

AUTOMATED IC CHIP TESTER

By

Michael Ruscito

Alison Shikada

Ryan Yoseph

Final Report for ECE 445, Senior Design, Spring 2021

TA: Anand Sunderrajan

5 May 2021

Project No. 47

ii

Abstract

We designed and built a device for students in ECE 385 to automate the process of unit testing IC chips.

Students place their IC chip in the socket on our printed circuit board and then select the chip they want

to test on the website that is hosted by our project. The web application then communicates the user’s

selection with our hardware which runs a series of test vectors comparing the measured outputs from

the user’s IC chip to the expected outputs and determines whether the chip is working properly or not.

The device then relays this result to the user in under two milliseconds. The device is designed to

provide the user with a simple user interface and an easy solution for IC chip testing in the ECE 385 lab.

iii

Contents
1. Introduction .. 1

1.1 Purpose ... 1

1.2 High-Level Requirements .. 2

1.3 Subsystem Overview ... 2

2 Design ... 4

2.1 Power Supply .. 4

2.1.1 Lithium Polymer Battery .. 4

2.1.2 USB Port ... 4

2.1.3 Power Switch.. 4

2.1.4 Charging Switch .. 5

2.1.5 Power LED .. 5

2.1.6 Charging LED .. 5

2.1.7 3.3 V Low-Dropout (LDO) Regulator .. 5

2.1.8 3.3 V/5 V Synchronous Boost Converter .. 5

2.1.9 Charging Subsystem ... 6

2.2 Control Unit ... 6

2.2.1 ESP32 Microcontroller ... 7

2.2.2 Port Expander .. 7

2.2.3 Tristate Buffers ... 8

2.2.4 2-to-4 Decoder ... 8

2.2.5 LEDs .. 8

2.2.6 USB-to-UART Bridge ... 8

2.3 Wi-Fi Application ... 9

2.3.1 Flowchart ... 10

3. Design Verification .. 11

3.1 Power Supply .. 11

3.2 Control Unit ... 11

3.2.1 Peripheral Hardware .. 11

3.2.2 ESP32 Microcontroller ... 12

3.3 Wi-Fi Application ... 14

4. Costs and Schedule ... 15

iv

4.1 Parts .. 15

4.2 Labor ... 16

4.3 Total Costs ... 16

4.4 Schedule .. 16

5. Conclusion ... 18

5.1 Accomplishments .. 18

5.2 Uncertainties ... 18

5.3 Ethical considerations ... 18

5.4 Future work ... 19

References .. 20

Appendix A Requirement and Verification Table ... 21

Appendix B PCB Layout .. 23

Appendix C Control Unit Eagle Schematic .. 24

1

1. Introduction

1.1 Purpose
A common frustration in ECE 385 is when students find a given IC chip does not work as expected.

Testing each chip manually is not only tedious, but time consuming. Students are often encouraged to

test individual chips before using them, but this advice is rarely followed. By adding the time constraint

of assignments, complexity of 385 labs, and the potential to ruin chips, neglecting to unit test the IC

chips incorrectly influences students to think that their IC chips are in mint condition.

Our project is targeted toward students by providing a small, portable solution to unit test IC chips

quickly and easily. Our goal is to automate the process of chip testing by using a database of TI

datasheets and a streamlined User Interface (UI) for easy testing. The user would only need to select the

chip model number and press “submit”. Internally, our PCB uses the chip number to identify the

appropriate signals and sends them to the IC chip for testing. Our firmware returns a true or false value

and lights up the corresponding blue or green LED to indicate the chip’s working condition. Our project

consists of a physical device and web application. Figure 1 depicts the physical testing device and

battery.

Figure 1: Automated IC Chip Testing Device and Battery

Manufacturers themselves are not necessarily to blame for faulty IC chips. There are several tests run

during the IC chip fabrication process: such as Pre-Burn-in, Burn-in and Final Test [1]. Burn-in testing

occurs when a device is put under elevated temperatures to “ensure required high quality and reliability

of the produced semiconductors before shipping them to final users.”

In his research on “Reliability Challenges in 3D IC Packaging Technology”, Tu [2] concludes that the most

serious reliability concern is joule heating, or the passage of electric current through a conductor

produces heat. In a class setting, this is especially prevalent. According to Ronen and Eliahu, most of the

2

common difficulties students have in the study of simple electric circuits are due to an incomplete

understanding of the concepts by which idealized models predict the behavior of a system [3]. By

offering a portable IC tester, we check the chip using the practice of “idealizing” the circuit model.

1.2 High-Level Requirements
Any substantial project needs to be grounded in a set of tangible goals. For this project, our team

produced the following high-level requirements that measure performance, breadth, and portability so

that we could gauge our success based upon these specific outcomes:

1. The device’s internal logic must be able to determine if a chip is working properly in under 2

milliseconds to provide the user with fast results.

2. The interface between the ESP32 and Wi-Fi device can select from the 18 types of IC chips

provided in the ECE 385 standard lab kit and output the correct testing conditions for the chip.

3. The power supply must contain a rechargeable Lithium Polymer (LiPo) battery complete with an

integrated battery charging system that grants the user 3 hours of use time.

1.3 Subsystem Overview
The device requires three main subsystems to meet the high-level requirements: a regulated power

supply, a dedicated control unit, and a smartphone or computer that can host the web application.

The input to the power supply is a rechargeable Lithium Polymer (LiPo) battery. Two different voltage

regulators, a Low Dropout (LDO) regulator and DC-DC boost converter, provide Constant

Voltage/Constant Current (CV/CC) to the device and test chip. Additionally, a USB cable, combined with

a battery management controller, facilitates fast and safe charging of the LiPo battery.

The control unit manages the execution of the test suite for the IC chip under test and does so by

providing signals to the ZIF socket and communicating with the smartphone via Wi-Fi. The ZIF socket

provides an interface for the users to easily insert the IC chips they wish to test.

Lastly, the mobile device allows the user to select from a list of IC chips provided in ECE 385 and

communicates the chip identifier with the control unit. The ESP32 microcontroller will act as an access

point and produce an IP address. The user will merely need to connect to the ESP32’s Wi-Fi network and

type the IP address in a web browser to access the application.

3

Figure 2: Automated IC Chip Tester Block Diagram

Comparing the final block diagram (Figure 2) with the one in our design document, we made some slight

modifications to the power supply subsystem. Specifically, we decided to use one charge status LED

instead of adding two more that would give the user an estimate on battery capacity. Because LiPo

batteries should not be charged over 4.2 V or discharged under 3 V, our team wanted to alert the user if

these conditions were met [4]. Moreover, LiPo batteries should not be stored fully charged because they

might get damaged that way [5]. The primary reason we made the decision to omit the extra LEDS was

because having one provides a much cleaner interface and we could inform the user of good charging

habits in the product disclaimer. Additionally, while performing battery charging tests, we found that

the battery did not rise above 3.8 V.

4

2 Design

2.1 Power Supply
Proper power distribution and control is vital for the project’s full functionality and integration. During

operation, the power supply provides 3.3 V to the ESP32 microcontroller, 2-to-4-line decoder, and the

port expander. Additionally, it must also provide a constant 5 V to the tristate buffer. The subsystem

also supports quick and easy battery charging capabilities through a USB Type B port and a dedicated

charge management controller.

2.1.1 Lithium Polymer Battery

Our team decided to use a 3.7 V single cell LiPo battery to power the device. Initially, we were

considering using either 4 rechargeable AAA batteries or a wall socket to power our device. While these

options would work in theory, they are not as user friendly. Specifically, the AAA batteries would need a

separate plastic fixture to house them, thereby reducing the portability factor. The wall socket would

also affect portability and require a converter to drop the wall’s voltage to a safe level. As for the LiPo

battery, its sleek design, minimal weight, and electrical specifications make it a great candidate for our

project.

To ensure that the user has 3 hours of runtime, we calculated the minimum battery capacity to meet

this requirement:

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 [𝐴ℎ] = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 [𝐴] ∗ 𝑅𝑢𝑛𝑡𝑖𝑚𝑒 [ℎ] (1)

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 [𝐴ℎ] = 0.564 [𝐴] ∗ 3 [ℎ] = 1.692 [𝐴ℎ] (2)

Based on the calculated minimum capacity of 1.692 Ah, our team chose a battery with 2.0 Ah of typical

capacity to ensure our battery meets the high-level requirement (ESP32-WROOM: 500 mA, 2-to-4-line

decoder: ~24 mA, ~18.5 for USB-to-UART bridge (this was not used in our final design), ~1 mA for port

expander, and 20 mA for tristate buffer, the total output current necessary is 563.5 mA) [6].

2.1.2 USB Port

Our team chose to use a USB 3.0 type B port to charge the battery. The USB is omnipresent and widely

used in many different applications, therefore eliminating any unnecessary cable-finding hassle for the

user. Moreover, a USB type B cable is already given to students to program their FPGA boards in ECE

385; this small design choice has big impact since users only need to have one cable for the entire lab

kit. A standard USB 3.0 will provide 5 V and upwards of 1.5 A to charge the battery [7].

2.1.3 Power Switch

The power switch controls the on/off state for the entire device. It protects the integrity of the device

and preserves the battery life. Additionally, the power switch provides the user a convenient physical

switch for quick on/off capability. The switch is rated to handle 650 mA of current and allows enough

overhead to protect the integrity of the device [8].

5

2.1.4 Charging Switch

The charging switch controls the on/off state for charging. Adding a switch grants the user the added

feature of leaving the USB always plugged in while keeping the switch in the off state. This added design

feature eliminates the hassle of repeatedly plugging and unplugging the cable, especially during those

long nights or all-nighters.

2.1.5 Power LED

A dedicated power LED indicates when the battery is powering the device. This added safety feature

helps illustrate that the device is turned on.

2.1.6 Charging LED

When the battery is being charged through the USB port, an orange charging LED will turn on. This

added feature tells the user when the battery is charging, and when the LED turns off, the battery is fully

charged.

2.1.7 3.3 V Low-Dropout (LDO) Regulator

This voltage regulator circuit (see Figure 3) takes the battery voltage as an input and outputs a constant

3.3 V. The output of the regulator is sent to all other components on the printed circuit board, besides

the tristate buffer. Furthermore, this regulator, the TPS77733, has a built-in enable pin that allows an

open circuit if the input voltage drops too low [9]. The regulator will supply a maximum of 542 mA of

current to the components that need 3.3 V. Therefore, to ensure enough overhead, our team chose a

regulator that can handle up to 750 mA of current.

Figure 3: EAGLE Schematic of 3.3 V Regulator Circuit

2.1.8 3.3 V/5 V Synchronous Boost Converter

This switch-mode boost regulator circuit (see Figure 4) takes the 3.3 V output from the LDO regulator

and boosts it to 5 V ensure adequate operation of the tristate buffer. The reason we chose to include a 5

V voltage regulator alongside the 3.3 V one is to ensure that our device is compatible with the VCC’s for

the IC chips we are testing.

6

Figure 4: EAGLE Schematic of 5 V DC-DC Converter Circuit

2.1.9 Charging Subsystem

The charging subsystem circuit (see Figure 5) is required to safely ensure that our LiPo battery is charged

with a CC/CV methodology. We decided to use the MCP7381 Li-Polymer Charge Management Controller

from Microchip for its constant-current/constant voltage charge algorithm with selectable

preconditioning and charge termination. LiPo batteries are charged at a constant current until the

battery reaches its nominal voltage. At this point, the current decays asymptotically to ensure that the

battery is not overcharged. This is the crucial role of the BMS to ensure the longevity of our LiPo battery.

Figure 5: EAGLE Schematic of Charging Subsystem Circuit

2.2 Control Unit
The control unit is responsible for properly handling the Wi-Fi signal from the web application as well as

managing the digital signals sent to the chip under test. This subsystem consists of an ESP32

microcontroller, SPI-based port expander, 2-to-4 decoder, tristate buffers, and LEDs. Additionally, a USB-

to-UART bridge is used to program the ESP32 microcontroller but is not a physical component included

on the PCB since it is only necessary during development and should not be accessible by the user.

Appendix C contains the Eagle schematic of this subsystem with all the connections made between each

component and the interconnects to the power supply subsystem.

7

2.2.1 ESP32 Microcontroller

The ESP32 microcontroller serves as the centralized computational power of the project. Several design

specifications were taken into account when determining which microcontroller to use. The first

consideration was the operating voltage of the microcontroller and its compatibility with the operating

conditions of the chips under test. The EPS32 family of microcontrollers operate at 3.3 V whereas the

ATmega family of microcontrollers operate at 5 V and have a recommended input voltage of 7 V to 12 V

[10]. All the IC chips provided in ECE 385 are CMOS chips meaning that they require 5 V of power, but

only 2.0 V for inputs. ATmega microcontrollers provide the benefit of being able to directly power the IC

chips through the General-Purpose Input Output (GPIO) pins without needing the voltage to be stepped

up, but the additional voltage for digital input values is unnecessary. Since the project is being powered

by a LiPo battery with a nominal voltage of 3.7 V, using an ATmega device would require the power to

be stepped up or an additional battery wired in series to provide at least 7 V of input power. The ESP32

microcontroller does not provide the benefit of 5 V to power the IC chips under test but does operate

above the 2.0 V threshold for logical high inputs and operates close to the nominal voltage of the LiPo

battery, thereby minimizing loss in the LDO regulator.

Another major benefit of the ESP32 family of microcontrollers is that some of them are equipped with a

built-in Wi-Fi/BLE antenna. Using the Wi-Fi capabilities within the ESP32, the web application can

communicate with the dedicated server on the microcontroller so that users can select which chip they

would like to test. The built-in Wi-Fi functionality of the ESP32 eliminates the need for external

hardware to handle the communication as well as provides faster, more reliable communication since

an external chip for Wi-Fi communication would need to transfer sent and received data to UART to pass

it to the microcontroller. This adds more risk of failing hardware preventing the project from functioning

properly. The ESP32-WROOM-32E model of microcontrollers provides the necessary voltage

specifications for the IC chips under test and contains the built-in Wi-Fi capabilities required for our

project.

2.2.2 Port Expander

The digital signals sent to the chips under test need to be wired in parallel with each other to read and

write logic to and from the chips. This implies that at least 16 GPIO pins on the microcontroller must be

dedicated to handling signals to and from the ZIF socket in order to handle the largest IC chip provided

in the ECE 385 lab. However, the ESP32 microcontroller has a limited amount of GPIO pins preventing

this since there are only eight available GPIO pins to control the test signals. Using a port expander

provides 16 additional GPIO pins by sending 16 bits of information through either I2C or SPI protocol

which get parallelized into 16 separate GPIO lines by the port expander.

The port expander acts as a 16-bit register with each index able to be individually accessed. Writing to

the port expander can occur in 1-bit, 1-byte, or 2-byte intervals by sending serial information through

I2C or SPI and each bit being placed into its respective index. Reading from the port expander can occur

in the same intervals as a write operation but with the reverse process of serializing the parallel data.

Connecting the port expander to the ESP32 microcontroller allowed our project to be able to handle up

to 24-pin DIP chips by utilizing the sixteen GPIO on the port expander in conjunction with the eight

available GPIO on the microcontroller.

8

An important requirement for our project is that it provides fast results to the user. The port expander is

a bottle neck in the performance of our device since 16 signals need to be parallelized or serialized for

every read or write operation. I2C communication is limited to a 400 kHz maximum frequency, whereas

SPI protocol has a maximum frequency of 10 MHz [8]. By using an SPI-based port expander rather than

I2C-based port expander, our project can execute an entire test suite for a chip under test nearly 25

times faster. This increased speed allows our project to meet the set latency constraint of two

milliseconds.

2.2.3 Tristate Buffers

The IC chips under test require 5 V to power them in contrast to the 3.3 V used for logic signals. The Vcc

pin has three possible locations on a DIP chip – top right pin, pin 4, or pin 5. To supply the correct pin

with 5 V, the 3.3 V output from the ESP32 needs to be increased while also allowing for 3.3 V logic

signals when the corresponding pin is not Vcc. Using tristate buffers with regulated 5 V from the power

supply as input and control signals from the ESP32 as enable bits, the output from the tristate buffer will

be 5 V for the pin corresponding to Vcc, and high impedance for the other two pins.

An alternate solution to this would be to use level shifters that step up the 3.3 V ESP32 signals to 5 V.

However, this requires more circuitry and has higher noise than only using tristate buffers. Both provide

the same output, but the level shifters would also require a regulated 3.3 V from the power supply and

the output would have slightly more variance.

2.2.4 2-to-4 Decoder

Like the port expander, the purpose of the decoder is to solve the issue of limited GPIO pins on the

ESP32 microcontroller. The enable pins of the tristate buffers are required to have only one active at a

time but require three separate signals to differentiate between each enable pin. By utilizing a 2-to-4

decoder to control which enable pin is active on the tristate buffers, only two GPIO pins are required

from the ESP32 rather than three without the use of the decoder. Additionally, the enable pins for the

tristate buffers are inverted and the outputs from the decoder are inverted. Since these match, this

negates the need to invert the control signals in the firmware of the ESP32.

2.2.5 LEDs

The purpose of the green and blue LEDs is to provide the user with a quick visual of whether the chip is

working as expected or not. If the tested IC chip is functioning properly, therefore passing all test

vectors, the green LED will turn on and stay on until the user tests another chip. Else, if the chip is faulty,

the blue LED will turn on as soon as a single test vector is failed.

2.2.6 USB-to-UART Bridge

The USB-to-UART connection is required to upload firmware to the ESP32 during development. This

component was originally designed to be included on the PCB and connected to the on-board USB port,

however when ordering parts, the specific part was out of stock. Rather than choose a replacement part

to take its spot, we opted to purchase a USB-to-UART bridge with an attached USB male port. The

component instead connected to the PCB through female headers for the UART signals and was plugged

directly into a computer. This ended up being a good design decision because the USB port connected to

the power supply subsystem did not work as intended. The added benefit of the separated USB-to-UART

9

bridge is that it prevents the user from accidentally or maliciously resetting the microcontroller

firmware. Since the project has a Wi-Fi component, one of the ethical concerns of our project is

preventing the user’s exposure to cyber-attacks. If the USB-to-UART bridge had been connected to the

on-board USB port, the microcontroller firmware could be easily reset by a third party with malicious

intent and attack any user that connects to the device. The separated bridge prevents this from

occurring if the third party does not have background knowledge of the PCB layout.

2.3 Wi-Fi Application
Along with the physical device, the Wi-Fi application is the other component of our project’s user

interface. The ESP32 generates an IP address that serves as the host for our web application.

This web application was built with an Arduino IDE and utilizing C++, React (JavaScript), HTML, and CSS

programming languages. We chose to use the ESP32’s Wi-Fi module rather than the BLE module

because the latter would require Arduino app development, which we had limited experience with.

Originally, we were planning to utilize the ESP32’s Serial Peripheral Interface Flash File System (SPIFFS)

to host extra files, excluding the C++ file we needed to program the firmware. However, we started

facing problems with data storage, especially when importing the various images of the chips. We then

switched over to a React.js application. This provided a preset framework for React visual tools often

used in industry and less memory on the ESP32’s flash.

The Wi-Fi application has two interfaces for the user: a home and a results screen. Figure 4A shows the

home screen for our application where the user can select the chip they wish to test. Figure 4B depicts

the results screen which appears after the user clicks the “Submit” button. A more in-depth discussion

of the testing algorithm is addressed in Section 2.3.1.

For the backend of our application, we utilized HTTP API requests through the aWOT library. This library

is Arduino-based and is compatible with various board architectures. HTTP API requests use a

client/server communication and has all possible CRUD (create, retrieve, update, delete) operations.

Figure 6: A (Left) Home Screen UI. B (Right): Result Screen UI

10

2.3.1 Flowchart

Figure 6 shows a flowchart of our algorithm for testing IC chips. In order to test an IC chip, users only

need to click on the dropdown menu and select the appropriate chip number. Once selected, our

application will update with the appropriate chip title and pin layout image. After confirming that this

chip is correct, users will need to click the “Submit” button at the bottom of the page to run the preset

test vectors on the firmware. The results screen that will appear once the testing is completed. The blue

and green LEDs on the device will tell users whether or not their current IC chip is operational.

Figure 7: Algorithm Flowchart

11

3. Design Verification
The complete requirement and verification table for all subsystems is included in Appendix A.

3.1 Power Supply
To ensure proper functionality of our project, our team confirmed that both voltage regulators were

able to maintain their designed constant voltage values. Specifically, the 3.3 V LDO regulator must be

capable of outputting 3.3 V ± 0.3 V at 600 mA and the 5 V voltage regulator must provide 5 V ± 0.5 V and

be able to handle 20 mA sourcing to the tristate buffers. To test these requirements, a multimeter and

power supply were used. Once we completed soldering, we began by sending a constant 3.7 V input to

the VBAT test pad and GND test pad. We probed the test pads labeled 3.3 V and 5 V and wrote down

their readings as 3.295 and 5.10 V respectively. The current on the power supply also read 70 mA. This is

because the ESP32 was not yet programmed so it was not sinking a substantial amount of current.

However, once the design was complete and functioning to its full capacity, the team noticed that there

were no issues with power and that by probing the test pads once again, the values were 3.295 V and 5

V. Therefore, the power supply outputs were validated.

3.2 Control Unit
The requirements for the control unit subsystem are split into 2 sections – peripheral hardware and

ESP32 microcontroller. This is because the ESP32 is such a central part of the project. Also, passing the

requirements related to the microcontroller are heavily dependent on its firmware development,

whereas the peripheral hardware requirements are more reliant on the hardware.

3.2.1 Peripheral Hardware

The control unit’s peripheral hardware has two requirements, both related to the voltage readings of

specific pins on the ZIF socket. The first requirement is that the port expander must be able to parallelize

16-bit outputs from the SPI communication with the ESP32. This ensures that the port expander has an

operational write functionality. The verification method for testing this consisted of uploading firmware

to the ESP32 that writes logical low values to select ZIF socket pins, and logic high values to other pins.

The pins are then probed with a voltmeter to confirm that the values are correct. The tolerance of the

logic values for the IC chips is that a logical low must be less than 0.8 V, while a logical high is greater

than 2.0 V. However, since the ESP32 operates at 3.3 V, we should expect to read logical highs close to

3.3 V. The results of this verification were successful as shown by the results of our tests in Table 1.

Table 1: Verification Results of Port Expander Write Operations

Logic Value Measured Voltage

Logical Low 0.000 V

Logical High 3.285 V

The second requirement for the peripheral hardware is that 5 V is properly supplied to the Vcc pin of the

chip under test. The 2-bit signal from the ESP32 must be decoded to the tristate buffers which output 5

V to the selected pin and high impedance to other two pins. Similar to the previous requirement, the

verification method consists of uploading firmware to the ESP32 that selects a Vcc pin and measuring the

12

voltage out of the ZIF socket pins with a voltmeter. The voltage of the selected pin must be 5 V ± 0.7 V.

The other two pins must be floating as to not interfere with the digital logic values sent by the ESP32

during testing. Table 2 shows the successful results of this verification.

Table 2: Verification Results of Vcc Pin Selection

Selected Pin Measured Voltage

Vcc 5.020 V

Other Pins Floating

3.2.2 ESP32 Microcontroller

The requirements for the ESP32 heavily rely on successful firmware development in conjunction with

the rest of the control unit hardware. The first requirement is that the microcontroller’s firmware must

contain a library of test suites for all 18 chips provided in the ECE 385 lab. For each of the chips, the

firmware contains a function that executes the entire test suite when the chip is selected by the user on

the Wi-Fi application. Figure 8 shows the process that is taken in each of these functions for the

respective chips. First the Vcc and GND pins are determined, followed by declaring each pin as either an

input or an output. Then, test vectors are derived from the chip’s truth tables and executed.

Figure 8: Test Suite for 7400 Chip

Figure 9 shows the same steps being followed for sequential logic chips as well, with the key differences

being that function tables are used rather than truth tables, and some test vectors have expected

outputs of “X”. When an output is labeled with an “X”, this means that the firmware does not read the

outputs until a second write operation is performed. This is because the input values are set with the

clock low, then the clock is triggered high, and the outputs are measured.

13

Figure 9: Test Suite for 7474 Chip

Verification of this requirement is done in conjunction with the second requirement which is that the

ESP32 must be able to read from all 24 of the ZIF socket pins with low logic states in the range -0.3 V to

0.8 V and high logic states in the range 2.47 V to 3.6 V indicating that the port expander has an

operational read functionality. Verifying these requirements consists of testing a chip and reading the

serial monitor outputs compared to the expected outputs. Figure 10A, B, and C show the steps of this

process. Figure 10A shows the first test vector in the 7400 test suite, but the bits are not arranged in the

order that they appear on the ZIF socket. Figure 10B is the rearrangement of these bits into the

expected output from the test vector, and Figure 10C is the serial monitor outputs from the test suite.

The hex value outlined in Figure 10C matches the 16-bit value of Figure 10B demonstrating the success

of both requirements.

Figure 10: A: 7400 Chip Test Vectors. B: Reorganized Test Vector Bit Values. C: Serial Monitor Output of 7400 Chip Test

14

The final requirement of the ESP32 is that the device’s internal logic must be able to determine if a chip

is working properly in under 2 ms. This latency constraint is to ensure that the user is provided with fast

results. This requirement is verified using the micros() function in the firmware of the ESP32

microcontroller to calculate the time difference between when the system receives data from the user

specifying which chip to test and the time the chip is determined to be working or not. The micros()

function returns the number of microseconds that have passed, so test suites must run in under 2000

μs. Figure 11 shows the serial monitor output determining the total run time of a test suite. On the serial

monitor, result “1” indicates that the chip works and result “0” indicates that the chip is broken. When a

chip fails a test vector, the test suite is interrupted and immediately informs the user of the broken chip.

As a result, a failing chip will not execute the entire test suite and will therefore have a faster run time.

Figure 12 graphs the total run time for all the test suites in μs. The dashed red line indicates the 2 ms

latency constraint and demonstrates the success of this requirement since all chips are beneath it.

Figure 11: Serial Monitor Output from Passing 7474 Test Suite (Left) and Failing 7474 Test Suite (Right)

Figure 12: Total Run Time for Each Passing Test Suite in Microseconds

3.3 Wi-Fi Application
To verify that our results are in accordance with the items listed in Appendix A, we applied various tests

to our UI. We were able to connect both a laptop and a smartphone to our web application once the

devices were on the ESP32’s network. This connection was stable and reliable because neither the

network nor the application glitched or buffered while testing a series of IC chips. The dropdown menu

on the home page does list all IC chips offered in ECE 385. Upon testing a given IC chip, the output of

that chip is consistent and delivers the correct output to the LEDs. Lastly, we are able to test different IC

chips sequentially without restarting the server or reconnecting to the IP address. Both the firmware

and the application UI contribute to the sequential IC chip testing.

15

4. Costs and Schedule

4.1 Parts
Table 3: Parts Cost

Part Manufacturer Retail Cost ($) Quantity Total Cost ($)

UMFT234XD-WE FTDI 12.53 1 12.53

CD74HCT125E Texas Instruments .77 2 1.54

ESP32-WROOM-32E Espressif Systems 2.80 2 5.60

SN74LVC1G139DCUT Texas Instruments .89 2 1.78

MCP23S17T-E/SO Microchip Technology 1.32 2 2.64

TPS77733DR Texas Instruments 3.06 2 6.12

MCP73831T-2ACI/OT Microchip Techology .59 2 1.18

TPS61230DRCT Texas Instruments 2.71 2 5.42

455-1165-ND JST Sales America Inc. .10 2 0.20

GSB3211311WEU-ND Amphenol ICC 2.31 2 4.62

732-4984-6-ND Würth Elektronik .18 4 0.72

516-1444-1-ND Broadcom Limited 1.05 4 4.20

1497-1393-1-ND SunLED .41 2 0.82

1497-1310-1-ND SunLED .61 2 1.22

EG2362-ND E-Switch 2.70 2 5.40

EG2483-ND E-Switch 4.21 2 8.42

399-4950-1-ND KEMET .41 4 1.64

399-11948-1-ND KEMET .549 10 5.49

1276-1010-1-ND Samsung Electro-Mechanics .1 2 0.2

VS-MBRA140TRPBFCT-ND Vishay General Semiconductor -
Diodes Division

.59 2 1.18

P226AACT-ND Panasonic Electronic Components .24 2 0.48

RMCF2512FT10K0CT-ND Stackpole Electronics Inc .37 2 0.74

EG2526CT-ND E-Switch .36 2 0.72

399-15351-1-ND KEMET .16 4 0.64

399-7412-1-ND KEMET .50 2 1.00

HVCB2512FDC250KCT-ND Stackpole Electronics Inc 6.58 2 13.16

296-37990-1-ND Texas Instruments 3.01 2 6.02

490-4339-1-ND Murata Electronics .35 2 0.70

811-3619-1-ND Murata Power Solutions Inc. 1.69 2 3.38

24-6554-10 Aries Electronics 11.15 2 22.15

CP2104-F03-GMR Silicon Labs 1.84 1 1.84

LP605060JU + PCM +
WIRES 70MM

Jauch Quartz 16.89 1 16.89

MMBT2222 Rochester Electronics, LLC .79 2 1.58

AP2111H-3.3TRG1 Diodes Incorporated .49 1 0.49

MAX1725EUK+T Maxim Integrated 2.00 1 2.00

 Total Parts

Cost:
$142.71

16

4.2 Labor
Table 4: Labor Costs

Member Hourly Wage Hours per Week Number of Weeks Multiplier Total

Michael Ruscito $40 15 16 2.5 $24,000

Alison Shikada $40 15 16 2.5 $24,000

Ryan Yoseph $40 15 16 2.5 $24,000

 Total Labor Cost: $72,000

4.3 Total Costs
Table 5: Total Costs

Parts Costs: $142.71

Labor Costs: $72,000

Total Costs: $72,142.71

4.4 Schedule
Table 6: Schedule

Week Alison Shikada Michael Ruscito Ryan Yoseph

3/1 • ESP32 Wi-Fi app or in
house app

• RV block

• Control unit design
• part numbers
• RV block

• Power supply
• RV block

3/8 • Revise Design based on
feedback

• Revise Design based on
feedback

• Revise Design based on
feedback

3/15 • Order parts • Order parts • Order parts

3/22 • Set up simple ESP32
server

• Begin development on
ESP32 firmware for test
suites

• Begin development on ESP32
firmware for MCP7381
communication

3/29 • Test simple CMOS gate
with ESP32 algorithm

• Solder components to PCB • Solder components to PCB

4/5 • Implement 2-way
communication with
HTTP API

• Create layouts on web
application for 9 out of
18 chips

• Draft algorithm for
testing chip deficiency

• Create library of test vectors
for all 18 IC chips given in
ECE385, specifically
designating which chips are
sensitive to order of signals

• Solder components on PCB

• Solder components on PCB
and use testpads to measure
board output.

• Place order for PCB in the
third round

17

Week Alison Shikada Michael Ruscito Ryan Yoseph

4/12 • Depending on PCB
completion, fully
integrate 1 CMOS chip

• If not, integrate a mock
chip for testing vectors

• Full integration of 18
chips on web app

• Develop any test firmware
required for hardware
debugging purposes

• Debug any hardware issues
for control unit

• Aid in programming test
vectors

• Begin firmware development
and research on Saturday,
April 10th.

4/19 • Complete full
integration of test
vectors with PCB

• Modify website UI if
needed

• Test/debug device
performance

• Test/debug device
performance

4/26 • Implement changes
found in Mock demo

• Deliver demo
• Draft Final Paper

• Deliver demo
• Draft Final Paper

• Deliver demo
• Test/debug device

performance
• Draft Final Paper

5/3 • Deliver Presentation
• Finish final paper

• Deliver Presentation
• Finish final paper

• Deliver Presentation
• Finish final paper

18

5. Conclusion

5.1 Accomplishments
The Automated IC Chip Tester can successfully determine whether a user selected IC chip is operational

or not. Through the use of our Wi-Fi application, the user is provided with a clean, intuitive UI for easy

testing with a full testing suite. With the inclusion of the LiPo battery, this device provides a compact,

portable, and rechargeable solution suited for students to unit test their IC chips in ECE 385.

5.2 Uncertainties
There were a few design flaws in our project that a second prototype would ideally address. The first

being that the battery charging system is not integrated on the same PCB as the automated IC chip

tester. This issue is not severe because the battery is easily removable from the device and can be

charged separately, however for ease of use for the user, charging should be integrated on the same

device. The reason for this issue is due to a faulty PCB layout in which the pins of the BMS chip were not

labelled properly shorting the chip as a result. If we had an additional round of PCB orders, we would

have been able to solve this issue.

The other shortcoming in our project is that the website does not update with the test results. Instead,

we had to rely on the LEDs on the PCB to indicate whether a chip was working. This is because the HTTP

request for the results is too fast for the ESP32 to update it in time. So, the solution to this is to

implement a web socket instead which would allow the user to check the UI for the updated results

rather than relying on the LEDs.

5.3 Ethical considerations
In electing to design a Web application as opposed to a BLE application, we have a higher exposure to

cyber-attacks of malicious intent. IEEE’s Code of Ethics, Section I, Policy 1 [11] plays a role in our attempt

to protect the user from a breach of privacy. While we believe the benefits of a Wi-Fi application

outweigh that of a BLE alternative, it is our responsibility to not compromise the security of our users.

Additionally, it is our responsibility to not abuse the trust of our users by not extracting any data from

their device.

Our solution to this security risk is to utilize the ESP32’s soft access point (softAP) module. Usually, a

router serves as an access point while a mobile device is a station. In our case, the ESP32 acts as the

access point and generates its own Wi-Fi network. This softAP adds another layer of protection because

a malicious user must first connect to the appropriate Wi-Fi network before accessing the application.

Otherwise, our project has several potential safety hazards. Batteries can be dangerous when used

outside of the recommended operating conditions. If a battery is brought to extreme temperatures, it

can become a fire hazard [12]. We address this issue by only using our project within environments of -

18°C to 55°C. Using tristate buffers to control the battery drain, our project will also ensure that the

power drawn from the batteries is within the safe operating conditions.

19

5.4 Future work
We have a few ideas for improving our project. We will address improvements first to our current

model, and then to extrapolate our project to a larger scale.

First, for a more durable device, we would like to 3D print a case to protect the PCB and battery of our

tester. With a more durable exterior, students may carry testers in backpacks without worrying about

damaging the device. We would also like to interface our Wi-Fi application with the University of Illinois’

Shibboleth system. This would provide a 2-Factor Authentication already recognized by the university as

a secure solution to students’ and faculty’s smart devices.

If we were to expand our project’s functionality, the first change we would like to make would be to

create a larger tester to be able to handle larger sized chips. Currently, we are limited to a 24-pin ZIF

socket due to the ESP32’s limited GPIO pins. With more ESP32’s and more hardware components, we

could potentially handle those larger IC chips. Lastly, we would like to create a circuit tester as an added

feature to our tester. If we could designate a certain number of pins to unit test a circuit at various

points in its wiring, we could compare the expected inputs and outputs with that of a user-defined test.

At this point, our device can determine if the input and output of a circuit is the same as an expected

value. However, we would like to test designated “checkpoints” of a circuit rather than just the input

and output.

20

References
[1] Y. H. Ng, Y. H. Low and S. Demidenko, "Improving Efficiency of IC Burn-In Testing," 2008 IEEE

Instrumentation and Measurement Technology Conference, Victoria, BC, Canada, 2008, pp. 1685-1689.
[Accessed March 1, 2021].

[2] K. N. Tu, “Reliability challenges in 3D IC packaging technology,” Microelectronics Reliability, vol. 51, no.
3, pp. 517–523, Sep. 2010.

[3] Ronen, M. and Eliahu, M. (2000), “Simulation — a bridge between theory and reality: the case of electric
circuits,” Journal of Computer Assisted Learning. [Abstract]. Available: Wiley Online Library,
https://doi.org/10.1046/j.1365-2729.2000.00112.x. [Accessed March 1, 2021].

[4] Maxamps.com Award Winning Batteries. https://www.maxamps.com/lipo-care.php (accessed May 05,
2021).

[5] DNK Power Company, “Complete Guide for Lithium Polymer (Lipo) Battery: History, Charging, Safety,
Storage, and Care,” Lithium ion Battery Manufacturer and Supplier in China-DNK Power, March 11,
2019. [Online]. Available: https://www.dnkpower.com/lithium-polymer-battery-guide/. [Accessed:
March 5, 2021].

[6] Texas Instruments, “High-Speed CMOS Logic Quad Buffer, Three-State”, 54HC125 datasheet, Nov. 1997
[Revised Aug. 2003].

[7] N. Stokes, “How to Charge Your Phone Faster,” techlicious.com, Jul. 2, 2019. [Online]. Available:
https://www.techlicious.com/tip/charge-your-iphone-android-phone-faster/. [Accessed: March 28,
2021].

[8] E-Switch, "Series 100 Switches Toggle Switches – Miniature”, 100SP1T2B4M6QE datasheet (accessed
May 05, 2021).

[9] Texas Instruments, “TPS77825 FAST-TRANSIET-RESPONSE 750-mA LOW-DROPOUT LINEAR
REGULATORS”, TPS777 datasheet, Sept. 1999 [Revised Jan. 2004] (accessed Apr. 07, 2021).

[10] Espressif Systems, “ESP32 Series Datasheet,” v3.5, Aug. 2016 [Revised Jan. 2021].

[11] IEEE, “IEEE Code of Ethics,” IEEE. [Online] Available:
https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: February 18, 2021].

[12] Energizer Brands, LLC., Alkaline Manganese Dioxide Handbook and Application Manual, Energizer, 2018.

https://doi.org/10.1046/j.1365-2729.2000.00112.x
https://www.dnkpower.com/lithium-polymer-battery-guide/
https://www.techlicious.com/tip/charge-your-iphone-android-phone-faster/
https://www.ieee.org/about/corporate/governance/p7-8.html

21

Appendix A Requirement and Verification Table
Table 6: Complete RV Table with Demo Point Allocation

Subsystem Requirements Verification Points

Power Supply

• The 3.3 V LDO regulator
must be capable of
outputting 3.3 V ± 0.3 V at
600 mA.
8 points

• The 5 V voltage regulator
must provide 5 V ± 0.5 V and
be able to handle 20 mA
sourcing to the tristate
buffers.
7 points

• Measure the output voltage of the
LDO regulator by probing the 3.3 V
and GND pads with a voltmeter to
ensure the regulator outputs 3.3 V ±
0.3 V.

• Measure the output voltage by
probing the 5 V and GND pads with a
voltmeter to ensure the regulator
outputs 5 V ± 0.5 V.

15

Control Unit
(Excluding

ESP32)

• The port expander must be
able to parallelize 16-bit
outputs from the SPI
communication with the
ESP32.
3 points

• The 2-bit signal from the
ESP32 must be decoded to
the tristate buffers which
output 5 V to the selected
pin and high impedance to
other 2 pins.
4 points

• Firmware housed on the ESP32 writes
each of the 16 bits in the SPI
communication. Verify that the
corresponding output pin on the ZIF
socket matches with a multimeter
(<0.8 V = Low, >2.0 V = High).

• Measure the voltage out of the ZIF
socket pin in the top right, compared
to the voltage of pins 4 and 5. The
voltage of the selected pin must be 5
V ± 0.7 V. The other 2 pins must
match the ESP32’s output within the
tolerances described for its logic
values.

7

ESP32
Microcontroller

• The ESP32 must be able to
read from all 24 of the ZIF
socket pins with Low logic
states in the range -0.3 V to
0.8 V and High logic states in
the range 2.47 V to 3.6 V.
3 points

• The device’s internal logic
must be able to determine if
a chip is working properly in
under 2 milliseconds.
2 points

• Probe each pin of the ZIF socket with
3.3 V and compare the ESP32’s input
reading from the console. Repeat the
process but probing with 0 V.

• Use micros() function in the firmware
of the ESP32 microcontroller to
calculate the time difference between
when the system receives data from
the user specifying which chip to test
and the time the chip is determined
to be working or not.

10

22

• The microcontroller’s
firmware must contain a
library of test suites for all
18 chips provided in the ECE
385 lab.
5 points

• Test chips through the user interface
using both chips that have been
manually tested and verified to be
working as well as chips that are
broken. Compare the device’s
diagnostic of the chips to the known
state.

Wi-Fi
Application

• Web application and
wireless network generated
from ESP32 using Soft
Access Point and application
is accessible from multiple
devices
5 points

• Web application allows for
chip selection of each of the
18 IC chips provided in ECE
385 lab kit.
5 points

• The Wi-Fi app can display
the correct testing results
for the chip.
3 points

• Wi-Fi app generates input
and receives output from
ESP32 for custom unit tests
with a minimum of 95%
accuracy
3 points

• Wi-Fi app can execute a
second test following the
completing on a first test
without needing to
reprogram the ESP32 or
reconnect to the network
2 points

• Connect to the web app via a
smartphone and confirm that the
webpage is responsive to input.
Repeat the process by accessing it via
a computer or other device.

• Using the drop-down menu feature of
the web application, choose each of
the chips and verify that the page
updates for the selected chip.

• The web application correctly displays
the same output as determined by
the ESP32 microcontroller and
corresponding LEDs.

• Send 100 inputs on the Wi-Fi app to
the ESP32 with a working IC chip
(previously tested) in the ZIF socket
and check that the returned outputs
match the expected logic values.

• Load a chip into the ZIF socket and
run the corresponding test for it.
Then, without restarting the system,
swap the chip for a new one and run
the new corresponding test suite.

18

Total Points 50

23

Appendix B PCB Layout

Figure 13: Eagle Board Layout of Automated IC Chip Tester

24

Appendix C Control Unit Eagle Schematic

Figure 14: Eagle Schematic of Control Unit

