ECE 445 Spring 2021 Final Presentation

Covert Communications Device

<u>Team 9</u>

Braeden Smith Ahmad Abuisneineh Srivardhan Sajja

Introduction

- → Wearable, secure covert communication device
- Sensitive military and law enforcement operations
- → Allows for 1-to-many communication

Typical application of end product

Device: PCB + Battery + Buttons + Case

Objectives

- → Practical
 - Long range (1 km)
 - Battery powered
 - Easy to use
- → Stealthy
 - Compact size
 - Quiet
- → Secure
 - Cryptographic standards
- → Fast
 - Short transmission time (2 secs)

Unopened casing with exposed button (left) Opened casing with PCB & battery visible (right)

High-Level Requirements

- → 1km communication, Line-of-Sight
- → Maximum of **two seconds** delay between button press and vibration felt
- Device may remain powered for at minimum 8 hours, and runs at maximum power output for at minimum 1 hour

Design

System Blocks

- → Control System
 - Microcontroller (MCU)
- → 1/0
 - Input and Pairing buttons
 - Vibration motor
 - Motor controller
- → Radio
 - LoRa Radio (915 MHz)
 - Antenna
- → Power
 - LiPo battery (1200 mAH)
 - Linear regulator
 - Battery charger
 - Micro-USB port

Complete block diagram for project

Schematics: Control System

Control system on PCB

Detailed schematic of the control system

Schematics: Power System

Detailed schematic of the power system

Power system on PCB

Schematics: Vibration Motor + Driver

Detailed schematic of the vibration motor and driver

$$V_{CE} = V_{CC} - I_C R_{Load}$$
$$I_C = \beta I_B$$

KVL Equations for an NPN transistor, used to determine ideal base current

Models of Max+Min Voltage Drop Across the Load and the Resistors Available

Schematics: PCB

PCB design made using Autodesk Eagle®

Final tested PCB (Quarter imposed for scale)

Physical Design

Circuit components designed in AutoCAD

Casing prototype in TinkerCAD

Casing prototype after printing

Radio System Selection

- Primary component for transmitting / receiving data
- → Why LoRa: Long Range
 - Range upto 2 km
 - Low Bitrate
- → Packetized data transmission
- → Transmission Frequency: 915 MHz
- → Radio Unit: RFM95 LoRa Radio

RFM9x Breakout Board with RFM95 LoRa Radio and soldered wire (monopole) antenna

Cryptographic Design

Why is fixed secret key is not sufficient? Flexibility.

- Pairing \rightarrow
 - Master device <-> Secondary device
 - Diffie-Hellman key-exchange
 - ECDH (Curve25519)
- Standard Communication \rightarrow
 - Standard "password" type lock
 - AES-128
- Attacks considered \rightarrow
 - Passive man-in-the-middle
 - Replay attacks

Pairing Network Flow via LoRa radio.

Diffie-Hellman paint analogy

Software Design

Guiding Principles

- → Robust state machine
- → Strongly prefer interrupts (periodic & external)
 - Microcontroller is actually is idle most of the time!
- → Lean on hardware
 - AES hardware built in
 - True random number generator (TRNG)
 - Use large flash to store secrets

Recording Presses

- → On first button interrupt, we periodically poll the button state
 - 25ms*64 samples = 1.6 seconds in each packet
- → Ex:
 - 1111110000000111111111111111000000000111

State Machine for Device Pairing

. . .

Project Build

Software Implementation & Hardware Assembly

- → Building a radio driver
- → Radio configuration

824	<pre>} else if (length == sizeof(Packet)) {</pre>
825	Packet tmp;
826	<pre>tmp.preamble = 0;</pre>
827	if (HAL CRYP Decrypt(&hcryp, buffer, length, &tmp, 1) == HAL OK
828	&& tmp.preamble == VIBE PREAMBLE
829	&& tmp.sequenceNumber > deviceSeqs[tmp.deviceID]) {
830	
831	playback.data = tmp.data;
832	<pre>playback.enabled = 1;</pre>
833	playback.count = $0;$
834	<pre>deviceSeqs[tmp.deviceID] = tmp.sequenceNumber;</pre>
835	
836	}
837	

Example snippet, interrupt based packet reception Open source @ github.com/braeden/ece445

- \rightarrow 0.5 mm pin-pitch soldering
- → LiPo charger debugging
- Debugging issues underneath radio

Requirements & Verifications

Microcontroller R&V

Required Verification

- → Asymmetric encryption each <1 second
- → Symmetric encryption each <10ms
- → Interrupt response time $<50\mu$ S

Additional Verification

- → Flash read and write
- → True RNG works reliably
- → Periodic interrupts
- → PWM is easily configurable

Operation type	Total operation time	Average time per single operation
Curve25519 Public key generation Repeated 100 times.	31.377 seconds	0.313 seconds
Curve25519 secret exchange Repeated 100 times.	31.406 seconds	0.314 seconds
AES CTR Encryption of 128 bits (1 block) Repeated 10000 times.	189 milliseconds	18.9 microseconds
AES CTR Decryption of 128 bits (1 block) Repeated 10000 times.	191 milliseconds	19.1 microseconds

Cryptographic Operation Benchmarking

Interrupt & Interrupt response (at 20µS interval)

Power System R&V

Requirement	Verification
Battery charger can handle a dead-short	Power charger & shorted pins. System shutdown until power cycle
Battery charger must provide 300mA	Charging a battery showed a current draw of ~500mA (matching config)
Regulator must supply 3.3 ±0.1V at 50mA	Placed 50 ohm load on regulator, voltage sag was negligible.

Additional Verification

- System can be independently powered by micro-USB (w/o battery)
- Estimating current draw of device to determine battery life
 - Passive
 - Device draws 22mA (experimentally)
 - 1200mAh / 22mA = **54.5 hours**
 - Active (theoretical)
 - Highest power transmission + vibration motor is at 100% duty cycle -> 200mA
 - 1200mAH / 220mA = **5.45 hours**

VS. High Level Requirements: Passive: 54.5 vs 8 Hours! Maximum: 5.45 vs 1 Hour!

Physical IO R&V

- → Reduce back-EMF from motor
- → Vibrations must be felt through case
- → Vibrations should not be too loud

Requirement	Verification
Prevent Back-EMF	Oscilloscope single shot capture
Vibration Level must be ideal	Decibel meter test

Mean Min 1.0509kHz 20Hz 3.9673V <u>1.3</u>V

Before protection (1), signal generator (2), after protection (3). Back EMF reduced with Schottky diode & capacitor

Max Std Dev 22.00kHz 731.39Hz 11.9V 2.7815V

Count 23.87k 43.64k

Radio System R&V

DR

Item	Requirement		
Transmission Range	>= 1km		
Transmission Latency	<= 2s		

Graph showing relationship between DR, SF, BW and CR

BW	Bandwidth BW	Spreading	Coding Rate CR	Data Rate DR	Theoretical	Actual Latency
$PR = SF \frac{-1}{2SF} CR$		Factor SF			Latency	during testing
2^{SF}	500 kHz	11	4:5	2.148 kbps	59.59 ms	~165 ms
DR - Data Rate	31.25 kHz	6	4:5	2.344 kbps	54.60 ms	~42 ms
SF = Spreading Factor	250 kHz	9	4:5	3.516 kbps	36.40 ms	~93 ms
BW = Bandwidth	500 kHz	6	4:5	37.500 kbps	3.41 ms	~4ms
CR = Chip Rate	7.8 kHz	12	4:8	11.000 kbps	11.63 ms	~23 ms

Actual transmission latencies for different values of BW, SF, CR and DR

Functional Tests

Functional Tests (Hardware)

- → Distance Test for Radio (>= 1km)
- → Latency Test for Radio (<= 2s)
- → Informal: Battery, Range

Bandwidth	:	250 kHz
Spreading Factor	:	9
Coding Rate	:	4:05
Data Rate	:	3.516 kbps
Tested Latency	2	~93 ms

Final selected Modem Configuration values for LoRa radio

Distance test at the Uofl Main Quad

Functional Tests (Software)

- → Reliably enter/exit pairing mode & pairing works
- → Radio remains in a known state
 - Sends appropriate interrupts for TX & RX
- → Device rejects replayed packets (packets with the same sequence number)
- → Devices are able to generate, store and recall secret keys
- → Cadence of button presses is replayed on other devices
- → Radio bursts N (3) packets

SDR capture: 3x duplicate packets sent in quick succession to avoid packet loss

Wrapping Up

Successes & Challenges

- → Functional prototype
- → Range and latency of radio
- → Cryptographic standards
- → 3D Printer tolerance
- → Radio setup
- → Software debugging
- → LiPo charging configuration

Ethics

Safety & Legal:

- → LiPo batteries can be a fire hazard if punctured or misused
 - Selected batteries with built-in protection circuitry
 - Charger is reputable and configured with 500mA current limit
- → RF transmissions can be hazardous or illegal
 - Selected radio system that operates in license free ISM bands (915Mhz)
 - Module is FCC pre-approved for integration
- → Software is built with an emphasis on security & privacy

Future Revisions

- Include:
 - On/Off switch for radio & device
 - USB configurable settings
 - Battery monitoring
- Change:
 - Antenna (internal to PCB)
 - Button
 - Vibration motor attachment
 - Current design amplifies vibrations into sound
 - Micro USB -> USB C
- Remove:
 - Mount radio module directly to PCB
 - Empty space (creating a more compact design)

Summary & Conclusions

- → Project was a success!
- → All requirements are completed and verified
- → Minimal changes to design document
- → Exploring other applications for device
 - Hospitals / Old age homes for rapid action with minimal effort
 - Can enable rapid long distance communication for hearing impaired individuals

Thank You