Fiducial Pattern Tracking
Drone

By
Alexander Amiel (aamiel2)
Angelos Guan (tguan2)

Umer Belagam (belagam2)

Final Report for ECE 445, Senior Design, Spring 2021

TA: Chaitanya Sindagi

May 5, 2021

Project No. 59

Abstract

For our project, we designed a hands free controllable drone with the use of an RC receiver and
transmitter for take off and landing purposes. The Drone’'s flight controller is based on
BetaFlight code which can take commands from an arduino, through PPM signals, to change
the drone’s speed and orientation while keeping the drone oriented upright even when met with
various weather conditions. Through the use of detection and distance algorithms run on the
Raspberry Pi, and video capture done by the camera module, we are able to detect a fiducial
pattern, which is similar to a QR code, light up an LED to signal the user that it has been
detected, and keep the drone a certain distance from it. The Raspberry Pi sends distance
measurements to an arduino through two wires to then communicate with the flight controller.
Further improvements could be done with the tuning of various inputs in the BetaFlight software
and the use of a different inertial measurement unit (IMU).

Contents

1. Introduction
1.1 Background and Overview
1.2 High Level Requirements
1.3 Block Diagram

2. Design

2.1 Power Supply
2.1.1 Use of 5V Buck Step-Down Converter
2.1.2 Use of 3 V Step-Down Converter

2.2 Flight Controller
2.2.1 Flight Controller Software
2.2.2 Microcontroller
2.2.3 IMU

2.3 Raspberry Pi
2.3.1 AprilTag Detection

2.3.2 Determining Distance from the Camera to the AprilTag

2.4 Communication System and Remote Control
2.4.1 Drone Movement
2.4.2 Remote Control
2.4.3 Communication System

3. Verification
3.1 AprilTag Verification
3.1.1 AprilTag Detection Methods and Tests
3.1.2 AprilTag Distance Calculation Tests
3.2 Communication Verification

4. Costs
4.1 Labor
4.2 Parts
4.3 Total Cost

5. Conclusion
5.1 Accomplishments
5.2 Uncertainties
5.3 Ethical Considerations
5.4 Future Work

References
Appendix A - Requirement and Verification Table
Appendix B - Testing Procedure Diagrams

Appendix C - Schematics and PCB

o No oA DNBMAEDRENDA N A

—_ 4 4
N = =2 O ©

_ M e
N o b W

19
19
19
20

21
21
21
21
22

23
24
25
27

1. Introduction

1.1 Background and Overview

The goal of our project is to develop an equipment-free drone guided by a fiducial pattern. A
fiducial pattern is similar to a QR code except it is not as complex and can be detected less
computationally costly [1]. The drone is able to detect and track the pattern, maintaining a set
distance from it at all times.

The motivation for our project is to provide an alternative solution to the problem of controlling
the drone without a physical controller. Currently, the most popular controlling method is to use
mobile phones to keep track of location via Bluetooth and monitor the drone’s perspective vision
via camera. Such an approach is limited by the phone and events such as the phone dying,
which may trigger unwanted behaviors for the drone. Another alternative way to pilot a drone
without physical controllers are through the use of hand gestures, DJI's spark [2] and Samsung
[3], and through the use of a muscular-control system, MIT’s artificial intelligence lab [4]. The
problem with hand-gestured controlled drones is that it may detect someone else’s hand and
may result in undesired behaviors. In MIT’s muscular-based control approach, problems arise
when the person piloting the drone has a muscular breakdown or accidentally squeezes too
hard or too soft.

Our solution provides a new way to pilot the drone by detecting a given fiducial pattern and
maintaining a distance from it. It is more cost efficient hardware-wise than app-controlled drones
because it does not require the user to have a specific device that can run the software, and
more reliable than gesture-controlled drones. The user holds the fiducial pattern and guides the
drone by moving the fiducial pattern to the desired position. If no pattern is detected, the drone
will signal the user through a buzzer and LED. Our method provides a controller-free approach
to reliably pilot a drone while solving the problem of confusing other people’s hands as a user
input.

1.2 High Level Requirements

The high level requirements of our project:

1. Our project must be able to use a camera mounted on the drone to detect and track a
fixed sized fiducial pattern from 1-10 feet away, light up an LED, and estimate the
real-world position coordinate of the detected pattern within 3% mean squared error.

2. The drone must be able to fly with an upright orientation and maintain 4 to 5 m to the
detected fiducial pattern within 15% steady-state error and less than 5 s response
latency. If a fiducial pattern is not detected, the drone should maintain its current position
and ring a buzzer to notify the user.

3. The drone must be able to halt in place if there are any obstacles detected in 0.2 m
range. Unfortunately, we did not integrate an ultrasonic sensor subsystem as it was hard

to adjust the drone’s flight controller software. If given more time, this will be integrated
into our project.

1.3 Block Diagram

Li-lon 5V Buck

3V Linear .
Regulator Step- Camera Unit

r
1 1
! 1
!]
' 1
I i
! Step-Down !
___________ ! Converter :
1
........... - e e e —————
Motor | | Raspberry Pl-
! 1
I]
! 1

1
I) 1
1 ' ! 1 ' 1
1 I : 1 ' 1
1 1 Li-lon Battery Down C i 1 f 1
I |Brushless DC I SRS ! System 1 + [Rraspoerry Pi 1
: Motors . R i ' : 1 Camera '
| R CRLY ' ! Module '
|) P
: l : : Aduine [€—t—m 1 CSlinterface | | 5v
1 r 7 ! 1 : 1
! X ' ' e ——
ESCfor |, 1 | v |sei ' ‘
: motors Dot . ' . |Raspberry Pi :
1
I ! | ! 1 1
L S ” : | : ! RC Receiver f& | 1 ! 1
1 [. ' L GPIO ! GPIO
e \ 1 " L N e e e e e — ==
1 : 1 I 1 |
----------- 1
1 Legend b ;! ' L
— Wire Vo [! Remote ! 2
' o | oo . Control 1|
y ——PowerLine | 1 \ : 1 . 1 :
1 ! 1 !) !
i <:>Data Bus 1 ! 1 Pt . RC o) fmmmmmmmm e mmm e --
] tter [T)
1 1! 1 o i Transmitter | 1 User .
' _ _ \Wireless 1 ! - ! !
1% - - Sommunication! ! ' . 1 1 | Interface |
1 1 1 Ve M __ . 1 SPI 1 1 {———————————¢———— 1
1 I 1 ! 1 1 I 1
1 1 ! ! 1 . ! 1 !
. - 1 N Arduino 1 | Buzzer LEDs 1
] No | ey M s 1 1 1 1
1 |Implementation 1 1 T ! 1 !
! Necessary 1 PPM 1 ' Ve e e e e mmmmm— = !
] 1
Vem e e e = . 1 Controls :
1
1 1
! :
! 5V Power .
1
1

Bank

Figure 1: Block Diagram

Our design contains 7 subsystems: motor unit, power supply, control unit, communication
system, Raspberry Pi/camera unit, user interface unit, and remote control unit. The motor unit is
made up of 4 brushless DC motors and their corresponding ESCs. The power supply contains a
3S Li-ion battery, a 5 V buck step-down converter, and a 3 V linear regulator step-down converter.
The control unit contains a STM32 that is running betaflight software, and sensors (IMU) that
supports the flight controller. It takes input from the communication unit and sends output to
the ESCs in order to control the motors according to commands it receives from the arduino.
The communication unit contains an arduino board and a RC receiver. It is listening to RC
signals coming from user input via remote control as well as output from the Raspberry
Pi/camera unit. It will process control signals from the user and camera detection and send a
combined final command to the control unit. The Raspberry Pi/camera unit is responsible for
running the detection algorithm to determine which direction to move the drone according to the
relative position of the fiducial pattern from the camera. The user interface unit contains a

buzzer and LEDs, which both serve as ways to indicate the status of the drone to the user. We
added a remote control unit with a custom-designed controller and RC transmitter in order to
test the drone safely in case other subsystems fail. It is also responsible for manually taking off
and landing. It sends command signals to the communication unit and lets the communication
unit decide what final commands to send to the flight controller.

We have made several changes to our block diagram from the design document. We added a
communication unit and remote control unit for testing and for sending command inputs to
BetaFlight running on the control unit. In addition, we deleted the pressure sensor and ultrasonic
sensors from the control unit.

2. Design

2.1 Power Supply

In Figure 1, the power supply subsystem is mainly based on the 3S Li-lon battery pack with a
nominal voltage of 11.1 V and 5200 milliamp hour (mAh) energy capacity, a 5 V buck step-down
converter, and a 3 V linear regulator step-down converter. We chose the 3S Li-ion battery pack
because we based our drone on similar size drones, where most of the time the drone is spent
hovering, and has a current draw of 25 A. The estimated flight time is

5.2 Ah * 60 min * 80% battery drain * 1/25A = 10 min (2.1)
10 minutes of flight time. The ESCs are directly powered by the battery pack, a supplied 11.1 V.

2.1.1 Use of 5 V Buck Step-Down Converter

The Raspberry Pi is powered by 5V at 2.5 A. The Li-ion battery pack has a wire connected to the
5 V buck step down converter which then has a wire that goes to the Raspberry Pi's 5V power
pin [See Appendix B and Figure 18]. We chose to use the PDB-XT60 distribution board because it
can step down 12V, from the battery pack, to 5 V to power the Raspberry Pi. The Raspberry Pi
we use is the Raspberry Pi 4 which has a recommended current capacity of 2.5 A, and this
breakout board can output a continuous max current of 2.5 A. We initially used the
ADP2303ARDZ-5.0-R7 chip, but when verifying the voltage, we could only output 1 V after 5
seconds of stabilization [See Appendix A for Voltage Verification].

2.1.2 Use of 3 V Step-Down Converter

The STM32 microcontroller, arduino, and IMU are powered by 3 V from the 3 V linear regulator
step-down converter. The microcontroller we use is the STM32F405RGT6W chip which has an
operating voltage from 1.8 V to 3.6 V [See Appendix A for Voltage Verification].

2.2 Flight Controller

The flight controller is the most important component of our drone and it is what enables the
drone to fly. It has a microcontroller that reads and processes the data from the IMU and takes
commands from the communication system and uses those to control the ESCs.

2.2.1 Flight Controller Software

During the design phase we had considered using an open source flight control software for our
flight controller (FC) and after looking at a few different ones, we selected BetaFlight [5] as it
has support for the microcontroller we chose and a variety of different sensors. BetaFlight is
responsible for running the PID loop with the desired values for yaw, pitch roll and throttle as

input, and updating the corresponding output voltage to ESC according to the IMU sensor
values. We did the PID tuning via BetaFlight's GUI by adjusting the gains shown in Figure 2.

Proportional Feedforward PID Controller Settings

Integral D Max

] a Feedforward transition
Basic/Acro

ROLL 55 102 55

PITCH
YAW

Master
Multiplier:

PD Balance:
P and D Gain:

Stick Response
Gain:

Angle/Horizon

Angle

Horizon

61 108 60
60 108 0

Low Default
S
S
—— i
S

Transition
s0§
so g

76 E 20 E Acro Trainer Angle Limit

so B
7B

5 a Throttle Boost

0 | pynamic idie value [100 RPM]

0 E Absolute Control

| Term Rotation
Vbat PID Compensation

Integrated Yaw

I Term Relax
RP v | Axes
Setpoint ¥ | Type
15 B Curoff

37 H Gain

20 H Advance

D Min

Anti Gravity
Permanently enable Anti Gravi
ss 8B -e y ty

Smooth ¥ | Mode

35 H Gain

Motor Output Limit

Scale Factor [96] Cell Count

100 B
Figure 2: PID tuning in BetaFlight

Betaflight has a list of commercially available flight controller boards that you can select from to
flash the software on it but since our flight controller was custom we had to modify the source
code and compile it. Since the microcontroller we used is common among flight controllers,
there was not much modification needed to the code. We had to modify the pin mappings and
select what features and drivers to include in the compiled binary. The biggest change we made
was add the driver for the IMU we are using as it is not supported by Betaflight. For this we
modified the driver for another IMU, the ICM20649 which is from the same manufacturer so
most of the SPI registers and addresses were the same.

2.2.2 Microcontroller

We use STM32F405RGT6W microcontroller as it is compatible with Betaflight. It has TMB flash
memory which is enough for Betaflight with the drivers and features we required. It has a FPU
(floating point unit) which is required to make fast calculations on the IMU data. It has DMA
(direct memory access) which is necessary for faster communication with the ESCs as they
can directly read the controls for speed without the STM32 CPU in between. It runs at 168MHz
which is more than enough to run the PID loop at 9KHz which is the maximum rate the IMU can
output data.

2.2.3 IMU

The IMU, which stands for inertial measurement unit, contains the gyroscope and accelerometer
sensors. The gyroscope measures angular velocity and the accelerometer measures
acceleration which includes the acceleration from gravity. Both these sensors give a reading in
all 3 axes and with this information, we can calculate how fast the drone is rotating and its
orientation. This data is fed into a PID control loop to make sure the drone is moving as
intended by correcting any inconsistencies between how it is supposed to move from the
commands received and how it has actually moved as determined by the sensors. This
correction is also performed if the drone moves from any external forces like wind.

The IMU we chose is the ICM20948 which also includes a magnetometer which is basically a
3D compass that can determine the north direction. Initially, we intended on using the
magnetometer in our design so we could maintain the direction the drone points towards, but
we were not able to get it working with the software, so now the drone is subject to slight drifts
in its direction. We chose this IMU because it has a fast refresh rate and a high sensitivity which
results in smoother flying according to our initial research. The gyroscope operates at a 9 KHz
refresh rate and its range can be set at + 250, 500, 1000 or 2000 dps (degrees per seconds). We
set it at £1000 dps as per our requirements. The accelerometer operates at a 4.5 KHz refresh
rate and its range can be set at * 2, 4, 8 or 16 G (gravity in m/s). We set it at +8 G as per our
requirements. The IMU was initially going to communicate with the STM32 using I12C and we
designed our PCB around that but we could not get the 12C driver working in Betaflight so we
used SPI instead with jumper wires connected to other unused pins on the PCB

The data from the IMU is noisy and after trying out different filter types and parameters we have
our final settings in Figure 3. Based on the model of our IMU and the size of our drone we knew
that a low pass filter with low cutoff frequencies would work better. We got to the exact values
by monitoring the IMU data and reducing the noise when the drone was stationary, and by
seeing how much the drone wobbles during the flight and trying to minimize that.

More Filtering Default Filtering
e T
Multiplier:

D Term Filter

Multiplier:

Profile independent Filter Settings Profile dependent Filter Settings
Gyro Lowpass Filters D Term Lowpass Filters
- 140 a Gyro Lowpass 1 Dynamic Min Cutoff Frequency [Hz] - 56 H D Term Lowpass 1 Dynamic Min Cutoff Frequency [Hz]
350 E Gyro Lowpass 1 Dynamic Max Cutoff Frequency [Hz] 136 H D Term Lowpass 1 Dynamic Max Cutoff Frequency [Hz]
PT1 v || Gyro Lowpass 1 Dynamic Flter Type PT1 v | | D Term Lowpass 1 Dynamic Filter Type
[] . Gyro Lowpass 1 Cutoff Frequency [Hz] [] . D Term Lowpass 1 Cutoff Frequency [Hz]
Gyro Lowpass 1 Filter Type D Term Lowpass 1 Filter Type
- 175 a Gyro Lowpass 2 Cutoff Frequency [Hz] - 120 H D Term Lowpass 2 Cutoff Frequency [Hz]
PT1 v | | Gyro Lowpass 2 Filter Type PT1 v | | D Term Lowpass 2 Filter Type
Gyro Notch Filters D Term Notch Filters
. Gyro Notch Flter 1 Center Frequency [Hz] . . D Term Notch Flter Center Frequency [Hz]
Gyro Notch Filter 1 Cutoff Frequency [Hz] . D Term Notch Filter Cutoff Frequency [Hz]
. Gyro Notch Filter 2 Center Frequency [Hz] Yaw Lowpass Filters
Gyro Notch Filter 2 Cutoff Frequency [Hz] . . Yaw Lowpass Cutoff Frequency [Hz]
Dynamic Notch Filter
8 a Dynamic Notch Width Percent
120 E Dynamic Notch Q
150 E Dynamic Notch Min Hz
600 a Dynamic Notch Max Hz

Figure 3: Filter settings in Betaflight

2.3 Raspberry Pi

The purpose of the Raspberry Pi is to detect an AprilTag, which is a specific set of fiducial
patterns, calculate the distance from it, and signal an arduino how far the drone is away from
the AprilTag. We use python's OpenCV library to capture the AprilTag in real time, and measure
the distance to it with each frame of the captured video. We use another python package called
“apriltag” which can specify a specific family of AprilTags to detect.

We use a Raspberry Pi because we can run our detection algorithm without having to type in a
command to run it, and the communication procedure to signal the arduino is easy using the
GPIO pins of the Raspberry Pi. Our group is also familiar with the functionality of the Raspberry
Pi, so it seemed as the most logical choice to use for object detection.

Another consideration to use the Raspberry Pi and its camera module is that setting it up on the
drone is easy using zip ties. Figure 4 shows how the Raspberry Pi is oriented on the drone, and
where the camera is placed.

Figure 4: Raspberry Pi and camera placement on the drone

Zip tie the Raspberry Pi to the bottom of the base of the drone, orient the camera to face
forward, and zip tie it to two mounts that are connected to the base of the drone.

2.3.1 AprilTag Detection

We detect the AprilTag in real time using the Raspberry Pi's camera module as our video capture
system. The camera module connects to the Raspberry Pi through the CSI interface. The
AprilTag we use is shown in Figure 5.

Figure 5: AprilTag family Tag36h11

This is the most generic AprilTag family. Since generating an AprilTag is sufficiently harder, we
use an already generated AprilTag. The flowchart in Figure 6 shows how the AprilTag is
detected.

Import the AprilTag

that want's to be
recognized and
convert it to grayscale

h 4
Define the
AprilTag detector and
detect the AprilTag in
the input image

h 4

Loop over the

AprilTag detection [“,
results

-
h 4

If AprilTag
detected

Signal the Arduino that
\ its has been detected, Turn LED off, turn on J
light up blue LED, turn buzzer

buzzer off

Figure 6: flowchart of AprilTag detection

The first block in the flowchart is the input image from the video capture using python’s OpenCV
package. The second block uses python’s apriltag package to specify which family of AprilTags
wants to be detected. In our case, family Tag36h11 is specified. The result is used by combining
the input image and the detector to detect the AprilTags in the image, and it returns how many
are detected. The third block loops through all the detected AprilTags of the specified family. We
only use one AprilTag, so this loop only happens once.

2.3.2 Determining Distance from the Camera to the AprilTag
After detecting the AprilTag, determine the distance it is from the drone. To do this, use
Raspberry Pi's camera module and the same detection algorithm from Figure 6.

The first step is to calibrate the focal length of the camera with an input image. The input image
has the AprilTag in it and it is a fixed distance from the camera. It also has a fixed width, which
can be measured with a ruler. The fixed width is the length of one of the green edges shown in
Figure 11 in section 3.1.1. The perceived width, is the width of the image in pixels. To get the
perceived width, output the coordinates of each corner point in the AprilTag input image,

calculate the Euclidean distance of each edge, and return the average width. The equation for
calculating the focal length is

F = (PXD)/W (2.2)

where F is the focal length, P is the perceived width, D is the fixed distance between the camera
and the AprilTag, and W is the fixed width of the AprilTag.

Knowing the focal length from Equation (2.2), calculate the distance the AprilTag is from the
camera in each frame of the video capture. The equation for the distance calculation is

D’ = (WXF)/new_P (2.3)

where D’ is the new distance and new_P is the new perceived width of the AprilTag. The new
perceived width calculation is done by taking the max euclidean distance of each edge of the
AprilTag. Do this instead of taking the average to take in account if the AprilTag is tilted one way
from the center. Initially, we only measured the widths of the top and bottom edges, but this
resulted in an inaccurate calculation of the distance.

2.4 Communication System and Remote Control
The communication protocol between each subsystem is shown in Figure 7.

Raspberry Pi
pherry GPIO

-y

-
-

LT
Wireless
Remote Control * Transmission

- PPM
°°mgg?;‘;ft'°“ 3 Flight Controller

Figure 7: Communication protocols

2.4.1 Drone Movement

The drone has 3 axes of rotation, yaw, pitch and roll which is shown in Figure 8. These are used
to maneuver the drone and the throttle is used to increase the speed of the motors to make the
drone go in the direction it's facing. The flight controller software expects each of these as
inputs with a value between 1000 and 2000. The yaw, pitch and roll have a center value of 1500
and the throttle starts at 1000 and goes to 2000. For our project, we use the radio controller to
control the throttle and bring the drone up in the air. Once it’s in the air, the Raspberry Pi takes
over as the control. Since our drone tracks the AprilTag in front of it, we are mainly concerned
with the pitch value which tilts the drone towards the front and back.

10

Pitch Axis

IS

e

Roll Axis

-

Yaw Axis

Figure 8: Three axes of rotation

2.4.2 Remote Control

The remote control consists of an Arduino Uno and a NRF24 transceiver module [See Appendix
B and Figure 20]. It takes in 5 inputs and transmits 6 values to the communication system. The 6
values sent are yaw, pitch, roll, throttle, aux1 and aux2 and they are sent as a 6 byte data packet.
Each byte encodes a value from 1000 to 2000 that is mapped linearly from the byte values of 0
to 255. The two extra values are used for setting modes. Aux1 arms the drone for flying and
aux2 sets angle mode which restricts the drone’s angle to 25 degrees from the horizontal plane
and both of those are binary inputs. Above 1500 sets aux1 and aux2 to high, and below 1500
sets them off. The yaw, pitch and throttle are controlled using 3 potentiometers. Aux1 and aux2
are set by connecting a jumper to either ground or 5 V. The roll is not changed and always set to
1500. Figure 9 shows the sensitivity curves for each axis as well as the throttle presented in the
BetaFlight GUI.

Throttle Curve Preview

Figure 9: Throttle and 3 axis control sensitivity curves

11

2.4.3 Communication System

The communication system is the interface between the flight controller and the Raspberry Pi,
and it also receives commands from the radio remote control. It consists of an Arduino pro mini
and a NRF24 transceiver module on a stripboard that is mounted on the drone [See Appendix B
and Figure 21]. This was not part of our original design, but we added it because we were not
able to implement autonomous take off and landing for our drone, so this system lets us
manually do that. Betaflight does not support serial connection by default, so we are using PPM
communication as a substitution. We are using an arduino instead of communicating between
the Raspberry Pi and the STM directly because PPM communication requires high accuracy on
the timer. We need a microcontroller dedicated to communication without running other high
demand programs such as detection algorithms. In addition, using PPM is not reliable on the
Raspberry Pi due to strict timing requirements that could not be guaranteed with the linux
system running on the Raspberry Pi.

The Arduino is connected to the NRF24 using SPI and when the receiver receives the data from
the remote controller, it decodes the data and converts it to a PPM signal to send to the flight
controller. The arduino also monitors the input from the Raspberry Pi, and if it is receiving a
command to move forward, then the pitch value is increased by 150 before converting it to the
PPM signal. If the command is to move backward, the pitch value is decreased by 150. When a
radio signal is present, it has the highest priority so that we can always make sure of the safety
of the drone during testing. When the radio signal is lost, the arduino will send preset safe
values to betaflight to maintain the drone at the same position. The flowchart in Figure 10 shows
when data is transmitted to the flight controller.

12

Data received from
receiver in the past
second?

Raspberry Pi sending
command to move
drone?

Adjust pitch value based
on Raspberry Pi
commands

Center yaw, pitch and roll
values. Slowly lower
throttle value to land

drone safely

Convert data to PPM and
send to flight controller

A

Figure 10: Data transmission flowchart

13

3. Verification

3.1 AprilTag Verification

We verify the AprilTag detection using two methods. The first method uses the apriltag package
to successfully detect the specific AprilTag family, and we draw a bounding box around it, seen
in section 3.1.1. To go along with this method, we set up a simple LED circuit which is signaled
from the Raspberry Pi's GPIO pins to light up the LED if there is an AprilTag detected, see section
3.1.1. We also have the same circuit for a buzzer to verify that if the AprilTag is not detected, use
the GPIO pins to sound off the buzzer. These two tests run simultaneously.

We then verify the distance measurement from the camera to the AprilTag by calibrating the
focal length of the camera, mease the distance to the AprilTag, and print the result, in feet, to the
screen while running the same LED circuit except signal the LED through distances instead of
the number of tags detected [See Section 3.1.2].

3.1.1 AprilTag Detection Methods and Tests

From Figure 6 from section 2.3.1, the third block which loops over the detection results from the
input image, the apriltag package can specify the corner points of the detected AprilTag [6]. We
get the x and y coordinates of each point and draw a line, using OpenCV, from each point to each
other point, that is not on a diagonal, to create a bounding box. Figure 11 shows the result of
this.

Figure 11: Bounding box result of the detected AprilTag

The red dot in the middle is the center point of the AprilTag, and we draw this to have a clearer
picture when testing if the AprilTag is detected.

14

We implement a simple LED circuit to use as another verification to detect the AprilTag. The
results of the AprilTag detection algorithm has a list of how many AprilTags are detected, so if
there are multiple detections, the for loop would run for each detection. Each frame captured
also returns how many AprilTags are detected. If there are more than 0 detections, use the GPIO
pins of the Raspberry Pi connected to a breadboard to light up an LED [See Appendix B and
Figure 18 for Pinouts of the Raspberry Pi].

Connect a wire from a GPIO pin to a breadboard with a blue LED, and use the RPi.GPIO python
package to send a high signal to the GPIO pin which would then light up the LED if the number
of tags detected is greater than 0 [Look at Appendix A for verification]. We use a blue LED
because it has a forward voltage of 3.3 V, so no resistor has to be connected in series to reduce
the voltage powered from the Raspberry Pi. To make sure the LED test is working, connect a
buzzer to a different GPIO pin, and it will go off if there are zero AprilTags detected. These two
tests run simultaneously, and it confirms that our detection technique worked.

3.1.2 AprilTag Distance Calculation Tests

The focal length calibration is verified with an input image that has the AprilTag in the image.
For our calibration, the fixed distance from the AprilTag to the camera is 24 inches and the fixed
width of the AprilTag is 5.9 inches. When calculating the perceived width, we get an average
pixel length of 136 pixels. The result of the focal length calculation using Equation (2.2) is

F = (136.19*24)/5.9 = 554 (3.1)

where F is the focal length of the camera. The new distance calculation with the known width
and focal length using Equation (2.3) is

D’ = ((5.9%554)/new_P)/12 (3.2)
where D' is the new distance and new_P is the new perceived width of the AprilTag. The division

by 12 is done to convert the distance to feet. To test for the distance, print the calculation to the
screen along with the bounding box of the AprilTag. Figure 12 shows the results of this.

15

Figure 12: Distance calculation test results

The top left figure shows the distance of the AprilTag when it is positioned upright and straight
from the camera, the bottom left figure shows the distance when the AprilTag is rotated, and the
bottom right figure shows the distance when the AprilTag is tilted forward. To verify that our
distances are accurate, we set up a tape measure to compare the actual distances to the
measured distances. We tested this at increments of 1 feet, and our results are shown in
Appendix B and Figure 19.

The further the AprilTag is from the camera, the higher the error percentage is. The error
percentage calculation is

Error % = ((Actual - Measured)/Actual) * 100 (3.3)

The max error percentage we calculated is 3% at 10 feet. Since we use a ruler to determine the
distance the AprilTag is in the input image when calibrating the focal length and a ruler to
measure the width of the tag, there are small human errors associated with this. This is why
there is an error percentage of 3%. We could reduce this error by recalibrating the focal length
with different input images to get a different perceived width, but there will always be human
errors involved in measurement readings.

The Raspberry Pi also has to detect if the drone is 4 to 5 feet away from the camera, greater

than 5 feet, and smaller than 4 feet away [See Appendix A for Verification]. The same LED circuit
is used as in section 3.1.1 except this time it would send a high signal to the GPIO pin for each

16

of the distance measurements. We ran the distance measurement verification, as shown in
Figure 12, with the LED circuit. We did three different tests, one for each distance measurement.

3.2 Communication Verification

We verified that the communication system is working and can send commands to BetaFlight
based on the results of the distance algorithm, from sections 2.3.2, received from the Raspberry
Pi. Figure 13 shows what happens to the pitch value in BetaFlight when the AprilTag is further
than 5 feet from the camera.

Roll [A] |
Pitch [E] |
Yaw [R] |

Throttle [T] —

AUX1 |

Aux2 [N

Figure 13: BetaFlight pitch value when the drone is further than 5 feet from the AprilTag

Figure 14 shows what happens to the pitch value when the AprilTag is within 4 feet of the
camera.

Roll [A] | 1499

Pitch [E] | 1422

Yew Rl (e

Throtde [T) B 1019

AUX1 | 1019

Aux2 [1019 ,
Figure 14: BetaFlight pitch value when the drone is within 4 feet of the AprilTag

We verified that we can establish communication between the Arduino and Raspberry Pi via two
GPIO pins. It receives 2-bit digital signals correctly by printing the corresponding mode that the
signals represent (00, 01, and 10).

We verify that the RC receiver is receiving correct inputs from the remote control's RC
transmitter and throttle control [See Appendix B and Figure 20 for the Remote Control Unit] by
verifying it on the BetaFlight GUI]. Figure 15 shows what happens to the throttle value when it is
turned up from the remote control.

17

Figure 15: Throttle value when turning the throttle knob

Lastly, we verified that the integrated system of Arduino, Raspberry Pi and BetaFlight worked as
intended. As shown in Figure 16, BetaFlight is able to receive the preset signals from the
Arduino via PPM. When the command, sent from Arduino, is supposed to move the drone
forward, stay, and move the drone backward in that order, as we move the AprilTag from more
than 5 feet away from the camera to within 4 feet of the camera. There is an offset error around
a value of 20, which can be compensated by deducting this offset in the Arduino code to
decrease the error to below 1%.

- betaflight

1600 - commands from Arduino

1550 A
-
o
‘@ 1500 4

1450 A \

\
1400 - \
0.0 0.2 04 06 08 10

sample

Figure 16: Test result on Integrated system

18

4. Costs

4.1 Labor

Development of this project took place over a course of 12 weeks, with an average time of 8
hours/week/person. The estimated salary for a graduate student from ECE is $44/hour, and a
factor of 2.5 to account for equipment cost and overtime. The overall labor cost is $31,680
which is shown in Equation #.

3 students * $44/hour * 8 hours/week * 12 weeks * 2.5 (overhead included) = $31,680 (4.1)

4.2 Parts
The list of parts used in our project are shown in Table 1.

Table 1: List of parts

Item Description Vendor Quantity | Total Cost

STM32F405RGT6W STM32 microcontroller DigiKey 2 $29.88

BMP280 breakout Pressure sensor Amazon 1 $5

board

ICM20948 IMU Mouser 2 $11.82

Sparkfun ICM20948 IMU Amazon 1 $16

breakout board

Miscellaneous SMD 0805 capacitors and DigiKey - $15.45

capacitors and resistors

resistors

SSB43L-E3/52T Schottky diode DigiKey 3 $1.77

TLV76733DGNR 3.3 Vlinear voltage Mouser 3 $2.58
regulator

ECS-CTE-8.00-10-TR 8 mhz oscillator DigiKey 3 $0.81

B82464G4472M000 4.7 uH inductor Mouser 2 $3.72

LSM0805463V Blue LED DigiKey 3 $1.41

MIC5225-1.8YM5-TR 1.8V linear voltage regulator | DigiKey 3 $1.23

ADP2303ARDZ-5.0-R7 | 5V buck convertor chip Mouser 3 $9.84

19

PRPC040SACN-RC Pin headers DigiKey $1.80
Jumper cables - Amazon $7.98
SEN0304 Ultrasonic Sensor Mouser $12.90
SD1614T5-BSME Buzzer Mouser $2.50
0565790519 USB connector DigiKey $2.28
BSS138 MOSFET logic level shifter Mouser $1.41
JST-XH 3S 4 wire Battery cell voltage DigiKey $0.72
connector monitoring connector
PCB - JLCPCB §16
DJI F450 clone Drone Frame Amazon $20
Propellers - Amazon $13
Motors - Amazon 8§37
ESCs - Amazon $44
Battery - Amazon $34
NRF24 Transceivers - Amazon $9.49
Raspberry Pi - Amazon §70
Camera - Amazon $13
PDB-XT60 5V step-down Amazon $11.59

converter/power distribution

board
Total Cost of Parts $397.18

4.3 Total Cost

The total design and labor cost is show in Equation #.

Total cost = $31,680 + $397.18 = $32,077

20

(4.2)

5. Conclusion

5.1 Accomplishments

We successfully tested the AprilTag detection and distance calculations while signaling the
arduino the distances measured to then convert those numbers into values for the
microcontroller to adjust the drone when needed. We successfully simulated the flight of the
drone with all the subsystems connected without the use of the propellers to see if everything
was interfaced correctly. The pitch values were adjusted appropriately when the ArilTag was
varying distances from the camera, using the BetaFlight GUI, and the orientation of the drone
was successfully changed.

5.2 Uncertainties

Due to BetaFlight's IMU driver not supporting our IMU, we had to update the driver code to
match our IMU. When testing the IMU'’s gyroscope and accelerometer, there were spikes in the
data that should not be there when the drone is not moving and oriented upright. Therefore, the
flight of the drone was not perfectly stable and we inevitably crashed the drone while only
breaking the leg stands of the drone frame. Due to this, further testing of the flight of the drone
was halted because we didn't want any of our parts to break. Therefore, we were unable to test
the flight of the drone with the use of the AprilTag detection and distance algorithm to move the
drone forward or backward in the air.

5.3 Ethical Considerations

Since the goal of our project is to implement a new approach for the user to control the drone,
we assume that the action of the drone under ethical evaluation is based on the action of the
person controlling the drone. The most relevant codes of ethics for this project are IEEE Code of
Ethics #1 and #9 [7], which stresses the importance of ensuring the safety of the public and
their properties. Both the drone and its operator must follow the IEEE Code of Ethics and
develop safety protocols in case of failures such as communication failure, drone is out of
battery or controller malfunction. To mitigate such situations, our arduino code has a signal that
can detect if the RC receiver is disconnected from the protoboard. If this happens, it changes
the throttle value to 1400 which will lower the drone to the ground at a constant speed.

For the purpose of this project, we assume that the usage of the drone is recreational. Thus,
under Federal Aviation Administration’s (FAA) policies on Recreational Flyers [8], our project can
only be flown at or below 400 feet above the ground when in uncontrolled airspace. In addition,
under university policy Fo-05, in order to test our project on campus, we gained approval from
the Division of Public Safety by submitting a request to dpscomments@illinois.edu [9].

Usage of Li-lon batteries also raises several safety concerns [10]. First, they need to be stored at
room temperature and not under direct sunlight or other heat sources. Second, Li-lon battery
cells should never be stored fully charged.

21

Due to the high current applied to the motors, we also need to follow the safety rules regarding
lab fire safety and electrical safety. To mitigate potential hazards while testing, we tested
without the propellers on the drone until we were able to test it outside once it was ready to fly.

5.4 Future Work
The software issue with the IMU driver must be debugged and resolved. The gyroscope
sometimes did not calibrate on initial bootup, and this happened more times than not. After
doing research on what IMU to use, this was not the right one to use as it produced too much
noise. Figure # shows the gyroscope’s measurements when the drone is not moving and
positioned upright.

Figure 17: Gyroscope reading when drone is upright on the ground

Additional PID tuning needs to be applied in BetaFlight to adjust each axis of the drone.

An ultrasonic sensor subsystem would also be necessary for obstacle avoidance to mitigate the
potential of crashing into an object during flight.

To add to the AprilTag detection, angle detection can be implemented. This can then signal the
drone to rotate based on the angle the AprilTag is rotated using the yaw axis in BetaFlight. We
could also add additional AprilTags which will signal the drone different commands. For
example, make the drone spin in a circle or fly the drone up a certain distance and have it come
down the same distance.

22

References

[1] E. Magid, 2018. ARTag, AprilTag and CALTag Fiducial Marker Systems: Comparison in a
Presence of Partial Marker Occlusion and Rotation. [online] ResearchGate. Available at:
https://www.researchgate.net/publication/318871910_ARTag_AprilTag_and_CALTag_Fiducial_
Marker_Systems_Comparison_in_a_Presence_of_Partial_Marker_Occlusion_and_Rotation
[Accessed 4 March 2021].

[2] J. McCorvey, "DJI's Spark Is The First Drone You Can Control With Hand Gestures", Fast
Company, 2021. [Online]. Available:
https://www.fastcompany.com/40525592/djis-spark-is-the-first-drone-you-can-control-with-han
d-gestures [Accessed: 04- Mar- 2021].

[3] K. Natarajan, T. D. Nguyen and M. Mete, "Hand Gesture Controlled Drones: An Open Source
Library," 2078 1st International Conference on Data Intelligence and Security (ICDIS), South Padre
Island, TX, USA, 2018, pp. 168-175, doi: 10.1109/ICDIS.2018.00035.

[4] D. Etherington, "TechCrunch is now a part of Verizon Media", Techcrunch.com, 2021. [Online].
Available:

ur gg—fgr—aggu gzg—ang—gpgglﬁg navigation/ [Accessed 04- Mar- 2021]

[5] betaflight/betaflight: Open Source Flight Controller Firmware
https://github.com/betaflight/betaflight

[6] A. Rosebrock, "AprilTag with Python - PylmageSearch’, PylmageSearch, 2021. [Online].
Available: https://www.pyimagesearch.com/2020/11/02/apriltag-with-python/ [Accessed: 05-
May- 2021].

[7] "IEEE Code of Ethics", leee.org, 2021. [Online]. Available:
https://www.ieee.org/about/corporate/governance/p7-8.html [Accessed: 04- Mar- 2021].

[8] "Recreational Flyers & Modeler Community-Based Organizations", faa.gov, 2021. [Online].
Available: https://www.faa.qov/uas/recreational_fliers/ [Accessed: 04- Mar- 2021].

[9] "Aerial Activities Over, On, or In Campus Property — Campus Administrative Manual”,

Cam.illinois.edu, 2021. [Online]. Available: https://cam.illinois.edu/policies/fo-05/ [Accessed:
04- Mar- 2021].

23

[10] "Lithium-lon & Lithium Polymer Cells and Batteries Safety Precautions”,
Ultralifecorporation.com, 2021. [Online]. Available:
https://www.ultralifecorporation.com/PrivateDocuments/BR_Lilon_Safety_Precautions.pdf
[Accessed: 04- Mar- 2021].

24

Appendix A - Requirement and Verification Table

to change the pitch value to
1600 when the AprilTag is
above 5 ft away from the
camera and 1400 when
below 4 ft away with an error
rate below 3%.

camera and below 4 ft away from the camera
and record the values on BetaFlight GUI.

Requirement Verification Verified
Measuring output voltage Use a digital multimeter and connect it to the | Yes
fromthe 3V and 5V step output wire from each breakout board.
down converters within + 5% | Determine if the measured voltage is 3 V and
5V respectfully for each board.
Detect the AprilTag in real Connect a wire from pin 16, GPIO 23,10 a Yes
time breadboard in series with a blue LED and
ground. Connect another wire to pin 18, GPIO
24, to a breadboard in series with a buzzer
and ground. Hold the AprilTag in front of the
camera and see if the LED lights up.
Determine the distance the Position a measuring tape from the camera Yes
AprilTag is from the camera and lengthen it to 10 feet. Set up the same
within 3% error LED circuit used in the detection for AprilTag
verification. Hold the AprilTag at increments
of 1 feet away from the camera and compare
the distance calculated to the actual distance
and calculate the error percentage.
Must be able to detect Connected IMU to an Arduino and set Yes
rotational movement at max | gyroscope sensitivity to 1000 dps. Move IMU
1000 degrees per second with the same time as moving a smartphone
with an accuracy of 15%. with an IMU and compare data.
The STM32 FPU should be CPU load under the Betaflight GUI is under Yes
able to make fast calculations | 15% with the PID loop running.
on the sensor data to go
through the PID control loop
and send commands to the
ESC at 9 kHz
The Betaflight should be able | Move the AprilTag to above 5 ft away from the | Yes

25

Appendix B - Testing Procedure Diagrams

Actual
Distance

-

Measured
Distance

0.99

1.97

2.95

3.94
4.85

5.85
6.80

© o N o 0 M W N

7.77
8.75

a
o

9.70

Figure 18: Pinout of the Raspberry Pi

3V3 power

GPIO 2 (SDA)

GPIO 3 (SCL)

GPIO 4 (GPCLKO)
Ground

GPIO 17

GPIO 27
GPIO 22

3V3 power

GPIO 10 (MOSI)
GPIO 9 (MISO)

GPIO 11 (SCLK)

Ground

GPIO 0 (ID_SD)
GPIO 5

GPIO 6

GPIO 13 (PWM1)
GPIO 19 (PCM_FS)

GPIO 26

Ground

5V power

5V power

Ground

GPIO 14 (TXD)
GPIO 15 (RXD)
GPIO 18 (PCM_CLK)
Ground

GPIO 23

GPIO 24

Ground

GPIO 25

GPIO 8 (CE0)

GPIO 7 (CE1)

GPIO 1 (ID_SC)
Ground

GPIO 12 (PWMO)
Ground

GPIO 16

GPIO 20 (PCM_DIN)
GPIO 21 (PCM_DOUT)

Actual Distance vs Measured Distance

== Actual Distance (ft)

= Measured Distance (ft)

Figure 19: Actual distance vs measured distance

26

:O AU e U A U
‘,’c O OO OO COY OGO
ﬁh&OOOOOO [vRvRe

oo CRORORORORCRORC | P s
o

VC iU FORORORCRORCRCRCE GO
2&
<

|
TR

FIme CIgO0OONTC
=XCOA0000Jd |
ZVICOOQO 00O
000 00
)OO0 0O
QUOOU
COQOU U

QOOOOQUONL LU0 L0Q0QO0OAQQ
SeQQUOOOOO! QQQUQULUQAQQO

Figure 21: Communication system and external IMU on breakout board

27

Appendix C - Schematics and PCB

STM32 Microcontroller

U1A
STM32
STtz torz
Qo BOOIO__ 60,] gooro
. - e - PROMWKUP et
T i
Clz)l u F I VR, NRST g,:; <—% .
c13\|4.7uF 31 ESC2___ 26.) pgo PAs |e3l—ESC4
{ciz T | a7 | VEAPL ESCL___ 2450 ppy Pas |22 SPLCS
I VeaR_2 BOOTL 28, ppypooTL pAs el SPI_SCK
C7\| uF 19 2%51 pB10 Pa6 [<$2—SPI_MISO
ceY [T /| 32 | JPD-2 381 pan o |e22 SPI_MOSI
CoOY [T | 45 | VPP3 2] pp12 Pag [<dl -
b [SORYEN]|) \v/ggﬂ %“(—) PB13 PA9 -(—é%
ci | i 13 vopa 5| poid ol DM
18 LED3 PB3____ 5% pgg P12 e DP
18 vsse 5ol pos PAls |28 SWDIO
1 | VS8 5! pes PAl4 <82 SWDCLK
VEsA 25! pBs pats <2
- 21 ey
GND Lbs! pBe PC13 |eS—
LED? PPM%: PBY PC14/0SC32_IN <—%—
PD2 PC15/0SC32_OUT [«
pco i
33v vz PHO/OSC_IN pCl e
BOOTO PHL/OSC_OUT pcz (<30
» 5] o = PC3 (—}2—
223 2Zl Booto T P4 ;;5
gss & aav Pes (<2
NRST__| GND pC7 |28
pcs e
_les o BOOTL PCo e
-~ 2 1 GND PCl0 (<2
01uF © zg BOOT1 PCc1 <—%
g 33V pcio e
GND
Figure 22: STM32 Microcontroller
IC1
3.3VLDO
8
ouT N S 5V
SNS NC_2 e ,7 c5
NC_1 GND_2 —_—
_ _: 5 —
GND_1 en |51 TUF
[
L
=3

Figure 23: 3.3 V linear regulator

28

5V Buck Converter

Mini USB connector

S5VUSB
- X1
)
)
DM . R14
DR 29
==
22
GND

MINI-USB-32005-301

R

Figure 24: Mini USB Connector

Ccl
—_
0.1uF
U3
VBAT 5VBUCK
5 { rg EN L1
oy 2] un sw M
— . 4. 7uH
Tmul: EPAD E;ID
2 Ne
MoK 4
VWW PGOOD
R7
GND
L
GND
CR1
SSB43L

5VBUCK

C3

T~
A7uF

Figure 25: 5V buck converter

29

BOOTO: US4_ 5 PRESSURE & ESC 4

_ 2C 2 _ < _
00 GCREP @EEE0 C@REE

ES e

L IE*H:: i 3B [

| S———

RPI©

BAT_IN
SV SV

VBAT

5v

Figure 26: PCB layout top view without ground plane shown

30

