend will deliver that

configuration to the backend. Also, the statistics/analysis of the system will be

passed from backend to frontend and will be shown to the user in a user-friendly

way. Also, the user will be able to manually control(open/close blinds, turn on/off

lights) the system through frontend.

Requirements Verification

1. The frontend server should be able to

manually control the system

2. The frontend server should be running in the

cloud consistently even under frequent usage

3. The frontend server should only allow

verified users to control the system

4. The manual commands (turning light on/off,

tilting/opening blinds) should not go beyond

its limit (minimum of 0 , maximum of 90)° °

to not harm the components

1. List a of command lines to be tested and

check whether those commands control the

hardware as requested

2. Create a spamming request simulator that

requests the system 10 times/s and see if all

requests are responded in 500ms.

3. Create a request simulator without any

identification and check if any of the

requests controls the system.

4. Create a repeated manual commands

simulator and check if the system ignores

when the system reaches the limit.

Table 5: Requirements and Verification for Frontend

15

2. Backend

- This part is where all business logic happens. Light intensity data points will be

passed from the photosensor subsystem and then stored here, and the system’s

configuration will be passed from the frontend. Using those two data, there will

be a continuously running process that calculates the need adjustment on the

system. Based on that calculation, the backend will send commands to the UV

light and Motorized Blinds subsystems. Also, it will summarize the statistics of

the system and deliver it to the frontend in a daily basis.

Requirements Verification

1. The backend server should accept light

intensity data stably

2. The backend’s k8s cluster should recover

from a node failure

3. The backend should aggregate the data

correctly and make a correct command

4. The backend should correctly summarize the

usage in one day

1. Create a light intensity reporting simulator

and see if the series of report matches with

the stored data

2. Manually kill one of nodes in the cluster and

checks if a new node is created

3. Create a precalculated simulation of the

environment, and check whether the

backend’s command matches.

4. Create a mock data of one date with a

precalculated summary and check if the

backend's summary matches on that mock

data.

Table 6: Requirements and Verification for Backend

16

2.3. Plots

Figure 12: Wavelength vs Normalized Absorbance for Plants

Chlorophyll a and b absorption rate is critical for a plant's photosynthesis [8]. In the

diagram, the absorption rate of those two are effective between 400 nm ~ 450 nm and 610

nm ~ 700 nm.

Figure 13: Wavelength vs Output Power for LEDs

According to the output power spectrum of the light-emitting diodes (LEDs) used in the

sensor identified by its central wavelength in the legend, the targeted ranges (400~ 450

17

nm, 610 ~ 700 nm) are optimized by blue and red LEDs [9]. Therefore, LEDs are

efficient enough to support plant growth

2.4. Overall Schematics

Figure 14: UV Light, Photosensor Subsystem

Figure 15: Overall Circuit Schematic of the Motorized Blinds Subsystem

2.5. Software Flowcharts

18

In the backend server, the systems will be running multiple threads to handle various jobs

efficiently. In order to avoid any possible complexity in the logic flows, each thread will

be allocated a clear role.

1. Data acquisition - collect data and save it into the database

2. Analyzer - Aggregate the collected data, calculate the adjustment needed to meet

the light intensity target.

3. Adjuster - Adjust hardware components(motor, UVA lights) to achieve the

required adjustment reported in the Analyzer.

4. StatsAnalyzer - Aggregate the stats daily

2.5.1. Data acquisition

Figure 16: Flowchart for Data Acquisition

Data acquisition thread’s role is straightforward. It will accept the light intensity data

from the system’s photosensor continuously.

2.5.2. Analyzer

19

Figure 17: Flowchart for Analyzer

The Analyzer’s goal is to calculate how much of light intensity the system is lacking or

overloaded. The calculated number will be saved into the database so that the other

thread(Adjuster) can take an action accordingly to achieve the system’s goal. In order to

synchronize with the Adjuster which runs every 10 minutes, the system will also wait 10

minutes after one cycle.

2.5.3. Adjuster

The Adjuster is responsible for making a decision on how to control the hardware system.

Based on the calculated adjustment from the Analyzer, Adjuster takes actions to meet that

adjustment. In order to prioritize energy consumption efficiency, the Adjuster first tries to

minimize the artificial light source usage. If the blinds system’s adjustment is not

sufficient to meet the request, the system then tries to achieve the target by adjusting the

artificial light source.

20

Figure 18: Flowchart for Adjuster

2.5.4. StatsAnalyzer

The StatsAnalyzer will summarize the system’s statistics on its performance in a daily

basis

21

Figure 19: Flowchart for StatsAnalyzer

2.6. Tolerance Analysis

2.6.1. Hardware Component

The most critical component of the hardware aspect of our project is the grow

light system composed of LEDs. It needs to be ensured that the LEDs are

provided with sufficient power such that it can be turned on for a desired amount

of time. Failure to do so results in diminished or in the worse case unlit LEDs

which poses a great threat to the success of our project. Thus, a tolerance

analysis will be performed on the amount of power our grow light system will be

using, and prove that the power supply that is implemented in the project is

sufficient to supply the system. To account for the worst case scenario, we will

conduct all calculations assuming LEDs are at maximum brightness thus

consuming maximum power.

For one grow light module, the LEDs will dissipate the following amounts of

power as indicated in their datasheet

● UVA: 120 mW

● Blue 120 mW

● Green: 123mW

● Yellow-red: 72mW

22

The design has a total of 18 grow modules, and with 4 LEDs per module, there

will be a total of 72 LEDs. The overall power dissipated by all the LEDs is then

435mW *18=7.83 W

From these calculations, the LM25-23B03 AC/DC converter should supply more

than enough power. The power rating of the converter is 20W which greatly

exceeds the minimum 7.83W needed for the LEDs.

2.6.2. Software

In the software aspect of things, the system should have some level of authentication to

protect it from the hackers. If this system was used at an industry level, failing to maintain

a desirable environment would seriously damage the plants under this system. Also,

because system failure is critical, the backend server should be able to recover itself from

unexpected failures.

[10]In order to recover from an unexpected failure, this system should be built using

Kubernetes which is a container orchestration software. Whenever a container(node) of a

server cluster fails, another container(node) will be introduced automatically to maintain

a desired status of the system.

3. Cost and Schedule

3.1. Cost Analysis

UIUC’s ECE AY20-21 grad students have an average starting salary of $92824. Our team

consists of 3 members and each of us expect to work 10 hrs/week. A full time employee

works 40 hrs / week and this project is scheduled for 10 weeks so the total human

resource cost will be $92824 per year / 52 weeks * 10 weeks * / (10 hours / 40 hours) * 3

= $362013

The following table contains all the parts needed for our project.

Component Quantity Manufacturer Cost/Quanti
ty($)

Total Cost($)

BH1750 Ambient Light Sensor 1 Rohm 4.50 4.50

23

XZVS54S-9C UV LED 18 SunLED 2.77 49.86

XPCBLU-L1-0000-00W01 Blue
LED

18 CreeLED 1.10 19.8

150080SG54050 Red/Green
LED

18 Wurth Electronik 0.62 11.16

AA3528ZGSK Green LED 18 KingBright 0.62 11.16

J105D1AS3VDC.45 Relay 18 CIT Relay and
Switch

1.26 22.68

SRD-05VDC-SL-C Relay 1 SONGLE Relay 2.03 2.03

10kΩ Resistor 4 EDGELEC 2.00 8

470Ω Resistor 4 EDGELEC 2.00 8

100Ω Resistor 4 EDGELEC 2.00 8

1uF Capacitor 10 KEMET 0.94 9.4

680uF Capacitor 1 KEMET 0.93 0.93

220uF Capacitor 1 KEMET 0.38 0.38

33uH Inductor 1 Bourns 0.86 0.86

1N5822 Schottky Diode 1 NTE Electronics 0.56 0.56

LM25-23B03 AC/DC Converter 1 Mornsun
American

11.43 11.43

ESP32-WROOM-32E
Microcontroller

2 Espressif Systems 3.00 6.00

A4988 Stepper Motor Driver 1 HiLetgo 1.98 1.98

28BYJ-48 Stepper Motor 1 HiLetgo 2.87 2.87

LM2596 Buck converter 1 Texas Instruments 3.20 3.20

24

12V Power Supply Adapter 1 GANGQI 9.00 9.00

Generic 4 pin connector 3 Sparkfun
Electronics

1.69 5.07

Total Cost 196.87

Table 7: Component Costs

3.2. Schedule

Major
Deadlines

Christelle Sungjoo Heonjang

10/3 Design
Review

Finalize PCB Finalize
PCB

Prepare a working
environment (cloud

setup)

10/1
0

1st round
PCBs

Order Parts, Simulate
Circuit

Finalize design and
print 3D part

Implement a backend
server

10/1
7

Soldering Soldering Soldering

10/2
4

Testing Test the board, program
the board to receive
and send data

Test the board,
program the board to
receive and send data

Implement a frontend
server

10/3
1

2nd Round
PCBs

Order a second final
board

Order a second final
board

Integrate the software
system with the
hardware system and
test

11/7 Soldering, testing Soldering, testing Implement statistics
analyzer, soldering

11/1
4

Mock Demo Prepare for Demo Prepare for Demo Prepare for Demo

11/2
1

Break

25

11/2
8

Final Demo Finalize adjustments
for demo

Finalize adjustments
for demo

Finalize adjustments for
demo

12/5 Final
Presentation

Finalize presentation Finalize presentation Finalize presentation

Table 8: Schedule

4. Ethics and Safety

This project is subject to the ACM Code of Ethics 1.3Be honest and trustworthy [11]. Because we

are integrating all existing technologies into one system, we are destined to borrow ideas or

approaches made by other people. There, we should cite those ideas properly to recognize the

original author. Also, privacy should be taken seriously which is related to the ACM Code of

Ethics 1.6 [11]. Our system stores user’s authentication and they use histories in our database.

This should be most firmly protected to avoid any privacy leakage.

This project is also subject to potential fire accidents due to UVA light systems at an industry

level. Both UVA lights, motors, powers should never be overloaded to comply with the ACM

Code of Ethics 1.2 Avoid harm [11]. In addition to that, UVA light bulbs get hot when they are

turned on for a certain period of time. The users of this system should avoid touching the bulbs

directly so that they do not get burned on their hands. Therefore, the housing frame in the system

should encapsulate the light bulbs cluster except the bottom. Then, the users are nudged to not

touch the light bulbs.

Lastly, the light bulbs cluster should be located far enough away from the plants. Plants touching

the bulbs will cause fire which will damage not only the plant, but also the system itself and

potentially beyond. Because this is an automated system which has a minimum human

interaction, it is possible that plant growth can occur without the user’s expectation.

26

5. References

[1] Brumfield, Robin. (1992). Greenhouse Cost Accounting: A Computer Program for
Making Management Decisions. HortTechnology. 2. 10.21273/HORTTECH.2.3.420.

[2] “The visible wavelength range and its impact on plant growth”, Light Science
Technologies, https://lightsciencetech.com/visible-wavelength-range-plant-growth/

[3] Navvab, M. (2009, January). Daylighting aspects for plant growth in interior
environments. ResearchGate. Retrieved September 30, 2022, from
https://www.researchgate.net/publication/259043901_Daylighting_Aspects_for_Plant_Gr
owth_in_Interior_Environments

[4] “LED Grow Lights for Plant Production” OSU Extension,
https://extension.okstate.edu/fact-sheets/led-grow-lights-for-plant-production.html

[5] Xie, Ben & Goel, Pranav, & Wang, Honru. (2022) TimeTable Productivity Device.
https://courses.engr.illinois.edu/ece445/getfile.asp?id=20494

[6] Motors and Selecting the Right One. Motors and selecting the right one. (n.d.).
Retrieved September 29, 2022, from
https://learn.sparkfun.com/tutorials/motors-and-selecting-the-right-one/all

[7] Allegro MicroSystems. (n.d.). DMOS Microstepping Driver with Translator And
Overcurrent Protection Datasheet. Retrieved September 30, 2022, from
https://www.pololu.com/file/0J450/a4988_DMOS_microstepping_driver_with_translator.
pdf

[8] Shi, Hui & Xia, Ruoxi & Zhang, Guichuan & Yip, Hin-Lap & Cao, Yong. (2018).
Spectral Engineering of Semitransparent Polymer Solar Cells for Greenhouse
Applications. Advanced Energy Materials. 9. 10.1002/aenm.201803438.

[9] Duarte, Daniel & Nogueira, Rogério & Bilro, Lucia. (2019). Turbidity and RI
Dependency of a Polymer Optical Fiber-Based Chromatic Sensor. Sensors (Basel,
Switzerland). 20. 10.3390/s20010019.

[10] “Overview.” Kubernetes, https://kubernetes.io/docs/concepts/overview

[11] “Code of Ethics”, https://www.acm.org/code-of-ethics

https://lightsciencetech.com/visible-wavelength-range-plant-growth/#:~:text=610%2D700%20nm%20is%20considered,plant%20growth%20and%20optimised%20yield
https://extension.okstate.edu/fact-sheets/led-grow-lights-for-plant-production.html
https://courses.engr.illinois.edu/ece445/getfile.asp?id=20494
https://kubernetes.io/docs/concepts/overview/#:~:text=Self%2Dhealing%20Kubernetes%20restarts%20containers%20that%20fail%2C%20replaces%20containers%2C%20kills%20containers%20that%20don%27t%20respond%20to%20your%20user%2Ddefined%20health%20check%2C%20and%20doesn%27t%20advertise%20them%20to%20clients%20until%20they%20are%20ready%20to%20serve.
https://kubernetes.io/docs/concepts/overview
https://www.acm.org/code-of-ethics

