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Abstract

Digital eye strain is a growing issue as increasing numbers of people spend an increasing amount
of time looking at display devices. Our solution aims to address this by detecting the symptoms
of eye strain, and adjusting display devices to relieve this strain. The ability to detect blink rates
and ambient light levels as parameters help us determine the ideal display conditions to prevent
eye fatigue.
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1. Introduction

1.1 Problem and Solution Overview

Digital eye strain is a common condition that affects people who spend time using display
devices. Digital eye strain has multiple negative effects on vision, and most people are
potentially affected by it. The primary strategy for preventing digital eye strain is preemptive
action — adjusting the viewing environment to minimize the potential for eye strain [1].

Two symptoms associated with digital eye strain are reduced blink rate and blink completeness.
These symptoms are detectable through computer vision, and serve as a sign that the current
viewing environment is not healthy for the user’s eyes [1]. Our system uses a combination of
computer vision and environment light detection in a system that will correct the user’s viewing
environment to accommodate any negative changes in eye strain.

1.2 Design Overview

Our design consists of three major blocks: The sensors, microcontroller, and software module.

The sensors, a camera and an ambient light sensor, read data on the user’s environment and take
video of the user’s face. The data they collect is transferred to the microcontroller, which
converts the data into a form readable by the software module being run on the user’s device.
This data is communicated serially via USB to UART and received by the software module. The
software module then performs computer vision algorithms on the received video data to detect
blinking. It uses that blink data, as well as the data on the user’s environment, and uses them as
parameters to determine the ideal display settings for relieving eye strain, then adjust the device
displays accordingly.
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1.3 Block Diagram

Figure 1. Design Block Diagram

1.4 Results

Our final product was capable of performing blink detection, reading input from the
microcontroller’s sensors, and adjusting the display accordingly. While all portions were
functional, some issues in timing necessitated changes to the initial design. In addition, we
discovered issues with our chosen hardware’s ability to perform the tasks we wanted to assign to
it. The details of these issues will be elaborated on in the rest of the report.
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2. Design and Implementation

2.1 Design Procedure

There are a few changes made to our design since the initial proposal. In our original design, we
planned to write the software in C++. We changed these decisions, with C++ being more difficult
to prototype with, and having less compatibility with chosen computer vision tools, as well as
our microcontroller.

Another change made was the operating system. Our original plan was to have the target device
be a Windows device, but we used macOS in our final results. However, we found ways to
develop equivalent software for both operating systems - it was mostly a matter of compatibility
and convenience. The only compatibility issue lied in adjusting the displays themselves - all
other software was fully portable between operating systems.

In our original design, all parts of the project were designed to run in real time at ten frames per
second. We then realized that only the camera and microcontroller modules needed to run at 10
frames per second in real time in order to capture relevant blinking data. The logic behind this is
that, because eye strain is slow to develop and does not need to be quickly addressed, there is no
need to be on a constant lookout for symptoms. The software application was redesigned to only
adjust the display every few minutes, so there was no need for it to continuously sample video.
This avoided issues with skipping frames and relieved timing constraints on image processing.

2.2 Design Details

2.2.1 Camera

The camera we use is the OV7670 camera module. It provides VGA signals to the
microcontroller, consisting of an 8-bit wide digital data signal as well as 3 timing signals, being a
pixel clock, horizontal sync signal, and vertical sync signal. It also supplies a bidirectional pin
for I2C protocol communication. In order to read a full image, our microcontroller must be able
to read and store the data signal each time the pixel clock ticks, and signal the beginning of a
new image whenever the vertical sync signal ticks.

The OV7670 is driven by an input clock signal XCLK. According to the data sheet [2], the
minimum XCLK signal is 10MHz, but that is faster than the 8MHz our microcontroller can
provide. The camera is still fully functional at 8MHz, however.

The camera contains multiple registers that can be written to/read from through the I2C protocol,
allowing us to adjust multiple parameters, such as the color format for output, image resolution,
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clock divider, as well as multiple preprocessing operations. We set the camera to provide output
in the YUV color space. The YUV color space provides the brightness of the pixel in a 4-bit Y
value. This allows us to easily take the grayscale image needed for blink detection while saving
bandwidth and computation time compared to converting RGB pixels to a grayscale value. We
intended to set the camera to 160x120 resolution output, but there were issues with timing that
prevented full implementation. The details of this are explained in section 3.1.

2.2.2 Ambient Light Sensor

In our original design, we designed our system using the OPT3001 ambient light sensor. One big
issue we discovered was that the OPT3001 required a clock input and the clock frequency didn’t
match the requirement that the OV7670 camera had.

Figure 2. OPT3001 System Clock Frequency Range

Figure 3. OV7670 System Clock Frequency Range

Due to this, if we were to continue with the OPT3001, we had to operate both subsystems in
different frequencies, where we would need two microcontrollers to operate both subsystems
concurrently. The better solution we pursued was changing the ambient light sensor in use, where
we changed the ambient light from the OPT3001 into the TEMT6000. The TEMT6000 doesn’t
require a clock input, thus this allowed us to operate the OV7670 with its required clock input,
while obtaining the values for the ambient light sensor..

The TEMT6000 ambient light sensor detects the illumination at its surroundings, and converts it
into a current measurement. The higher the illuminance in the room, the higher the value the
ambient light outputs.

Figure 4. Ambient Light Sensor Measurement Graph
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The ambient light sensor is connected to one of the analog pins of the microcontroller, where it is
read through the analogRead() function. The value we obtain in the ambient light sensor through
the microcontroller and sent to the PC.

2.2.3 Microcontroller and Microcontroller Software

The microcontroller in our original design was the ATMEGA32U4. The original reasoning
behind the ATMEGA32U4 was to fit the original ambient light sensor and camera module input
pins. Additionally, the ATMEGA32U4 had a built-in D+ D- converter, where we didn’t need an
additional TTL to USB module. The issue we had when implementing the microcontroller was
that the microcontroller wasn’t being read and programmed. The issue was that the D+ and D-
weren't being powered correctly. The voltage reading on both connections was around 13mV,
where the expected value should be around 3.1V. Due to this, we changed the microcontroller in
design into the ATMEGA328p. This change was possible due to the change in the ambient light
sensor, where the TEMT6000 required less input pins, thus allowing us to use ATMEGA328p
instead of the ATMEGA32U4. The ATMEGA328p is able to send the data to the connected PC
through a TTL to USB converter module. The microcontroller is then connected to the PC and
programmed through the Arduino IDE.

The microcontroller is responsible for setting up the driving XCLK for the camera. By setting
particular registers of the Arduino board, we can create an 8MHz clock output (half the clock of
the microcontroller itself) to pin OC0A (digital pin 9) of the microcontroller. This clock output is
produced by toggling the output each time the microcontroller’s own clock cycle ticks.

Communicating with the camera is done in the setup phase of the software, using the I2C
protocol to set the registers of the camera to our previously described settings. We simply use the
Arduino’s Wire library to set these registers to fixed values. The amount of time this
communication takes is not a limiting factor on operation, so we ignore any potential
optimization in this portion.

Reading the data is done simply by performing reads on the input pins. For reading the image
data from the OV7670, using the Arduino’s provided digitalRead() functions is too slow.
Because we need multiple digital pins at once, we instead copy from the port input registers,
allowing us to read pins that share a port simultaneously. Our final design has us read from 3 bits
on port C, 4 from port D, and 1 from port B. Some of these bits include the color signal of the
YUV image, which we can freely ignore, but we chose to read them in for debugging purposes,
in case of the need to read color images.
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Writing the image data to the target device is done simply by signalling the start of an image with
an initial string to the Serial output, and then writing the raw image as bytes to the Serial. The
same is done for the ambient light data.

2.2.4 Target Device Software

The software implementation had four major components whose function was threefold: to
enable the user to interact with the system, to detect the blink rate of the user from raw camera
input, and to change the display’s brightness accordingly. This section will elaborate the
individual components that enabled this function.

2.2.4.1 Hardware Software Integration Module

In order to communicate with the microcontroller, the software has to be able to read serial usb
messages at the baud rate the microcontroller is outputting. In order to achieve this, we used the
module pyserial to query the inbuilt ports in the host computer and read data if provided.

Figure 5. Example code from Hardware Software Integration Module to Read Image Being Sent Serially
and Save to Disk
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2.2.4.2 Eye Strain Detector

After reading an image in, the next step is to detect the number of blinks the user has over a
given time period. For this step in the process, the blink detection module is used. The following
is a description of the blink detection algorithm as implemented in code.

The first step of the design is to capture and load relevant video. Currently, I am using my
webcam to record this video and immediately saving it to disk in 20 second increments. I
determined that the minimum time necessary to accurately calculate blink rate is 15 seconds to
compensate for fluctuations that may occur if a smaller sample is taken. To be safe, I am
currently using five seconds above that time. After recording, the video is loaded onto the next
portion of the pipeline and analyzed frame by frame for its full length.

The first step when receiving a frame is to convert the image to grayscale. This is done for many
reasons. Analysis of edges is easier in grayscale since there is only one color channel, and facial
and eye detection without neural networks uses edge detection to perform a significant portion of
its determination. In addition, grayscale images require less time to analyze since they are
inherently smaller than their colored version. In addition to converting the image to grayscale, I
increase the exposure of the image since I have noticed it improves the edge detection process as
well.

Once the image has been preprocessed, the next step is to begin detecting. The algorithm detects
in three steps: the first step is to detect a face in the image, and if present detect the eyes, and
then lastly detect if the eye is open or closed. To detect the face, I used a pre-trained haar cascade
from opencv [7] to create the boundary box for the face. I then make this boundary box the new
bounds for the image, and thus discard any data outside the box. Note that if there is more than
one face present, I choose the largest face (or the boundary box with the most area) since this
algorithm is only designed for the use case where there is one user. If, for whatever reason, a face
is not detected I move on to the next frame. I keep track of the percentage of frames in which a
face is detected for testing and improving the face detector.

Once we have the face image, the next step is to find the eyes. For this part, I use dlib’s haar
cascade [8] that is pre-trained on eye data. I chose this model because I compared this with
opencv’s and it is more accurate. Similarly to the face detection portion, this model also returns
boundary boxes for the eyes. If, for whatever reason, a single eye is not detected I move on to the
next frame and record this failure for future analysis. To determine if the person is blinking, only
one eye needs to be present. However, if both eyes are successfully detected I will use both of
the eyes to get a more robust detection. Once again, I discard the face data and only keep the eye
data for the next portion of the algorithm.
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The final part of the detector is to determine if the given eye data is open or closed. To do this, I
perform a color histogram analysis [9] of the eye image. If a certain threshold of white is met
(which represents the white in the eye), I deem the eye open. Otherwise, the eye is closed. If the
eye is deemed closed, I put in a 300 millisecond wait until the next closed eye can be detected to
prevent multiple reads from the same blink.

For the whole video, I keep track of the number of closed eyes = number of blinks found. After
every frame of the video is analyzed, the blink rate is calculated using the following equation:

Blink Rate (blinks/minute) = (Number of Blinks Detected) * 1 / (Duration of the Video in
Minutes).

For the 20 second video I used, the blink rate is essentially three times the number of blinks
detected. The last step is to convert the blink rate in blinks/minute into eye strain. To do this, I
just set a few thresholds that map to ranges within blink rate as such:

Figure 6. Core steps in the blink detection pipeline
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Figure 7. Sample frame where a blink is detected

2.2.4.3 Brightness Adjuster

Once a level of eye strain is detected, the next step in the process is to adjust the display’s
brightness accordingly. The first step in order to do this is to convert the user’s blink rate to a
level of eye strain. This is done through simply mapping certain ranges in blink rate to a
corresponding level of eye strain. The formula used to do this is shown below.

Figure 8. Conversion of Blink Rate to Eye Strain

Next, the display’s brightness must be reduced by the appropriate amount. This is also done by
another map from level of eye strain to change in display brightness. If the user’s eye strain is
high the brightness is lowered by 20%, if it is medium the brightness is lowered by 15%, and if it
is low the brightness is lowered by 10%. If no eye strain is detected the brightness is not
changed. In addition, the brightness module takes into account changes in ambient light. When
the ambient light changes significantly, the display adjusts accordingly (e.g. ambient light
decreases by a given amount so the display’s brightness decreases by a given amount).

2.2.4.3 User Interface

The last required portion for the software component of this project is the GUI. The user needs to
be able to interact with the software to use the features they provide. To do so, a GUI has been
developed as such:

9



Figure 9. Sample Image of the GUI after Running the Blink Detector (Pressing Begin Button)

The core features of the GUI include a live feed of the camera that will be used to run the blink
detector, labels that pertain to various stats about the ambient light and blinking, and two buttons.
The first button is the calibrate button, which reads the ambient light data from the ambient light
sensor and decides if the monitor’s brightness needs to be adjusted. The second button is the
begin button, which runs the blink detection pipeline: record 20 second video, detect number of
blinks in that video to get blinks/minute, and change monitor’s brightness according to
blinks/minute. This process usually takes a little over 100 seconds, as the figure above shows.

3. Verification

Because our microcontroller and ambient light sensors worked entirely as intended, verification
details are in Appendix A.

3.1 Camera

Our camera module was the only module to fail its verifications entirely. Its intended frame rate
was 10 frames per second. While theoretically possible as shown by other existing projects [3],
there were multiple factors that prevented us from accomplishing our target frame rate. The most
important is the nature of the OV7670’s output. The OV7670 outputs VGA-like control signals,
and the timing of these signals is driven by the camera’s internal clock. We can adjust the
internal clock rate by setting a register holding the division rate from the camera’s driving XCLK
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to the output PCLK. In testing, we found that, for our 8MHz driving XCLK, we could
theoretically achieve ~10 low-resolution frames per second by setting the divider to 4, or a
2MHz PCLK. Reading the PCLK correctly also involves being able to read whether PCLK is in
the high or low portion of its clock cycle, so essentially our microcontroller needed to read these
control signals at 4MHz. The microcontroller’s clock rate is 16MHz [4]. Most C statements
translate to multiple instructions, and therefore multiple clock cycles, often more than 4 per
instruction. This means we cannot check the control signals and make decisions within a single
PCLK cycle. While we can theoretically use assembly NOP commands to wait for a known
number of clock cycles, debugging this proved too complex and inconsistent for us to
accomplish, especially with wiring issues when not working on the finished board.

We could verify the camera’s ability to capture images in general, but the resulting frame rate
was very slow (<1 frame per second).

Figure 10. Camera Image Result

3.2 Target Device Software

For verification, the software was vital in allowing us to confirm the efficacy of the other
modules, using its console output to read test results.

We also tested the software itself, in particular, we tested the accuracy and execution time of its
blink detection. Using a dataset of images with known eye blink status (closed eyes, open eyes,
no eyes), we tested the average accuracy and execution time for the images. We tested the data
set multiple times on different parameters to verify the efficacy of our low-resolution camera.
The camera’s maximum resolution of 640x480 was downscaled using nearest-neighbor to
simulate a lower camera resolution. The histogram-of-oriented-gradients face detector is
sensitive to the scale of the image, and needs to operate on a minimum face size [5]. By
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upscaling the image from the low camera resolution, we can make the blink detector more
accurate, without having to load larger images.

Camera Resolution Upscaled Resolution Average Execution
Time / Image

Accuracy

640x480 960x720 106.5 ms 0.84375

320x240 960x720 106.2 ms 0.8125

160x120 960x720 106.1 ms 0.8125

640x480 640x480 51.8ms 0.78125

320x240 640x480 51.6ms 0.78125

160x120 640x480 51.8ms 0.8125

We found that accuracy and execution time were more dependent on the resolution we upscale
the captured image to than the camera resolution. Not only that, but the accuracy was generally
within acceptable parameters for both resulting upscaled resolutions. While the blink detection
itself no longer needs to have fast execution time in our final design, 640x480 resolution is fast
enough to run in real time if needed.

4. Costs

4.1 Labor Costs

Our labor costs were a little lower than expected. Each of us put in 100 hours of work to
complete this project. Thus, our total labor cost is estimated as follows:

3 people * 100 hours each * $44.18/hour * 2.5 = $33,134.

Note that this hourly rate is calculated using data on starting salaries for computer engineering
and electrical engineering as calculated in our design document.
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4.2 Component Costs

Our component costs were as such:

Part Cost Quantity Total Cost

Microcontroller
(Arduino
ATMEGA328P-PU)

$2.52 5 $12.6

PCB (Custom
Design)

$1 15 $15

Camera Sensor
(OV7670  - subject to
change, available for
checkout from
ECE445 inventory)

$4.50 2 $9.00

Ambient Light
Sensor (TEMT6000)

$1.39 2 $2.78

Resistors, Capacitors,
Crystal, LED

$8 1 $8

TTL to USB Module $4.94 1 $4.94

Total $49.32

4.3 Total Cost

Thus our total cost is $33,134 + $52.32 = $33,183.32.

5. Conclusions

In conclusion, our project functioned properly and met all the high level requirements
necessary to consider it functional. The only component of our project that did not fully function
was the OV7670 camera sensor. Unfortunately, we could not get this sensor to output data at the
target frame rate and thus were not able to integrate it with our final product. Instead, we opted to
use an external webcam for the final product so that all other portions of the project could
function.
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For future improvements, we would like to select a better camera sensor and
microcontroller that are more suited for our verification requirements, create an physical
encapsulation of the product so that it can be commercialized, and improve the blink detection
algorithm so that it can run faster (possibly real time) and be used for other proposes (blink
detection is an open area of study used in many applications beyond eye strain detection).

We had a blast working on this project and it taught us a lot about how to create a product
from conception to product demo. Along the way, we learned how to work effectively as a group
and because of that were able to successfully create our product. Thank you especially to
Bonhyun, all the other TA’s, and the professor for helping us along the process and making this a
worthwhile experience.
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Appendix A: Requirement and Verification Tables

Requirement Verification Verified?

1. The camera should be
able to capture images
at a rate of at least 10
frames per second.

1. Have the camera continuously capture
images for a set time, and calculate the
number of images taken per second.

No

Requirement Verification Verified?

1. The ambient light
sensor delivers a
signal with levels that
can be read in
software on the
microcontroller.

1. Expose the sensor to different
brightnesses and show the change in its
output signal.

Yes

Requirement Verification Verified?

1. The microcontroller
can deliver sensor
inputs to the PC via
USB.

1. Have the microcontroller capture known
inputs and show they are being sent
through serial output.

Yes

Requirement Verification Verified?

1. The blink detector
must be able to
correctly detect blinks
at least 75% of the
time.

2. The blink detector
must be able to run
detection on the
images at a rate of 10
frames per second.

1. Run the detector on a known dataset. At
least 75% of the images should be
correctly categorized.

2. Use a timestamp to record the time it
takes to run each image at the target
resolution.

Yes

Yes
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Requirement Verification Verified?

1. The brightness of the
target device should
be changed based on
the level of eye strain
and ambient light
sensor.

1. Feed multiple blink rates and light levels
to the system and show it affects the
brightness.

Yes
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