

Vibrational GPS

Group 41: Kevin Xia, Soo Min Kimm, and Stephen Battin

Contents of the Report

1. Objective and App Overview

2. Original Design and Verifications

3. Future Work and Review

- Introduction and Objective
- App Design
- Video Demo
- Schematics
- Tests and Verifications
- Successes and Challenges
- Ideas for further work
- Final Review

SECTION 1

Objective and App Overview

Introduction / Objective

- Dangerous to navigate while cycling due to distractions
 - Phone notifications, audio, pop-ups
- Allows for distraction-free navigation
 - Keeps eyes and ears focused on road
- Utilizes two vibration motors for directions
 - One for left, one for right

App Design

Main Menu

Route Generation

Search

Navigation

Soo Min makes a wrong turn here

1110

SECTION 2

Original Design and Verifications

Block Diagram

Schematic - Power Supply

Schematic - Power Supply

Schematic - Microcontroller

Schematic - Microcontroller

Physical Implementation w/o PCB

- Voltage Regulator
 - Regulate 3.7V to 3.3V

TPS613221 Voltage Booster

- Microcontroller/Bluetooth (ESP32)
 - Control 2 unique signals
 - \circ 40mA each
 - Receive and interpret Bluetooth Signal

- Vibration Motors
 - Vibrate for 10 seconds continuously
 - Be distinguishable on the arm
 - Vibrate independently

- Android App
 - Enter destination
 - Determine route
 - Transmit directions via Bluetooth
 - App has the ability to reroute

- Battery
 - Charge from wall and Solar Panel
 - Provide 1.5 hours battery life

- Solar Panel
 - Charge battery in sunlight
 - Provide at least 3V

Successes

- All components passed verifications
- Successful integration of components on a breadboard
- Able to navigate using the device only
- Device able to reroute

Challenges

- Unit testing components
 - Difficult creating test circuits
- Software bugs
 - Signals sent at the wrong time
 - Did not send a clear signal after the turn
- Integration of different components together

SECTION 3

Future Work and Review

Future Work

- Optimize design to fit wrist band
 - Reduce PCB design
 - Change mount design
- Look into alternatives for solar panel
 - Larger battery
 - Flexible solar panel
- Implement BLE

- Optimize software for improved battery life
 - Background Navigation
 - Optimized signal transmission

Conclusion

- Components passed all unit tests
- Successfully demoed app and microcontroller
 - Done using dev boards
- Look forward to future PCB integration

Thank You

Any Questions?