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Abstract

The Portable In-line Audio Equalizer (PIAE) is an eight frequency band audio equalizer that is intended to be

portable for everyday use. It can boost or attenuate each frequency band up to a magnitude of 10 dB, and allows

users to change those sound signatures in real time. Any media capable of listening (e.g. speakers, headphones) and

producing sound (e.g. mobile phones, computers) can interface with the PIAE as long as they support 3.5 mm audio

jacks. This report describes the design and functionality of the product, both in terms of its hardware and software.
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1 Introduction

1.1 Objective

There are varying preferences to equalization (EQ) in audio, whether it is through personal preference or

a need, such as helping people with a hearing impairment. Some media players do not have a built-in

equalizer nor do they allow for downloading EQ mobile apps. Therefore, users are unable to adjust the

sound signature of what they are listening to. Additionally, many pre-existing EQ devices are too large or

heavy to be portable.

The solution is the Portable In-Line Audio Equalizer. Using the data from a desired media player, the PIAE

uses signal processing algorithms to output audio data with a boost or attenuation at certain frequency

ranges. This device allows for equalization, and has the advantages of convenient everyday use.

1.2 Background

Hearing loss can come in different ranges. One form of hearing loss to consider is a “notch” hearing loss,

which is hearing loss at a certain frequency range [1]. In order to help with this type of issue, any desired

frequency range can be boosted by an audio equalizer when using a media player. There are also people

with personal preferences with sound signatures who use equalizers.

Some devices have built-in equalizers, like in computers and MP3 players, but that is dependent on the

specific version and brand. Equalizer mobile apps can also be downloaded, but that is not possible for older

devices, such as CD players.

Although portable audio equalizers exist, they typically have fewer operating ranges. Larger operating ranges

allow for more options for the user, as well as a greater ability for the user to fine-tune the emphasis on the

desired frequencies. This is especially important for users suffering from hearing loss. Commercial equalizers

can have eight band filters, but those devices are not usable in a casual setting [2]. Portable devices are

more convenient, but sacrifice performance by using fewer operating ranges [3]. The goal for the PIAE is

to maintain the performance provided by commercial equalizers while also providing usability for everyday

people.

The performance of an audio equalizer is not only restricted to operating frequencies, but also to latency.

If the latency introduced by the PIAE is too large, then users may prefer comparable products with lower

latencies [4]. This may drive down customer satisfaction and demand. Therefore, the PIAE is limited to

having a latency below 100 ms.

1.3 High-Level Requirements

• The PIAE must have a latency of less than 100 milliseconds.

• The PIAE should use eight frequency bands when constructing its filters, instead of the typical three

frequency bands. The frequency bands will be centered at the following frequencies measured in Hz :

[100, 250, 500, 1000, 2000, 4000, 8000, 16000].

• The PIAE must have a size of less than 16 x 12 x 6 cm for the device to be sufficiently portable.

1



1.4 Summary

This report begins by detailing the design of the PIAE. The design is broken up into subsystems, which

are further broken up into components. Each subsystem description includes a schematic as well as specific

component descriptions, which covers required specifications, mathematical equations associated with the

component, and software associated with the component. Secondly, the report details the design verifications

that were conducted for each component. These verifications ensure that the components and subsystems

work as expected. Then, the report enumerates the costs and parts necessary for this project. Finally, an

overview is provided concerning the accomplishments, uncertainties, ethical considerations, and future work

with respect to the project.
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2 Design

2.1 Block Diagram

Figure 1: A Block Diagram of the PIAE

The PIAE design has power, control, user interface, and audio input/output as the primary units. The power

module generates an adequate amount of voltage for the other modules to use. The audio input/output

module formats audio data accordingly, allowing other components to understand the data. Using the data

and desired filters that a user selects through the user interface, the control module generates filtered data.

This filtered data returns to the audio input/output module which is then outputted.

2.2 Power Subsystem

2.2.1 Rechargeable Battery

The lithium-ion battery provides power for the device. Although it interfaces exclusively with the on/off

switch, power is routed through the switch to the low-dropout (LDO) regulator and subsequently to the

rest of the circuit. This specific battery model was chosen because it supplies a voltage of 3.7 V, which is

relatively close to the circuit’s operating voltage of 3.3 V. This allows the LDO regulator to be far more
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efficient, according to Equation (1) [5].

Efficiency =
IOUT

IOUT + IGND
· VOUT

VIN
(1)

Efficiency ∝ VOUT

VIN

Efficiency ∝ 3.3

3.7

Efficiency ∝ 89.12%

Therefore, the voltage of the battery ensures excellent efficiency in the LDO regulator. Furthermore, the

battery has a capacity of 2500 mAh. When it is fully charged, the battery allows for a lifetime of at least

three hours, which is shown in Equation (2).

Battery Life =
Battery Capacity (mAh)

Load Current (mA)
(2)

Battery Life ≈ 2500 mAh

791.1 mA

Battery Life ≈ 3 h

The load current in Equation (2) is derived from Table 1 below. The lifetime is reasonable and procuring a

battery with greater capacity may compromise the portability high level requirement due to a larger battery

being needed. Additionally, improving efficiency when using the audio codec and the microcontroller unit

(MCU) helps to increase the uptime of the PIAE.

Table 1: Max Current for Each Component

Name Max Current (mA)

Audio Codec Chip 150

STM32 Microcontroller 600

LCD Screen 41.1

Total 791.1

2.2.2 On/Off Switch

The on/off switch is connected to the battery, which allows it to power the PIAE on and off. The output of

the switch is connected to the voltage regulator.
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2.2.3 Voltage Regulator

The voltage regulator ensures that the voltage supplied to the circuit is maintained at 3.3 V ±5% and has

an output current of 800 mA ±5%. When the switch is on, the regulator takes the battery output of 3.7 V

and converts it to a usable 3.3 V, which powers the rest of the device.

2.2.4 Design Procedure

The rechargeable battery is connected directly to the on/off switch to prevent the constant draining of the

battery. This makes the PIAE more sustainable. The output of the switch is connected to the voltage

regulator since the power must be adjusted for the other components to be able to use it.

2.2.5 Design Details

A Single Pole Double Throw (SPDT) switch is chosen, but used as a Single Pole Single Throw (SPST)

switch by leaving one of the outputs unconnected and the other output connected to the input of the voltage

regulator. Many available SPST switches are too small to comfortably be used by a user. As a result, the

SPDT switch is used.

Considering the battery output of 3.7 V, the LDO regulator is necessary as it is effective with regulating

voltages that are close to the desired 3.3 V output. As shown in Appendix B, the regulator has capacitors

connected to the input and output in order fix the output voltage at 3.3 V.

2.3 Control Subsystem

2.3.1 Microcontroller

The microcontroller filters the I2S audio data from the audio codec chip according to the currently selected

EQ settings. For filtering, the microcontroller uses eight frequency bands in the digital signal processing of

the audio data within a frequency range of 100 Hz to 20000 Hz. Additionally, the unit controls the screen

display so that the currently selected EQ setting, as well as other possible EQ settings, are shown. Therefore,

the microcontroller ensures that users can quickly and accurately change EQ settings to their preference.

The STM32 MCU provides many advantages as opposed to other microcontrollers. It has 1 MB of RAM

and can compute complex fast Fourier transforms (FFT) quickly [6]. Also, it is highly accessible as it allows

for users to program in C/C++, allowing for ease of use.

2.3.2 Design Procedure

At the broadest level, the control subsystem is designed to execute all relevant filtering in the frequency do-

main. Data arrives via I2S from the audio codec chip’s analog to digital converter (ADC) and is transformed

into the frequency domain. Once it is filtered, the data then transforms back to the time domain and is sent

through I2S to the digital to analog converter (DAC) in the audio codec. This approach requires filters to

be constructed in the frequency domain.

An alternative to this frequency-centric approach is to conduct all filtering in the time domain, but this

would require convolutions between the audio data and time domain filters, which is often far slower than

executing operations in the frequency domain [7].
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Finally,the short-time Fourier transform (STFT) and its inverse (ISTFT) are used to transform the audio

data, as well as the FFT to accomplish the former feat and to construct the filters [8], [9].

2.3.3 Design Details

In order to filter, we must first construct eight frequency band filters. These eight filters are drawn from

three types - a bell filter, a high shelf filter, and a low shelf filter. The high shelf filter is only used for the

highest frequency band, and similarly, the low shelf filter for the lowest frequency band. Bell filters are used

for every other frequency band, and cannot be used for the highest or lowest frequency because their bell

shape prevents them from properly boosting or attenuating frequencies at the very edge of the frequency

range. The equation for each filter can be found in Reference [10] - these equations are omitted here because

they are extensive and do not provide much in addition to the original source. Numerator and denominator

coefficients are constructed as follows in Equation (3) for each filter.

A,B ∈ RN , where N refers to the size of the fast fourier transform (FFT) (3)

A =
[
a0 a1 a2 0 0 ... 0

]
B =

[
b0 b1 b2 0 0 ... 0

]
a0, a1, a2 and b0, b1, b2 are all coefficients described in Reference [10]. In order to produce each filter, we

take the Fourier transform of these vectors (A and B) and divide FFT(B) by FFT(A) (
FFT (B)

FFT (A)
). Once

the MCU powers up, we can immediately construct all 8 filters and store them in a data structure, such as

an array, for later use.

To build the filters, we use S factors and bandwidths of [1.0, 0.75, 0.75, 0.75, 0.75, 0.75, 0.75, 1.0]. Each

number in this list corresponds to the frequency of the same index in the list of frequencies in the high-

level requirements, e.g. 1.0 to 100 Hz in the first index. S factors are used for the high shelf and low

shelf filters, whereas bandwidths are used for the bell filters. Bandwidths were intended to represent the

number of octaves between midpoint gain frequencies, but experimentally, were shown to be inaccurate for

this purpose. Instead, bandwidths provide a vague sense of how wide each bell filter would be. Similarly, S

factors determine how ’steep’ the shelf filters are. We did not meticulously choose bandwidth and S factor

values because minor adjustments to them produced no real effect on equalization. Therefore, we chose

them to balance between preventing ’valleys’ between center frequency gains and attenuations and reducing

inaccurate gains and attenuations produced as a result of the filters interfering with each other.

Filtering the data itself is a more involved process. In order to execute the STFT, we must split the data

into overlapping frames, separately window the resulting segments, and take the FFT of these windowed

segments [8]. Similarly, to execute the ISTFT, we reverse the process. We must take the inverse FFT of each

segment, undo the windowing, and then overlap each segment appropriately and add them. Given the STFT

of the audio data, we merely have to multiply each frame with the product of the constructed filterbank

across all frequency bands. The entire algorithm, including the pipelining of audio data, is depicted below

6



in Algorithm 1.

Algorithm 1: Psuedo-algorithm of the Filtering Process

N = fft size;

hop =
N

2
(STFT frame overlap);

A = n ·N (audio buffer length);

n frames = b (A−N)

hop
c + 1;

F = initialize filterbank(gains, center frequencies, bandwidths, num bands=8);

slice len = A-N ;

win a = Hann window(N);

input signal = 01xA;

while True do

input signal[N → A] = Receive from I2S(slice len);

for n = 0 → n frames-1 do

X[n] = FFT(input signal[n · hop → n · hop + N ]·win a);

end

X = X · F ;

filtered signal = 01xA;

norm = 01xA;

for n = 0 → n frames-1 do

filtered signal[n · hop → n · hop+N ] += IFFT(X[n])·win a;

norm[n · hop → n · hop+N ] += win a 2

end

filtered signal /= norm;

Send to I2S(filtered signal[hop → hop+slice len]);

input signal[0 → N ] = input signal[slice len → A];

end

There are a couple of things to note. Firstly, the Hann window can be calculated as follows in Equation (4),

which is derived from Reference [11].

w(n) = 0.5(1− cos(2π n

N − 1
)) 0 ≤ n < N (4)

Secondly, variable n, which is used to calculate A, can be any integer n ≥ 2.

For the demo, our Fourier transform length was 512, overlap between frames for the STFT was 256, sampling

rate was 44000 Hz, and total buffer size for the audio input was 1024 (n=2). The total buffer size is the

minimum size needed for the STFT (Fourier transform length · 2).

2.4 User Interface Subsystem
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2.4.1 Design Procedure

The user interface subsystem allows users to select their desired EQ settings. The PIAE gives users the

options of adjusting the eight frequency bands. After selecting the frequency band option, the system gives

the option to set the decibel level according to the following values : [ -3, -2, -1 , 0 , +1 , +2, +3 ]. These

levels are selected for convenience, and it is a simple change to allow up to a magnitude of 10 dB as described

in the Abstract. These options provide users a wide range of options to customize their audio according to

their preferences. An example is users who like their bass boosted. They could boost the 250 to 500 Hz

frequency range by 10 dB and that would increase the bass in their audio.

In order to fit the portability requirement, we use a 20 cm x 4 cm LCD screen, as well as push buttons for

the selection of a setting and for toggling between options.

2.4.2 Design Details

The LCD screen relies on I2C protocols for communication. In order to initialize the device, a buffer of

64 bytes is allocated on the microcontroller’s memory module at an address specified by the programmer.

Then, a signal is sent via inbuilt MCU functions to the screen for it to enter write mode. The write mode

indicates to the screen that it should scan the memory location specified by the programmer and write the

buffer to screen display. To write to the screen, we create a character buffer with our desired message that

we want to display and place it at the memory address that was specified earlier. In particular, we must be

careful about overwriting the allocated 64 bytes on the stack as it could interfere with the microcontroller’s

inbuilt functions. To prevent this issue, we place a memory fence around the allocated memory and cause

the program to throw an error if the provided character buffer went out of bounds of our allocated memory.

The navigation system allows for users to cycle between options and select their desired frequency and

decibel levels. The user interacts with the MCU through two push buttons, one for cycling between the EQ

options and another to select the option. When pushed, the push buttons send 3.3 V to a specified pin in

the microcontroller. The pin must be programmed to be interpreted as an external interrupt, which allows

it to read the 3.3 V as a signal from the user. In software, an interrupt handler is written to deal with the

different button presses. For each of the buttons, a global flag is set according to the button pressed, and

we can take action based on the flag raised in software.

To put these two parts together, we used the following workflow for the PIAE. First, we enter an initialization

sequence and allocate the memory on the heap. If no error occurs, we move on to the user settings selections.

The user first selects the frequency option. We enter an infinite loop that is only broken if the global flag

for the selection option has been raised. We then display the available frequencies band options, with the

default option at 100 Hz. Within this loop, the options can be cycled through until the user lands on their

desired option. Once the user hits the select button, the loop breaks and their frequency setting is saved.

Next, the user selects the decibel level. We enter a similar loop and can cycle between the decibel options,

with the default option being 0 dB. When the user hits the select button, we once again break out of the

loop and save the selected decibel value. Then, the user is given the option of re-selecting their settings or

continuing on with their current selection. If the user chooses to re-select, we enter the sequence after the

initialization again. However, if the user continues on, we reconstruct the filters with the new gains and

begin to synthesize audio according to the user preferences.
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2.5 Audio Input/Output Subsystem

2.5.1 Design Procedure

The audio input/output subsystem is responsible for external connections, routing input audio from the

audio source to the MCU, and routing filtered audio from the MCU to the listening device. As such, the

subsystem comprises of the CS4245 audio codec chip, 3.5 mm audio jack connectors, and all associated

passive components needed for the audio codec chip’s operation. Devices connect to the PIAE through the

audio jack connectors via audio jacks. Meanwhile, the ADC and DAC of the audio codec are connected to

the MCU through I2S, whereas the codec itself is connected to the MCU through I2C.

2.5.2 Design Details

As shown in circuit schematic of Appendix E, the CS4245 chip is located in the middle, whereas the two 3.5

mm connectors can be found at the bottom left and top right.

We changed our audio codec chip from the TLV320AIC3204, shown in our design proposal, to the CS4245.

This is because the former chip was in a leadless package, which makes it difficult and riskier to solder.

Without sacrificing much performance, we chose to use the CS4245 instead. The CS4245 has almost identical

features, except it does not feature PowerTune technology which assists in decreasing power consumption

[12], [13].

We chose the CS4245 for many reasons. Firstly, the chip can run on 3.3 V, which is the output of the LDO

regulator in our circuit [12]. Secondly, the chip can sample stereo (2 channels, as with headphones) data

up to 192 kHz, which is well above the Nyquist rate of 40000 Hz required where the Nyquist rate is the

minimum rate needed to sample a signal while losing no information [14]. The 40000 Hz is derived from the

largest frequency we equalize, 20000 Hz, and Equation (5).

Nyquist Rate = Bandwidth · 2 (5)

The needed bandwidth is 20000 Hz, and the resulting Nyquist rate is 40000 Hz.
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3 Design Verification

3.1 Power Subsystem

A verification for the power module is the battery lifetime. The battery lifetime must be at least 3 hours.

The fully charged battery was connected to resistors with the equivalent resistance of the circuit. By checking

the battery’s output, the voltage showed to stay above 3.3 V for at least 3 hours, as shown in Figure 2.

Figure 2: Lifetime of the Rechargeable Battery

To verify that the voltage regulator properly converts the battery output to 3.3 V ±5%, various voltage

values were inputted into the regulator and the output voltages were read. All of the outputs were within

the ±5% tolerance from 3.3 V, as shown in Table 2, so the verification was successful.

Table 2: Voltage Regulator Output with Varying Input Voltages

Voltage Regulator Input Voltage Regulator Output

5.0 V 3.29 V

4.0 V 3.22 V

3.3 V 3.18 V

3.2 Control Subsystem

Refer to the R&V table in Appendix A.6 for the control subsystem requirements and verifications. No

requirement was verified and that is primarily because we were unable to get the audio codec chip to work,

as described in Section 3.4. As a result, we could neither receive data from the audio codec - invalidating the

first requirement - nor send data to it - invalidating the second. Nonetheless, we were able to demonstrate

during the demo that the MCU is capable of holding more than 4000 bytes and of filtering a toy signal

correctly. Therefore, we verified that the MCU works to specification, and had the audio codec chip been

working, it is likely that we would have succeeded in verifying our requirements.
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In Figure 3 and Figure 4, we show that the on-board MCU produced the same results as the C code running

on a laptop. The toy signal that was filtered was a linear chirp that runs from a frequency of 0 Hz to 22000

Hz in 5 seconds. The correctness of the filtering was verified by executing the same algorithm using Python

libraries on a laptop computer, and the details of this process are omitted for the sake of brevity.

Figure 3: Results of C code run on a laptop

Figure 4: Results of C code run on MCU

Each round refers to a multiple of output length 512 (A - N = 1024 - 512). Therefore, index 482 round 2

actually refers to index 512 + 482 - 256 = 738. The first and last 256 indices of the buffer in each round are

filled with half-transformed data due to the nature of the STFT and ISTFT, and are thus ignored.

Finally, we must address the latency of the filtering itself. Although this was not codified in the R&V table,

it is an important aspect of the control subsystem. Given the parameters during the demo, our main MCU

program loop has to be faster than 11 ms, as shown below in Equation (6).

1

44000 samples/second
· 512 samples · 1000 milliseconds/second = 11.6 milliseconds (6)

During the demo, we showed that our filtering itself ran in 19 ms, thus being far too slow for any other

necessary operations to be executed, let alone to meet the requirement of 11 ms. However, if we set n = 6

(refer to Algorithm 1), our filtering only requires 49 ms as opposed to a total loop time of 58 ms. This is

shown in Equation (7).

1

44000 samples/second
· 2560 samples · 1000 milliseconds/second = 58.2 milliseconds (7)

This means that all other operations would have to be less than 9 ms, which may or may not be unreasonable

depending on how long it takes to receive data from the audio codec chip. Nevertheless, that would mean

that the filtering does meet the time constraints, which speaks to the control subsystem’s success.
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3.3 User Interface Subsystem

To verify that the screen subsystem worked, we wrote a character buffer of size 64 bytes to the screen. If

the screen display shows the character buffer, we have been successful. The LCD screen is shown in Figure

5 with each of our names and it shows our ability to successfully write to the screen.

Figure 5: PCB A Board Design

Next, we verified that the buttons and interrupts worked. In software, we first wrote an infinite loop that

can only be broken by an interrupt, and then a print statement to write after that infinite loop. In theory,

the statement is unreachable unless we are able to break out of the infinite loop. Since our interrupt was

successful, we were able to break out of the loop and reach that print statement.

3.4 Audio Input/Output Subsystem

Unfortunately, we were not able to verify any of the requirements for the audio input/output subsystem.

These requirements, along with their corresponding verification procedures, are located in Appendix A.8.

Verifications failed because we inadvertently shorted the audio codec chip during breadboarding, most prob-

ably due to a flaw in the circuit design. As a result, the chip was rendered unusable, and we were unable to

test the functionality of the entire subsystem. If our product is to ever be viable for commercial release, this

is the first issue with our project we must remedy.

3.5 Portability

One of the high level requirements is for the PIAE to be portable. This is accomplished through having

a dimensions upper limit of 16 by 12 by 6 cm. Physical designs were created, as shown in the figures in

12



Appendix F. Figures 5 and 6 show the board designs for the PCBs that are in the physical designs. The box

used for the PIAE was measured to be within the limitations.

Figure 6: PCB A Board Design
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Figure 7: PCB B Board Design
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4 Cost

4.1 Parts

All parts used for the design of the PIAE are listed in Table 3 along with their associated unit prices.

Table 3: Cost of Parts

Name Manufacturer Part Number Quantity Unit Price ($)

USB LiIon/LiPoly

Charger
Adafruit 259 1 12.50

USB 2.0 Cable

A-Male to Mini-B

3 Feet

AmazonBasics B00NH13S44 1 2.00

3.5 mm Jack Connector

SMD
CUI Devices SJ-43514-SMT-TR 2 1.05

Audio Codec Cirrus Logic CS4245 1 6.43

Male to Male 3.5 mm

Cable 4 Conductor
YCS 4330104966 1 5.97

Microcontroller STMicroelectronics STM32H743VIT6 1 12.29

DIP Switch CUI Devices DS04-254-2-01BK-SMT 1 0.70

Voltage Regulator

3.3V
STMicroelectronics LD1117V33 1 0.55

Li-Ion Batteries Adafruit 328 1 14.95

Mini 2-Axis Analog

Thumbstick
Adafruit 2765 1 2.50

Tactile Button

SMD (12 mm)

SparkFun

Electronics
COM-12993 1 0.60

Mini Power Switch

SPDT

SparkFun

Electronics
COM-00102 1 1.50

SerLCD 20x4
SparkFun

Electronics
LCD-16398 1 25.00

Micro USB Type B

Connectors
Amphenol FCI 10104110-0001LF 1 0.78

Miscellaneous

Components

(resistors, capacitors,

etc.)

— — — 7.50

Total — — — 94.32

15



4.2 Labor

We estimated that the average salary of a graduate in Electrical Engineering is $35 per hour. Furthermore,

the three group members spent an average of ten hours a week on the project. Therefore:

Total Labor Cost = 3 people * $35/hour * 10 hours/week * 9 weeks * 2.5 = $23625
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5 Conclusion

5.1 Accomplishments

Two of the high-level requirements were met; we were able to use the eight enumerated frequency bands for

the PIAE’s filters, and we were able to meet the dimensional requirements. Furthermore, the filtering of the

data is correctly executed by the current software, the power system is able to supply adequate voltage for

three hours to the device, and the user interface subsystem works as intended. With perhaps a few minor

touch-ups, customers will be able to easily and intuitively select a desired frequency band and increase its

corresponding gain. Finally, our device was successfully housed in an enclosure that reduces the chance of

component damage due to occurrences like weather hazards.

5.2 Uncertainties

Unfortunately, we were not able to verify many of our requirements. First and foremost, we were unable

to get our audio codec chip working, which means that we do not know whether our design of the Audio

Input/Output Subystem is successful. This is a critical component of our project, as it is a prerequisite

to any filtering itself. The audio codec chip’s failure in turn meant that we were unable to verify any of

the requirements of the control unit, and although we are certain the data pipelining works with toy data,

we need to verify whether it works with real audio data. We were also unable to meet the first high-level

requirement as well, since we were unable to document the latency of the audio codec chip’s operations as

well as the latency of reading from the chip through I2S, which factor into the 100 ms in the requirement.

Secondly, we are unsure of whether our filtering in software is fast enough to meet the time constraint imposed

on the entire software loop by the high sampling frequency. Although the filtering algorithm can meet this

constraint with certain parameters, we have not been able to verify that other operations in tandem, such

as reading in data through I2S, are fast enough to satisfy the constraint.

5.3 Ethical considerations

Our ethical considerations extend firstly to issues with volume control. Audio at extremely loud volumes

damages human hearing over time [15]. The IEEE Code of Ethics requires us “to hold paramount the...

health and welfare of the public” [16], and therefore, the PIAE should not damage our user base’s hearing

without their knowledge. To this effect, we had planned to limit the volume of the PIAE’s output audio,

to clip the volume at 100 dB and to warn users that listening to sound louder than 75 dB could damage

their hearing [15]. However, we did not have enough time to implement these features. Therefore, we would

either need to halt the production of our product until both the aforementioned uncertainties are resolved

and these safety features are implemented, or we would need to release an instruction manual or warning to

users with the product. The manual or warning would inform users that boosting certain frequency ranges

in their music may increase the volume to unsafe levels.

We are also concerned with the power unit. Lithium batteries, which are used for the power unit, may

produce fire or explode when they are used incorrectly or damaged [17]. To mitigate this, the batteries we
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are using come with protection circuitry that prevent over-charging, under-charging, and output shorts [18].

Nevertheless, we could also include such information in any manual or warning issued to users - specifically

asking them not to allow the device to come into strong collisions, such as those caused by throwing or drop-

ping the device. Finally, the housing compartment for the device affords some protection, as any explosion

would first have to penetrate the compartment before damaging anything else.

5.4 Future work

Aside from fixing the problems with our device, we also envisioned improvements to the speed of the filtering,

the user interface subsystem, and the portability of the device. Furthermore, we could increase the number

of frequency bands from eight to ten. This increase is relatively simple to implement in software, and would

allow users to more finely tune their music to their preferences or needs.

We can improve the speed of the filtering in one of two ways. Either we can optimize the code that we

currently have, or we can move the filtering to a Digital Signal Processor or to hardware, like to a Field

Programmable Gate Array. The former suggestion is unlikely to work, because we used much of the Arm

Digital Signal Processing functionality for the filtering code and little original code of our own, which indicates

that the MCU itself might be too slow. Therefore, the latter solution is more promising.

Although the user interface subsystem is adequate, we could further improve it by including a more advanced

screen. Currently, we are using 20x4 LCD screen, whereas we could be using a screen with a much higher

resolution such as 128x64. This would allow for much more detailed visuals, for instance displaying each

frequency band as a graphic rather than in text. In turn, users would be able to more quickly understand

what gain each filter currently implements, rather than being forced to scroll through every frequency band

to do so.

Finally, despite meeting the high-level requirements for dimensionality, the device is slightly uncomfortable

to put into one’s pocket. Specifically, the enclosure is quite tall, which means it is likely to press on the

top of a pocket, and protrude visibly. Nevertheless, the product fits inside the average pocket, making the

size a good base to work with [19]. Therefore, in order to increase commercial success, we would need to

investigate some method of shrinking the height of the product to fit the average pocket.
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Appendix A Requirement and Verification Table

Table 4: Requirements and Verifications of the Rechargeable Battery

Requirement Verification Verification
status (Y

or N)

1. The battery must supply +3.7 V
+15%/-5% power.

1. To check that the battery has an
output voltage in the acceptable
range, we will do the following:

(a) Ensure that the battery is fully
charged, reading +4.2 V using
a DMM across JST pins.

(b) Let the battery power the cir-
cuit for 30 minutes.

(c) Measure the voltage across the
JST pins using an oscilloscope
to verify that the voltage is
+3.7 V +15%/-5%.

Y

2. The lifetime of the battery is at least
3 hours ±5%

2. If measurement is not possible
at a given time, simply turn off
the PIAE and turn it back on
when measurement becomes possi-
ble again. To measure how long the
device lasts when it is on, we will do
the following:

(a) Ensure that the battery is
fully charged, reading any-
where from +4.2 V to +3.7 V
using a DMM across JST pins.

(b) Let the battery power the cir-
cuit and begin a timer.

(c) Measure the voltage across the
JST pins of the battery every
30 minutes using a DMM, re-
ducing the interval to 10 min-
utes after 2 hours and 30 min-
utes.

(d) When the voltage of the bat-
tery is less than +3.3 V, record
the time elapsed, and verify it
is at least 3 hours ±5%.

Y
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Table 5: Requirements and Verifications of the Voltage Regulator

Requirement Verification Verification
status (Y

or N)

1. The voltage regulator should regu-
late the output voltage of the bat-
teries to 3.3 V ±5% and maintain
an output current of 700 mA ±5%.

1. Use a 3.3 V voltage regulator IC
chip is to ensure that regardless
of the battery output voltage, 3.3
V will be supplied to the STM32
microcontroller so it can operate
safely. We will also check that 800
mA will be outputted from the reg-
ulator. We will verify the chip as
follows :

(a) Connect a variable voltage
source in series with our IC
chip input pin.

(b) Connect the ground pin to the
appropriate ground in the cir-
cuit.

(c) Connect a resistor in series
with the output of our IC chip.

(d) Connect probes across the re-
sistor to check the voltage drop
across the resistor.

(e) Start the variable voltage
source at 3.3 V. Increase the
voltage and check if the voltage
across the resistor. If it is 3.3
V ±5% consistently, we have
been successful.

(f) Use a DMM to measure the
current that the regulator is
outputting in the PCB, and
verify that it is 800 mA ±5%.
If our current is within this
range, we are successful.

Y
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Table 6: Requirements and Verifications of the Control Subsystem

Requirement Verification Verification
status (Y

or N)

1. The microcontroller must be able to
receive and store audio data of size
4000 bytes incoming from the audio
codec chip.

1. To check if the microcontroller re-
ceives audio data from the audio
codec chip, we will do the following:

(a) Load the audio codec driver
into the microcontroller flash
memory.

(b) The power module supplies an
appropriate amount of power
so the microcontroller is oper-
ational.

(c) Plug the audio source into the
line-in audio jack and start
sending the data.

(d) Verify that the data is acces-
sible in memory. stored in
the appropriate address speci-
fied by the audio codec driver.

N

2. The microcontroller must be able to
output modified audio data through
the audio codec.

2. To check the microcontroller is able
to modify and output audio data,
we will do the following:

(a) Power on each device and
transmit audio data to the mi-
crocontroller as specified by
Process 1.

(b) Access audio data stored in
memory address specified by
audio codec driver.

(c) For each frequency band, shift
the decibel value by precisely
+5 dB using the navigation
system.

(d) Plot the FFT of both the origi-
nal signal and the modified sig-
nal and compare. If the plots
match a +5 dB shift, we have
modified the signal correctly.

(e) Transmit the data through the
headphone jack in the PCB to
a speaker to verify that the au-
dio is being output through the
microcontroller.

N
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Table 7: Requirements and Verifications of the User Interface Subystem

Requirement Verification Verification
status (Y

or N)

1. The screen must display a maxi-
mum of 80 characters.

1. Check the LCD screen can display
80 characters in the following man-
ner :

(a) Connect the microcontroller
and the LCD screen

(b) Create and run a script in the
microcontroller that makes the
screen display 80 characters.

(c) Create and run a script in the
microcontroller that makes the
screen display 81 characters.

(d) If the screen successfully dis-
plays 80 characters with the
first script, but unsuccessfully
displays 81 characters with the
second script, then the verifi-
cation is a success.

Y

Continued on next page
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Table 7 – continued from previous page
Requirement Verification Verification

status (Y
or N)

2. The thumbstick must change the
screen display, depending on what
direction it is pushed, and the cur-
rent screen display must be selected
by the push button.

2. Check that the thumbstick changes
the display in the following way:

(a) Connect the microcontroller,
the thumbstick, the push but-
ton, and the LCD screen ap-
propriately

(b) Create a script in the micro-
controller which can create five
different displays depending on
the thumbstick input. Each
display must have two unique
characters, one being a num-
ber for the x-direction and
the other being a letter for
the y-direction. The first dis-
play will be the starting dis-
play. The other four display
options must correspond to the
four directions of the thumb-
stick. The current display
should show the two unique
characters of all currently se-
lected displays, if any.

(c) Push the joystick in each cor-
responding direction.

(d) Select each display with the
push button

(e) The verification is successful if
all combinations of settings are
shown to be selected and uns-
elected.

Y
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Table 8: Requirements and Verifications of the Audio Input/Output Subsystem

Requirement Verification Verification
status (Y

or N)

1. Requirement The audio codec must
have a total system latency of less
than 10 ms.

1. Check that the total system latency
of the audio codec is less than 10 ms
in the following manner:

(a) Create a Python script using
a laptop that allows times-
tamping when playing sound
through the headphones port
and recording sound from an
in-built microphone.

(b) Subtract the timestamp of in-
coming audio chunks from the
corresponding outgoing chunks
on the microcontroller to de-
termine the average latency of
filtering over 100 chunks.

(c) Use the script to play a sound
to the PIAE, with the exter-
nal listening device being some
sort of speaker such as head-
phones that are placed near
the in-built microphone.

(d) Correlate the sound that was
played with the recording of
the microphone and find the
time delay of the microphone
recording.

(e) Subtract the microcontroller
filtering latency from this time
delay, and check that the re-
sulting number is less than 10
ms.

N

Continued on next page

26



Table 8 – continued from previous page
Requirement Verification Verification

status (Y
or N)

2. The audio codec must be able to
sample the audio data at a rate of
at least 40,000 Hz.

2. Check that the audio codec sends
at least 40,000 samples a second to
the microcontroller in the following
manner:

(a) Create a program in the MCU
that timestamps data incom-
ing from the audio codec.

(b) Connect the MCU and the au-
dio codec, and connect some
form of audio output to the au-
dio codec.

(c) Increment a counter for each
sample received by the MCU.

(d) Once the number of samples
reaches 40,000, subtract the
timestamp corresponding to
the first of the 40,000 from the
last and check that it’s less
than one second.

(e) This experiment should be re-
peated 10 times, and if all
10 experiments are successful,
then verification is complete.

N
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Appendix B Power Subsystem Circuit Diagram
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Appendix C Control Subsystem Circuit Diagram
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Appendix D User Interface Subsystem Circuit Diagram
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Appendix E Audio Input/Output Subsystem Circuit Diagram
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Appendix F Physical Design of the PIAE
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