ZZZ-Mate: Pulse Driven White Noise Generator

Team #20
Sanjana Chunduri
(sc65@illinois.edu)
Haruya Kamitani
(hkamit2@illinois.edu)
Vakaris Ragauskas
(vragau2@illinois.edu)

TA: Jeff Chang

September 14, 2022
1 Introduction

1.1 Problem

According to the CDC, about 70 million Americans suffer from sleep deprivation. Lack of sleep causes various issues in our daily lives such as tiredness, lack of concentration, memory issues, and high blood pressure. In cases of chronic sleep deprivation, these issues can escalate to cardiovascular disease, diabetes, and depression.

White noise machines have been a widely accepted tool for masking background noise, which many people use as a sleeping aid today. There are currently various white noise machines out in the market, however, all of these devices output a single, continuous signal. According to one article[1], “the continuous background noise also known as white noise which comes from machines and other appliances, can harm your brain, it does so by overstimulating your auditory cortex.” By constantly sending auditory information during the entire night, the brain is overstimulated and does not have any actual time to rest.

Another problem caused by the continuous white noise signal is prolonged exposure to dangerous levels of sound, which can lead to hearing damage.

1.2 Solution

White noise is typically beneficial during the earlier sleep stages, when people are more likely to be awoken by distracting noises or thoughts. However, rather than continuously playing background noise through the night and overstimulating the auditory cortex, our design aims to combat typical sleep deprivation issues by supporting users through all stages of their sleep cycle: wake, light sleep, deep sleep, REM, and repeat. By introducing adaptive sound levels, the user will not be exposed to dangerous decibel levels continuously, as the white noise machine will only reach its highest volume levels during REM sleep.

We will take pulse rate measurements as an indicator of the user’s current sleep stage and our sound generation device will adjust the volume of the white noise. A wristband with a photosensor will be used to detect the user’s heart rate and will wirelessly relay the information to the white noise generator to adjust the volume as necessary.
1.3 Visual Aid

Figure 1: Visual Representation of System

1.4 High-level Requirements List

- Average heart rate measurement (BPM) measured over the course of five minutes must be within ±5% tolerance against a third party pulse measurement device (i.e. fingertip pulse sensor, Apple Watch, FitBit, etc).

- The output volume will range from 0 to 46dB with ±5dB tolerance. Output volume level will also change by 15dB for every 5 bpm change with 5dB tolerance level.

- Wristband circuitry will be enclosed to fit within an 85mm(L) x 55mm(W) x 40mm(H) case. White noise generator must fit within the dimensions of 300mm(L) x 300mm(W) x 300mm(H).
2 Design

2.1 Block Diagram

Figure 2: Block Diagram
2.2 Subsystem Overview and Requirements

2.2.1 White Noise Generator/Data Receiver

One of the two components of our system is the main white noise generator. This unit will contain one of the two microcontrollers, along with the main audio source, an amplifier, and a loudspeaker. The microcontroller will communicate wirelessly with the wearable wristband and process the provided heart rate information to determine the output audio level.

i. Power Subsystem

Overview

The main source of power to this unit will be provided via an AC to DC converter. This will be used to power the audio source as well as the amplifier circuit in the output subsystem. A voltage regulator rated to output 3.3V will also be incorporated to power the ESP32 with the tolerance range of ±0.2VDC.

Requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Verifications</th>
</tr>
</thead>
</table>
| 1. 115/120VAC to 9VDC (±0.5V tolerance) AC to DC converter with minimum supply current of 100mA (±25mA tolerance) | a. Connect the load under the supply
b. Probe across the power net and ground with voltmeter to verify the voltage
c. Place ammeter in series with the voltage supply and the load |
| 2. Voltage regulator rated to step down DC voltage to 3.3 (±0.2V tolerance) | a. Probe across the 3.3V net and ground with voltmeter to verify the proper output voltage |

Figure 3: Power Supply Schematic
ii. Control Subsystem

Overview
This is the main interface of the entire system, where the ESP32 microcontroller will be utilized to receive the heart rate data from the wristband and apply appropriate change to the output noise level. Communication between the paired microcontrollers will be performed wirelessly via Bluetooth at 2.4GHz. The microcontroller will also be responsible for adjusting the output volume with the utilization of digital potentiometer via SPI communications.

Requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Verifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Successful wireless communication with another ESP32 via Bluetooth</td>
<td>a. Receives the heart rate information from the other ESP32 in the wristband unit</td>
</tr>
</tbody>
</table>

Figure 4: Primary microcontroller schematics
iii. Output Subsystem

Overview
This subsystem is responsible for generating the white noise and amplifying the signal up to an audible level for it to be outputted by a loudspeaker. The white noise generation circuit will be constructed with a general purpose NPN BJT transistor and a single opamp. The power amplifier section will be built around the LM386 audio power amplifier chip. This portion of the output system will interact with the control system to allow for a varying output level using digital potentiometer.

Requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Verifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Loudspeaker rated for 100-20kHz bandwidth (tolerance range of 50Hz-25kHz), Impedance of 8Ω (±1Ω)</td>
<td>a. Have the noise generator / speaker unit running</td>
</tr>
<tr>
<td></td>
<td>b. Record the audio using microphone and audio interface</td>
</tr>
<tr>
<td></td>
<td>c. Use the spectrum analyzer software / plugin for the verification and generation of the output bandwidth</td>
</tr>
<tr>
<td></td>
<td>d. Use ohmmeter for impedance</td>
</tr>
<tr>
<td>2. Digital potentiometer responding to the protocol from ESP32</td>
<td>a. Verify the change in the wiper position using ohmmeter AND/OR</td>
</tr>
<tr>
<td></td>
<td>b. Verify the change in the output volume</td>
</tr>
</tbody>
</table>

![White Noise Generator Schematics](image)

Figure 5: White noise generator schematics
2.2.2 Wearable Band

The other major system of the ZZZ-Mate system is the wearable wristband. This device will be worn around the user’s wrist to track the heart rate and transmit the collected data to the microprocessor in the white noise generator. The heart rate sensor will be utilized for data collection.

i. Power Subsystem

Overview
The main source of power for this unit will come from a coin cell lithium ion battery, as its size allows for it to fit in the wristband. Since the 3.3V coin battery is not commonly available for the consumer market, a voltage regulator will again be used to step down the voltage level for providing power to the microcontroller and the heart rate sensor. A latching type SPST switch will be used as a ON/OFF switch to connect/disconnect the battery from the main circuit to conserve the battery life when not in use.
Requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Verifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 3.7VDC lithium ion battery (±0.5VDC)</td>
<td>a. Probe across the positive and negative terminal with voltmeter to verify the proper output voltage</td>
</tr>
<tr>
<td>2. Voltage regulator rated to step down DC voltage to 3.3 (±0.2V tolerance)</td>
<td>b. Probe across the 3.3V net and ground with voltmeter to verify the proper output voltage</td>
</tr>
<tr>
<td>3. Proper switching of the SPST latching type switch</td>
<td>a. Check the continuity of the switch lugs in both positions.</td>
</tr>
</tbody>
</table>

ii. Control Subsystem

Overview
This is the interfacing portion of the wristband portion. Using I2C communication, The ESP32 microprocessor will receive data from the heart rate sensor and transmit the information wirelessly to the noise generator/receiver unit.

Requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Verifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Successful wireless communication with another ESP32 via Bluetooth</td>
<td>a. Transmits heart rate data properly to the ESP32 embedded in the white noise generator</td>
</tr>
</tbody>
</table>
iii. Sensor Subsystem

Overview
This is the main sensor module to be used to collect the heart rate information. MAX30100 oximeter sensor module will be used for this application to collect the data. The embedded LED will be emitted through the users’ skin, and photodetector will measure the blood’s absorbance of such lights. As the MAX30100 module is rated for 1.8-3.3V input voltage, a simple voltage divider will be used to step down the voltage from 3.3V net to ensure a safe operating value. With 27k as R1 and 100k as R2, the supply voltage will be at around 2.6VDC, which is approximately the median value of the rated voltage range.

Requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Verifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Measured heart rate within 5% tolerance when compared against a third party pulse measurement device</td>
<td>a. Attach the sensor module on a subject’s arm along with another pulse sensing device (i.e. Apple Watch) or alternatively by taking a pulse with finger tip</td>
</tr>
<tr>
<td></td>
<td>b. Subject will be timed to rest for five minutes</td>
</tr>
<tr>
<td></td>
<td>c. Compare the measured results between the two devices</td>
</tr>
</tbody>
</table>
2.3 Tolerance Analysis

The most crucial bottleneck to this project derives from the fact that everyone has different resting and sleeping heart rates. Determination of the sleep stages is also very vague and arbitrary. To compensate for these differences, we calculated each sleep stage to be associated with a heart rate range personalized for the user’s baseline resting heart rate.

Based on studies conducted by the Bio-Medical Engineering Laboratory in the Electrical Engineering Department at the University of Texas in Austin, the average decrease in heart rate between each sleep stage from wake to deep sleep is measured to be around 10% (around 5-7 bpm). When the individual enters the REM stage their heart rate increases again until it is similar to the individual’s resting heart rate and the cycle starts over.

We are able to divide a subject’s sleep cycle into five distinct categories, each associated with a specific range of heart rates. We do this by first establishing the subject’s baseline heart rate using the following equation, where m represents the number of buffer lengths being used, n represents the maximum number of samples that can be stored represented in one buffer length (16 with the MAX30100), and x represents each measured heart rate (in bpm).

\[
Baseline\ Heart\ Rate\ (BHR) = \frac{1}{mn} \sum_{i=1}^{mn} x_i \quad where \ m = 2
\]
After the BHR is calculated, we are able to calculate the starting range value for the REM/Wake stage (Stage 1) by obtaining the lower floor value when dividing by 5. The upper end of the range is calculated by adding 5 to the HRF value, and the subsequent stage calculations are demonstrated in Figure 9.

\[\text{Heart Rate Floor} (HRF) = \left(\text{int} \left(\frac{BHR}{5} \right) \right) \times 5 \]

To identify which stage the subject is currently in, and which volume range to set the white noise generator at as a result, a current heart rate is continuously calculated every time the FIFO buffer is filled up (every 16 measured heart rate values). The algorithm will then use the established heart ranges calculated using the BHR to identify which sleep stage the CHR falls into, and set the volume range to the appropriate dB range, as demonstrated in the Figure 9.

\[\text{Current Heart Rate} (CHR) = \frac{1}{mn} \sum_{i=1}^{mn} x_i \text{ where } m = 1 \]

<table>
<thead>
<tr>
<th>Volume Range (dB)</th>
<th>Sleep Stage</th>
<th>Heart Rate Range (bpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\approx 46</td>
<td>REM/Wake (1)</td>
<td>HRF – (HRF + 5)</td>
</tr>
<tr>
<td>\approx 29 – 45</td>
<td>REM/Wake or N1/N2 (1.5)</td>
<td>(HRF - 5) – (HRF)</td>
</tr>
<tr>
<td>\approx 14 – 29</td>
<td>N1/N2 (2)</td>
<td>(HRF - 10) – (HRF - 5)</td>
</tr>
<tr>
<td>\approx 0 – 14</td>
<td>N1/N2 or Deep Sleep (2.5)</td>
<td>(HRF - 15) – (HRF - 10)</td>
</tr>
<tr>
<td>\approx 0</td>
<td>Deep Sleep (3)</td>
<td>(HRF - 20) – (HRF - 15)</td>
</tr>
</tbody>
</table>

Figure 9: Sleep Stage-to-Volume Reference Table

To account for discrepancies in the heart rate sensor’s readings as well as the subject’s actual heart rate cycles during sleep, we included intermediate sleep stages (Stages 1.5 and 2.5), where it is harder to pinpoint what stage exactly the subject may currently be in. Having an intermediate volume range in between stages helps create a more gradual change in volume.

Output volume range can now be assigned to these heart rate ranges. This will be done by dividing up the minimum and maximum output level of the speaker system. The implemented power amplifier will follow the provided schematic in TI’s datasheet for LM386 [2] to achieve a gain of 200. This gain is then verified with the following equation:

\[A_v = \frac{V_{OUT}}{V_{IN}} \]
Decibel change could then be calculated using the following equation:

\[
\begin{align*}
dB &= 20 \log_{10} (A_v) \\
&= 20 \log_{10} (200) \\
&\approx 46
\end{align*}
\]

If we assign the output volume to be minimum at heart rate of 60bpm and maximum at the heart rate of 75, we could assign the following:

\[
\Delta dB \text{ per bpm} = \frac{dB \text{ range}}{(Max \ bpm - min \ bpm)} \\
= \frac{46 dB}{(75 \ bpm - 60 \ bpm)} \\
\approx 3 dB \text{ per bpm}
\]

Therefore, volume range should change approximately by 15dB per each sleep stage (3dB/bpm * 5bpm). The tolerance of ±5dB will be applied to this.
3 Cost and Schedule

3.1 Cost Analysis

The cost breakdown of our design will be made up of our labor wages and electronic parts. Based on the average starting salaries for ECE graduates from UIUC, we calculated our wages to be $35/hour and we estimate our workload for this project to be an average of ten hours a week for the next ten weeks until our final demo.

3.1.1 Labor

\[\text{Cost}_{\text{lab}} = \frac{\text{hour}}{35} \times 2.5 \times \text{hours/week} \times \text{number of weeks} \times \text{team members} \]

\[\text{Cost}_{\text{lab}} = \frac{35/\text{hour}}{2.5} \times 10 \times \text{hours/week} \times 10 \times \text{weeks} \times 3 = 26,250 \]

3.1.2 Electronic Parts

<table>
<thead>
<tr>
<th>Part</th>
<th>Cost (x Quantity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcontroller (WROOM 32 ESP32)</td>
<td>$5.98 \times 5 = 29.99</td>
</tr>
<tr>
<td>Battery Holder (to fit OR/LIR2450)</td>
<td>$0.625 \times 10 = 6.25</td>
</tr>
<tr>
<td>Battery (LIR 2450)</td>
<td>$4.48 \times 4 = 17.99</td>
</tr>
<tr>
<td>Speaker (Visaton R10S)</td>
<td>$21.44</td>
</tr>
<tr>
<td>Heart Rate Sensor (MAX30100)</td>
<td>$6.87</td>
</tr>
<tr>
<td>Voltage Regulator (LD1117)</td>
<td>$0.84 \times 5 = 4.20</td>
</tr>
<tr>
<td>Digital Potentiometer (MCP4131)</td>
<td>$0.96 \times 3 = 2.88</td>
</tr>
</tbody>
</table>

Figure 10: Total Cost of Electronic Parts

Electronic Parts = $89.62

3.1.3 Total

Grand Total Cost = $26,339.62
3.2 Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Task</th>
<th>Sanjana</th>
<th>Haruya</th>
<th>Vakaris</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 18 - 24</td>
<td>Design doc initialization Order parts</td>
<td>Design doc (Collect heart rate data samples, heart rate/sleep stage connection algorithm)</td>
<td>Design doc (subsystem requirement fix, physical design)</td>
<td>Design (Design and ethics) Research heart rate / sleep stages</td>
</tr>
</tbody>
</table>
| September 25 - | 9/26 Design Document Check 9/29 Design Document Submission 9/30 Soldering Assignment due | - Collect heart rate data during sleep
 - Start developing heart rate monitoring algorithm to identify sleep stages
 - Set up ESP-IDF | - Circuit schematic design
 - PCB design
 - Breadboard the circuit
 - Design doc | Design doc PCB Design |
| October 1 | Design Review 1/4 PCB Board Review | - Finish developing heart rate monitoring algorithm
 - Test ESP-IDF with physical ESP32 | - Further testing with acquired components
 - Tolerance test for the components | - Enclosure design
 - Tolerance test for the components |
| October 2 - 8 | | | | |
| October 9 - October 15 | 10/11 PCB order 10/12 Teamwork Evaluation | - Research/Understand ESP-IDF + Bluetooth interface
 - Evaluate partners | - Evaluate partners
 - Digi-pot implementati on | Evaluate partners |

Figure 11: Group Work Schedule
<table>
<thead>
<tr>
<th>Date Range</th>
<th>Tasks</th>
<th>Date Range</th>
<th>Tasks</th>
<th>Date Range</th>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 16 - 22</td>
<td>Work on subsystems</td>
<td>October 23 - 29</td>
<td>Test and refine subsystems</td>
<td>October 30 - 5</td>
<td>10/31 Second Round PCB Order 11/1 Individual Progress Reports</td>
</tr>
<tr>
<td></td>
<td>Translate algorithm into Python code to use in ESP-IDF</td>
<td></td>
<td>Wifi interface</td>
<td>November 6 - 12</td>
<td>Prepare for mock demo</td>
</tr>
<tr>
<td></td>
<td>Test correlation between heart rate and device output</td>
<td></td>
<td>Test correlation between heart rate and device output</td>
<td>November 13 - 19</td>
<td>Prepare for mock demo</td>
</tr>
<tr>
<td></td>
<td>ESP assistant</td>
<td></td>
<td>Order PCB</td>
<td>November 20 - 26</td>
<td>Revision, further testing, etc</td>
</tr>
<tr>
<td></td>
<td>PCB design</td>
<td></td>
<td>Progress report</td>
<td>November 27 - Dec 3</td>
<td>Final Demo</td>
</tr>
<tr>
<td></td>
<td>Test correlation between heart rate and device output</td>
<td></td>
<td>Progress report</td>
<td>Dec 4 - 9</td>
<td>Final Presentation</td>
</tr>
</tbody>
</table>

Figure 12: Group Work Schedule Cont.
4 Ethics and Safety

4.1 Ethics and Safety

4.1.1 Ethics and Safety

Our team will strive to uphold the standards of ethics and safety outlined by IEEE and will take precautions “to hold paramount the safety, health, and welfare of the public, to strive to comply with ethical design and sustainable development practices.” [3] The overall design of ZZZ-Mate will be constructed upon a relatively low voltage and power level, minimizing the potential physical hazard. In terms of circuit protection, various components will be added, such as a reverse polarity protection diode for the main DC source in the noise generator unit. Another concern for potential physical hazard includes the wristband device, whose circuitry could be harmful if any external contents come into contact with the PCB. The PCB can be encased in a housing to prevent any damage to the device, as well as protect the user. Another potential hazard for the ZZZ-Mate is the audio level of the white noise generator. Since the user will be exposed to speaker sounds for a prolonged period of time, these decibel levels cannot exceed dangerous levels.

4.1.2 Data Privacy

Our design includes collection of personal health data in the form of the user’s continuous heart rate throughout the night. This information is very sensitive as it could also be used to calculate a person’s heart rate variability (HRV), which has been known to be used to identify a variety of diseases affecting the heart, lungs, and mental health. [4] In addition to ensuring that the data is only used to calculate the appropriate volume of our white noise generator, we are responsible for protecting the data and its owner’s privacy. According to the ACM code of conduct, we must take “precautions to prevent re-identification of anonymized data or unauthorized data collection, ensuring the accuracy of data, understanding the provenance of the data, and protecting it from unauthorized access and accidental disclosure.” [5] We will take extra precautions not to attach any identifying information to a user’s heart rate data and make sure that the data is not being accessed by any outside entities.
References

