OBJECTIVE

World Robotic Sailing Championship

Autonomous Sailboat with limited capability
AUTONOMOUS

Desired Heading: 105.11°
Heading: 98.28°
40.113987° N 88.290237° W
Speed: 0.16 Knots
Relative Wind: 270°
Heeling: 1.25°
Rudder: -7°
Sail: 45°

Base
40.114178° N 88.290027° W
Distance to Base: 27.73 m
Onboard MCU to record sensor output and control servo settings for RC and autonomous modes

Ground Control System to monitor sensor feedback

49° 07' 3.334" N
88° 12' 33.337" W
1.83 G

RC transmitter for dual-mode capability
BLOCK DIAGRAM
TELEMETRY
GROUND CONTROL SYSTEM: LABVIEW

- Insert pic of screenshot of example of it running
- Can talk about log file and how we use gpx file for map
GROUND CONTROL SYSTEM: LABVIEW
GROUND CONTROL SYSTEM: LABVIEW

- Labview interface screenshot of example of it running.
- Can talk about log file and how we use gpx file for map.
GROUND CONTROL SYSTEM: LOG
GROUND CONTROL SYSTEM: GPX FILE

```xml
<?xml version="1.0" encoding="UTF-8"?>
 xmlns:gpx_style="http://www.topografix.com/GPX/gpx_style/0/2" version="1.1" creator="https://gpx.studio">
<trk>
<trkseg>
<trkpt lat="40.114806" lon="-88.227650" />
<trkpt lat="40.115042" lon="-88.227654" />
<trkpt lat="40.115071" lon="-88.227617" />
<trkpt lat="40.115085" lon="-88.227590" />
<trkpt lat="40.115116" lon="-88.227592" />
<trkpt lat="40.115124" lon="-88.227581" />
<trkpt lat="40.115127" lon="-88.227571" />
<trkpt lat="40.115121" lon="-88.227581" />
<trkpt lat="40.115128" lon="-88.227567" />
<trkpt lat="40.115136" lon="-88.227553" />
<trkpt lat="40.115137" lon="-88.227513" />
<trkpt lat="40.115139" lon="-88.227518" />
<trkpt lat="40.115142" lon="-88.227509" />
<trkpt lat="40.115152" lon="-88.227501" />
<trkpt lat="40.115158" lon="-88.227485" />
<trkpt lat="40.115166" lon="-88.227471" />
<trkpt lat="40.115173" lon="-88.227459" />
<trkpt lat="40.115176" lon="-88.227449" />
</trkseg>
</trk>
</gpx>
```
EXPERIMENTAL RESULTS

https://gpx.studio/
RUDDER CONTROL
SAIL CONTROL
SAIL CONTROL

Heeling > 15 or Heeling < -15

Heeling < 15 and Heeling > -15

S1

S2

Heeling > 15 or Heeling < -15

Heeling < 15 and Heeling > -15
E-COMPASS
ECOMPASS - LSM303

- Hard Iron Calibration
 - Offset = (AccelMin + AccelMax) / 2

- Heeling Angle ~ Roll
 - Roll = atan2(AccelY, AccelZ)
ENCODER
ENCODER
WIND VANE
PROJECT SUCCESS

ON-BOARD PROCESSING SYSTEM

- Rudder Control
- Sail Control

GROUND CONTROL SYSTEM

- Telemetry sends data back to base
CONCLUSIONS AND REDESIGN

- Differential Control
- PID Tuning (Ziegler-Nichols Method)
- Return to Base