
Hardware Accelerated High-Frequency Trading System
Design Document

TA:
Mingjia Huo

Team Members:
Siyi Yu(siyiyu2)

Kevin Lim (wzlim2)
Richard Deng (ruichao4)

September 29, 2022

1

Contents
1 Introduction

1.1 Problem
1.2 Solution
1.3 Visualization
1.4 High Level Requirements

2 Design
2.1 Block Diagram
2.2 Subsystem Overview
2.3 Subsystem Requirements
2.4 Tolerance Analysis

3 Cost & Schedule
3.1 Cost Analysis
3.2 Schedule

4 Ethics & Safety
4.1 Ethics
4.2 Safety

5 References

2

1 Introduction

1.1 Problem

Modern electronic markets have been characterized by a relentless drive towards faster
decision making. Significant technological investments have led to dramatic
improvements in latency, the delay between a trading decision and the resulting trade
execution. We describe a theoretical model for the quantitative valuation of latency. A
low latency for the communication, which refers to sending the order to exchange and
receiving the order from exchange, is critical since sometimes a delay of milliseconds
could result in a loss of millions dollars.

“Low latency” in a contemporary electronic market would be qualified as under 10
milliseconds, “ultra low latency” as under 1 millisecond. This change represents a
dramatic reduction by five orders of magnitude. To put this in perspective, human
reaction time is thought to be in the hundreds of milliseconds.

In the financial market today there is a lot of need to optimize the trading/execution
latency to support automated quantitative trading systems. While most of the computer
software runs on generic operating systems and the CPU executing the logic has many
parts of unnecessary instructions/procedures, the automated trading strategy can be
highly optimized with hardware to achieve low-latency and high-frequency.

1.2 Solution

The purpose of this project is to prototype a hardware based trading tool that can perform
such a high-frequency and low-latency trading. while being able to communicate with
the exchange using basic network protocol.

We plan to build a trading system that uses one PCB to connect to a fake exchange and
get/send binary market data and use highly optimized FPGA to consume this market data
and make decisions based on the data. Since we will not be able to directly connect to the
exchanges without approval, we are also going to simulate an exchange using software.
Most of the existing low-latency trading strategy will be implemented using FPGA
solely. However, our project will utilize an ESP8266 chip for networking purposes.

3

The ESP8266 is a low-cost Wi-Fi microchip, with built-in TCP/IP networking software,
and microcontroller capability. FPGAs which could accomplish this task are pretty high
end and relatively expensive. FPGAs tend to offer vastly greater flexibility which we do
not need for this project. It will help us bring down the cost while maintaining a
relatively good performance of the system.

1.3 Visualization

Figure 1 illustrates the overview of our project design.

Figure 1: User diagram

● Simulated stock exchange will be implemented fully using software using C++
code

● We are planning on to use USB for the data transmission between FPGA and
ESP8266 chip

4

https://en.wikipedia.org/wiki/Wi-Fi
https://en.wikipedia.org/wiki/TCP/IP_stack
https://en.wikipedia.org/wiki/Microcontroller

● We will use UDP protocol for the communication between ESP8266 and
simulated stock exchange

1.4 High-Level Requirements

For this project, we have 3 high-level requirements that we aim to achieve:
1. 80% orders being successfully sent to exchange and received by users
2. 30% faster than using purely software implementation of this system
3. 100% orders being correctly processed by the exchange

5

2 Design
2.1 Block Diagram

6

2.2 Subsystem Overview

Our project consists of three major systems, simulated exchange, networking hardware,
and FPGA trading strategy.

2.2.1 Simulated Exchange

This is a simulation of real-world exchange. It can receive orders from market
participants and automatically generate trade messages and broadcast it back to market
participants. This simulated exchange consists of three parts:

I. Order Data Decoder. This decoder will decode the binary order data sent by
market participants into internal, more organized, human-readable data and feed it
to the orderbook.

II. Orderbook. This is where all the orders from different market participants are
stored, and it will generate a trade if the bid side and ask side meets.

III. Market Data Encoder. This encoder will consume the data from the orderbook and
encode it into binary market data and broadcast it to market participants.

The simulated exchange will be a piece of software that simulates an exchange in
real-time. This simulated exchange will only have one security to trade and will be
receiving three types of binary-encoded messages (add order, cancel order, update order)
from the market participants using a certain protocol, building a full-depth limit order
book based on the order received, automatically trade two orders when the bid side and
ask side meet, and re-broadcasting the trade message with the other three client messages
in binary encoded form as market data messages. The message protocol we designed are
presented below:

Client Message Header (shared among all client messages)

Field Name Offset
(in
bytes)

Length
(in
bytes)

Description

Message Type 0 1 Type of the message (zero padded)

authentication
Key

1 4 Client authentication for sending requests to the
exchange

7

Client Add Order Message

Field Name Offset
(in
bytes)

Length
(in
bytes)

Description

Message Type 0 1 Add Order message type (00)

Authentication
Key

1 4 Client authentication for sending requests to the
exchange

Order Type 5 1 0 for Bid Order, 1 for Ask Order

Price 6 4 Integer value of the price, should be scaled by
10^-4 to get the real price

Quantity 10 4 Integer value of the quantity

Client Cancel Order Message

Field Name Offset
(in
bytes)

Length
(in
bytes)

Description

Message Type 0 1 Cancel Order message type (01)

Authentication
Key

1 4 Client authentication for sending requests to the
exchange

Order
Reference
Number

5 4 32 bit unsigned integer for the order intend to
delete

Client Update Order Message

Field Name Offset
(in
bytes)

Length
(in
bytes)

Description

Message Type 0 1 Update Order message type (10)

Authentication 1 4 Client authentication for sending requests to the

8

Key exchange

Order
Reference
Number

5 4 32 bit unsigned integer for the order intend to
update

Price 9 4 Integer value for the price willing to be updated
to, should be scaled by 10^-4, 0 for unchange

Quantity 13 4 Integer value for the quantity willing to be
updated to, 0 for unchange

Market Data Message Header (shared among all exchange-sent market data
messages)

Field Name Offset
(in
bytes)

Length
(in
bytes)

Description

Message Type 0 1 Type of the message (zero padded)

Sequence
Number

1 4 Sequence number of the message

Market Data Add Order Message

Field Name Offset
(in
bytes)

Length
(in
bytes)

Description

Message Type 0 1 Add Order message type (00)

Sequence
Number

1 4 Sequence number of the message

Order Type 5 1 0 for Bid Order, 1 for Ask Order

Price 6 4 Integer value of the price, should be scaled by
10^-4 to get the real price

Quantity 10 4 Integer value of the quantity

9

Market Data Cancel Order Message

Field Name Offset
(in
bytes)

Length
(in
bytes)

Description

Message Type 0 1 Cancel Order message type (01)

Sequence
Number

1 4 Sequence number of the message

Order
Reference
Number

5 4 32 bit unsigned integer for the order intend to
delete

Market Data Update Order Message

Field Name Offset
(in
bytes)

Length
(in
bytes)

Description

Message Type 0 1 Update Order message type (10)

Sequence
Number

1 4 Sequence number of the message

Order
Reference
Number

5 4 32 bit unsigned integer for the order intend to
update

Price 9 4 Integer value for the price willing to be updated
to, should be scaled by 10^-4, 0 for unchange

Quantity 13 4 Integer value for the quantity willing to be
updated to, 0 for unchange

Trade Message

Field Name Offset
(in
bytes)

Length
(in
bytes)

Description

10

Message Type 0 1 Trade message type (11)

Sequence
Number

1 4 Sequence number of the message

Order
Reference
Number Bid
Side

5 4 32 bit unsigned integer for the order that is
filled to trade on the bid side

Order
Reference
Number Ask
Side

9 4 32 bit unsigned integer for the order that is
filled to trade on the ask side

Price 13 4 Trade price integer value, should be scaled by
10^-4

Quantity 17 4 Trade quantity integer value

Below are some examples of the messages:

Client Example Messages

Message in Hex Message interpretation

00 76F43B25 00 00126308 0000000A Client with key 0x76F43B25 sent an limit
bid order with price of $120.5 and
quantity of 10 shares

10 76F43B25 00000010 00124F80
00000000

Client with key 0x76F43B25 send a
request to change the price of order 0x10
to $120 while keep quantity unchanged

Market Data Example Messages

Message in Hex Message interpretation

01 00000001 00000010 Exchange-sent market data message which
has a sequence number 1 indicating
someone is canceling his order with order

11

reference number 0x10

11 00000002 00000010 00000011
00124F80 00000005

Exchange-sent market data message which
has a sequence number 2 indicating there
is a trade with agreed price $120 and
quantity of 5 (could possibly only have
partial filled on one side). The order
reference number on the bid side is 0x10,
and the order reference number on the ask
side is 0x11

We will also need to implement an order book so that we could keep track of all the sell
and buy orders. Our implementation of it is shown in the figure below.

12

13

To test our strategy we will simulate the market data received from market participants,
constantly adding limit ask/bid at the same price level in high frequency. We will expect
100% of the orders to be processed correctly. This means an ask order and a bid order
with the same price will not be existing in the order book, since it will generate a trade.
This part of the project is designed to be run completely by software so there is no power
supply unit involved in the subsystem.

2.2.2 Networking Hardware

This part is generally a PCB that handles networking between the simulated exchange
and the FPGA trading strategy. This system consists of two parts:

I. UDP Networking Chip. This is a ESP8266 chip that processes network packets
using UDP protocol.

II. Sequence Gap Detector. This part is responsible for detecting the sequence gap
when packets are dropped given the unreliable nature of UDP protocol, and it is
also responsible for recovering the lost packets from backup data feed.

Networking hardware will be responsible for the communication between users and the
stock exchange. It will be made of a PCB with ESP8266 chip on it and other parts/ports
to communicate with the simulated exchange through the network. We plan to use UDP
since it is what most exchanges will use. This part will be optimized to reduce the
connectivity latency between the fake exchange and the trading system and feed the data
to the FPGA.
We would utilize ESP8266WiFi.h and WiFiUdp.h these two libraries to enable the UDP
communication. The first library ESP8266WiFi.h is required by default if we are using
ESP8266’s Wi-Fi. The second one WiFiUdp.h is needed specifically for programming of
UDP routines. A complete sketch of code is provided below.

#include <ESP8266WiFi.h>
#include <WiFiUdp.h>

const char* ssid = "********";
const char* password = "********";

WiFiUDP Udp;
unsigned int localUdpPort = 4210; // local port to listen on
char incomingPacket[255]; // buffer for incoming packets
char replyPacket[] = "Hi there! Got the message :-)"; // a reply string to send back

14

void setup()
{
Serial.begin(115200);
Serial.println();

Serial.printf("Connecting to %s ", ssid);
WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED)
{
delay(500);
Serial.print(".");

}
Serial.println(" connected");

Udp.begin(localUdpPort);
Serial.printf("Now listening at IP %s, UDP port %d\n",

WiFi.localIP().toString().c_str(), localUdpPort);
}

void loop()
{
int packetSize = Udp.parsePacket();
if (packetSize)
{
// receive incoming UDP packets
Serial.printf("Received %d bytes from %s, port %d\n", packetSize,

Udp.remoteIP().toString().c_str(), Udp.remotePort());
int len = Udp.read(incomingPacket, 255);
if (len > 0)
{
incomingPacket[len] = 0;

}
Serial.printf("UDP packet contents: %s\n", incomingPacket);

// send back a reply, to the IP address and port we got the packet from
Udp.beginPacket(Udp.remoteIP(), Udp.remotePort());
Udp.write(replyPacket);
Udp.endPacket();

}
}

Without this component, there will be no way for users and stock exchanges to
communicate with each other. Since ESP8266 requires a power supply for it to be
functional, we would need a power supply for this subsystem. The ESP8266 requires a
3.3V power supply and 3.3V logic levels for communication and a maximum of 170mA
current.

15

2.2.3 FPGA Trading Strategy

This part is an FPGA board that consumes market data from the networking hardware
and generates decisions based on the market data. This consists of two parts:

I. Decision maker (Strategy). This part is the core trading strategy that takes in
market data in real-time and makes decisions based on some logic that directly
manipulates the binary market data to optimize speed.

II. Order Encoder. This part will take in the decisions that have been made from our
strategy, and encode it to binary and send it back to the networking chip, which
will eventually be sent to the exchange.

In order to simplify the process(since trading algorithm is not the key part of this project),
we plan to implement two simple strategies:

1. High-frequency market-making: This is a liquidity-providing trading strategy that
simultaneously generates many bids and asks for a security at ultra-low latency
while maintaining a relatively neutral position. When put into implementation, it
will make a spread of $a ~ $b by sending limit bid at $a and limit ask at $b, adjust
the spread based on Best Bid Offer (BBO) market data. This part is to test how fast
our trading system can be adjusted based on real-time information changes.

2. High-filling rate limit order: A limit order is used to buy or sell a security at a
predetermined price and will not execute unless the security's price meets those
qualifications. A High-filling rate limit order trading strategy sends a limit bid
order whenever there is a limit ask order at $a. This part is designed to test the
latency of our trading system and is extremely useful in options trading where the
bid-ask spread is very large and has a low order filling rate.

These two trading algorithms will be sufficient enough for us to mock the real world
trading cases and allow us to test the system.

2.2.4 Power Supply

We will need a 3.3V power supply for our PCB board.

16

2.3 Subsystem Requirements

2.3.1 Simulated Exchange

This simulated exchange will be purely software that is optimized for its speed and
correctness. For speed optimization, it will be written in C++ and optimized as much as
possible.

I. Order Data Decoder. The decoder should be able to decode the order data sent by
market participants in 100% accuracy, and be able to reject invalid orders. We will
design a specific protocol for this decoder, and reject any orders that don't follow
this protocol. We will also build in an authentication system by forcing the user to
send a key as part of the binary message, and our system should be able to verify
whether this user is authorized to trade in our exchange.

Requirements Verification

80% accuracy for order
data decoding

Encode several messages according to the protocol,
send it to the exchange and check whether the data
we sent is in the system

Reject binary data that
doesn't follow the
protocol

Send some random binary data to see whether it’s
rejected by the exchange

Reject unauthorized users Send order data using random authentication key to
see whether it’s rejected by the exchange

II. Orderbook. The orderbook should be able to store valid order data in our system
into two sides, the ask(sell) side and bid(buy) side. To make sure to update the
same order later, we will generate an Order Reference Number that associates with
each individual order, and store this relation into a map. It will also automatically
generate trade when the bid side and ask side meets, i.e. whenever there exists
some ask order with price $x with quantity a and some bid order with price $y
with quantity b that satisfies (x < = y), a trade of quantity min(a, b) will be
generated.

Requirements Verification

17

orders are being stored in
orderbook and be able to
modify

Send orders to the exchange to see whether it’s in
our system. Modify it later and see whether it’s
modified in our system.

Trade is generated
automatically and
properly

Send random orders and make sure best bid price
and best ask price never meets

III. Market Data Encoder. The encoder should be able to encode the market data in
100% accuracy and send it back to market participants. To make sure users can
fully replicate everything happening in exchange in a time-sequenced manner and
also enable users to build sequence gap detection, there will be a sequence number
in each market data message. This encoder will also send data in two feeds
through different ports/hosts to enable lost packet recovery.

Requirements Verification

80% accuracy for market
data encoding and
sequenced

Generate several artificial events in the exchange,
and using another test software to receive and
decode this data, making sure it’s what’s happening
in the exchange and sequenced correctly

Being able to recover
data from backup feed

Receive and check whether both feeds are sending
the same data

18

2.4 Tolerance Analysis

Since we are using UDP as our network communication protocol, it might fail to deliver
some of the packets. It is very critical for us that every single packet is received,
otherwise we cannot process the market data correctly. However, we designed a sequence
gap detection and recovery method built in the PCB, only when both primary data feed
and secondary data feed fails on the same packet we will experience a failure, thus our
system has high tolerance for network failure. A diagram shown below demonstrates
when message 2 drops on primary feed and message 3 drops on secondary feed, we can
still recover all 4 messages after combining them.

19

3 Cost & Schedule

3.1 Cost Analysis

3.1.1 Labor

Name Hourly Rate($) Total Hours Total

Ricahrd Deng 33 144 4752

Kevin Lim 33 144 4752

Siyi Yu 33 144 4752

Total 99 432 14,256

3.1.2 Parts

Parts Part# Quantity Unit Cost($) Cost($)

FPGA 1

PCB - 1 0 0

3.2 Schedule

Week Task Responsibility

9/26 Complete Design Document Siyi
Kevin

Richard

FPGA Trading Algorithm Research Siyi
Kevin

Richard

10/3 ESP8266 UDP design Siyi
Kevin

Richard

20

Build Power Supply Siyi
Kevin

Richard

10/10 PCB design Siyi
Kevin

Richard

Trading Algorithm Implementation Siyi
Kevin

Richard

10/17 Trading Algorithm Implementation Siyi
Kevin

Richard

Testing Trading Algorithm Siyi
Kevin

Richard

PCB design Siyi
Kevin

Richard

Exchange Implementation Siyi
Kevin

Richard

10/24 Exchange Implementation and testing Siyi
Kevin

Richard

10/31 Integrate PCB to the system Siyi
Kevin

Richard

11/7 Testing the system Siyi
Kevin

Richard

11/14 Debug and fix any errors which may occur Siyi
Kevin

Richard

11/21 Final test for the whole system Siyi

21

Kevin
Richard

11/28 Prepare for final presentation Siyi
Kevin

Richard

12/5 Final presentation Siyi
Kevin

Richard

22

4 Ethics & Safety

4.1 Ethics

We have identified 3 major concerns of ethics from the Association for Computing
Machinery (ACM) Code of Ethics and Professional Conduct for our project[3].

Respect privacy (ACM 1.6)
● Our design may enable users to collect and trade personal information, which

violates the privacy of the user. We shall protect the privacy of our users and make
sure that no one is able to access personal information.

Honor Confidentiality (ACM 1.7)
● Our design may process highly valuable information such as trade secrets,

financial information, and client data. We must not share this data with anyone,
and we must not access the information ourselves.

Design and Implement Systems that are Robust and Usably Secure (ACM 2.9)
● A fragile or easily breakable design will likely lead to data leakage among other

problems. We should make sure that our design is robust and all information is
secure.

The Code of Ethics from the Institute of Electrical and Electronic Engineers (IEEE) also
provides important guidelines for our project. We shall properly credit the contribution of
others to our project (IEEE #5), uphold safety standards and disclose any safety concerns
to users (IEEE #1), and to not tolerate any form of discrimination with our project (IEEE
#7).[4]

Our design aims to reduce the latency of trading and make financial operations more
efficient. As a team, our goal is to make this design safe and accessible while respecting
the code of ethics and other moral concerns.

4.2 Safety

One concern regarding safety within our project is the power supply. If not handled
properly, there is a risk of overcharging which could damage the PCB. We will make sure
to test our power supply to not exceed 3.3V.

23

Our team takes ethical and safety concerns seriously and we will strictly follow all ethics
and safety guidelines, including those listed above and other concerns that are not
covered by these topics.

24

5 References

[1] Ultra Low Latency Networking with FPGA, 2020.
https://www.youtube.com/watch?v=32cK_yDcouQ

[2] UDP - ESP8266 Arduino Core, 2017.
https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/udp-examples.html

[3] Association for Computing Machinery, “ACM Code of Ethics and Professional
Conduct”, 2018. [Online]. Available: https://www.acm.org/code-of-ethics.

[4] Institute of Electrical and Electronic Engineers, “IEEE Code of Ethics”, 2017.
[Online]. Available: http://www.ieee.org/about/corporate/governance/p7-8.html.

25

