Medical Kit Dispenser

Matthew Chung, Dylan Hartato, and Josh Leeman
TA: Qingyu Li
ECE 445 Group #42

May 2nd, 2022
Rationale

RESOURCES FOR BETTER HEALTH
McKinley Health Resource Center gives over-the-counter supplies to students who present their i-card. These resources are intended to benefit the overall health of the student body, as well as provide skills and knowledge to help students better care for themselves.

AVAILABLE SUPPLIES
Twice Per Semester
- Cold pack
- Pregnancy test
- Yeast infection kit
- Wound pack
Every Two Weeks
- Condom pack
- Lubricant or spermicidal gel
- Latex barriers
Objectives

- Increase accessibility of necessities to students while enforcing quotas
- Create a modular design to best utilize available space and demand
- Improve restocking efficiency via an online inventory database
High Level Requirements

1) The motion sensor should be able to **detect if an item is dispensed** by checking that the signal sent will be high, and should send a signal to the control module PCB. It should then **update the user and inventory databases** after it successfully dispenses a product but before dispensing the next product.

2) The microcontroller should be able to **read a user’s identification using the RFID** and successfully interpret the user ID, which prompts the LCD screen to show what the user can dispense; the user should be able to **choose the product using the four buttons**.

3) When a product is chosen, the correct signal should be sent by the microcontroller to the BUS, and the **corresponding module should activate the motor** to dispense a product for five seconds before repeating up to three times.
Design Overview
Design Overview

Original Block Diagram

Revisions
- Powering the motor with 5V instead of 12V
- Introduced additional logic gates to connect the user and sensing subsystem to the microcontroller

Ethical Remarks
- Only data necessary for functionality is generated and stored;
- No FERPA sensitive data stored, no existing data accessed.
Design Overview

- Modular, connect to machine.
- 4-bit Bus connection to 5V and 3V power.
- all connected to a "main" PCB.
- "dispenser tray".

connected to wifi for database interfacing
- LCD screen
- select button
- enter/ cancel button
- RFID reader
- all connected to the microcontroller on the main PCB

connected to wall outlet.

overall machine

collection tray
Design Overview
Design Overview

PCB Design

- (Left) Motor Subsystem
- (Right) Microcontroller Subsystem
Firmware Design

Design Overview
Design Overview

Hardware Revisions

- Used a new LCD which can take 3.3V input from microcontroller;
- Using NOT gates to step-up 3.3V from microcontroller to 5V to BUS;
- Implementing additional logic to make certain states inaccessible from users;

Software Revisions

- RFID baud rate is changed
- RFID poll rate is decreased
Project Functionality
Functionality Test Process

Tap a card to the RFID reader.

Cross-check with database that only eligible items show on the LCD. Select product to dispense using buttons.

Is item in dispenser?

- **YES**
 - The inventory should be cleared and user quota unaffected.
 - Tray should activate for up to three 5s cycles and an item should be dispensed.
 - IR Sensor triggered?
 - **YES**
 - Database entry of the user’s quota and item inventory should be decremented.
 - **NO**
 - Tray should activate for up to three 5s cycles and an item should be dispensed.

- **NO**
 - Check if inventory and user database is updated correctly.
Project Functionality

Functionality Demonstration (Video)
Functionality Demonstrated

- A user is identified using the RFID, and items that can be dispensed as per their quota are shown on the LCD (1)
- Selecting an in-stock item activates the correct motor to dispense via the BUS. (2)
- Tapping the IR sensor stops the motor from dispensing; user and inventory database are decremented (3)
- Letting the motor run for three cycles will clear the inventory but will not decrement the user quota (3)

High-Level Requirements (Summarized)

1) A RFID card should identify a user and allow them to select items to dispense based on eligibility;
2) A BUS signal should activate the corresponding motor to dispense;
3) If the IR sensor detects a dispensed item, the databases should be updated correspondingly.
Complications
PCB Design and Microcontroller Connections

The wire connections between the power and enable pin prevented the microcontroller from being flashed, which forced the PCB to be implemented via a breadboard and using logic gates.
The range of the IR sensor is shorter than expected and it not largely affected by the surface off of which the radiation is reflected.

The reported range is approximately 1 mm, and we were able to extend the range to up to 10 mm using a higher load resistance.
Complications

i-Card Encryption

- I-Card data is encrypted if it is through RFID
- Do not have the key
- Swipe instead of tap
Closing Remarks
Conclusion

Achievements:
- Software-hardware design and integration;
- PCB design;
- Implementing wireless connection and database interfacing in a microcontroller;
- All high-level requirements were met.

Areas of Improvement:
- Division of subsystems into different PCBs for easier assembly and troubleshooting.
Future Work

- Using an LED screen;
- Integrating multiple devices into a single database;
- Mobile App for online inventory tracking;
- Use a Card Swipe instead
Thank You!