
Collaborative Control of
Ground and Aero Vehicles

ECE 445
Final Report

Team 19

Alvin Sun (yixiaos3)

Jialiang Zhang (jz23)

Mingda Ma (mingdam2)

TA: Andrew Chen

Spring 2021

May 1, 2021

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Challenges . 2

2 Design 3
2.1 Estimation Module . 4
2.2 Control Module . 4

2.2.1 Ground Vehicle (Jackal) Controller 4
2.2.2 Trajectory Generator . 5

2.3 Visualization Module . 6
2.3.1 Timer Frequency Design . 7
2.3.2 Hardware system . 8
2.3.3 Software System . 9

3 Results and Verification 10
3.1 Control Performance . 10

3.1.1 Jackal Control . 10
3.1.2 Crazyflie Control . 10
3.1.3 Synchronization Error . 10

3.2 Visualization Results . 12

4 Cost Analysis 13
4.1 Material . 13
4.2 Labor . 13

5 Conclusion 14
5.1 Accomplishment . 14
5.2 Future Work . 14
5.3 Ethics and Safety . 14

References 16

Appendices 17

A Software Design 17
A.1 Embedded Software . 17
A.2 Control Software . 17

B PCB Design 18

C Requirement & Verification Tables 21
C.1 Control Module-Mocap Decoder . 21
C.2 Control Module-Ground Vehicle Trajectory Generator 21
C.3 Control Module-Low-level Car Controller . 22

i

C.4 Control Module-Drone Trajectory Generator 22
C.5 Control Module-Low-level Flight Controller 23
C.6 Visualization Module-Power Regulator . 23
C.7 Visualization Module-Li Po Battery . 24
C.8 Visualization Module-STM Controller . 24
C.9 Visualization Module-Chained RGB LED Matrix 25
C.10 Software System . 25

ii

1 Introduction

1.1 Background and Motivation

Package delivery has become one of the essential services required by people’s everyday life.
Despite a well developed infrastructure, the package delivery system is very cost inefficient in
the last few miles of each delivery because of traffic and sub-optimal ground transportation
planning. Autonomous delivery over drone networks has become one of the new trends
which can drastically reduce this last-mile delivery cost. However, drone-network on its own
is very difficult to scale up due to the lack of battery life for all commercial drones, especially
when carrying payload. To actually have such a system deployed in big cities, we could take
advantage of the large ground vehicle network which already exists with ride-share companies
like Uber and Lyft as well as public transportation networks such as buses and mailing /
delivery services. The rooftop of an automobile has plenty of space to hold packages and
a drone delivery network can drastically expands its readability by being able to pick-up
and drop packages onto moving ground vehicles. We can then optimize for flight time and
efficiency while having minimal interference with the automobile’s route. An overview of the
proposed framework is shown in Figure 1.

Figure 1: Framework Overview [1]

1

1.2 Challenges

While the proposed framework can dramatically increase delivery coverage and efficiency, the
problem of safely docking a drone onto ground vehicles in motion remains a big challenge. We
aim at implementing the idea in a lab environment by developing a decentralized multi-agent
control system that automatically synchronizes a drone with a moving ground vehicle when
in close proximity. As a proof of concepts, the project takes the assumptions that vehicle
states (such as its position and orientation) can be accurately estimated. The infrastructure
of the lab, the drone, and the ground vehicle will be provided by the support of our generous
sponsor, Professor Naira Hovakimyan. We will achieve the synchronized motion through a
collaborative peer-to-peer control scheme. More specifically, the ground vehicle will estimate
its own trajectory several seconds into the future, and will periodically send the trajectory
to the drone. Since the drone cannot acquire absolute position read from the motion capture
system, the ground vehicle is also in charge of estimating the drone’s poses (through motion
capture). The drone will then optimize its current control to track this future trajectory.

2

2 Design

All designs for the project is carried out under a laboratory setting as illustrated in Figure 2.
Hardware for both the drone (crazyflie) [2] and the ground vehicles (Jackal) [3] is provided
by commercially available robotic research platform. We will design a separate piece of
visualization hardware to help understand the performance of the control synchronization.
An overall design block diagram is shown in Figure 3. The following sections will go into
details of the design for each sub-component.

Figure 2: Physical Design

Figure 3: Block Diagram

3

2.1 Estimation Module

The Vicon motion capture system is a commercialized indoor localization system that takes
advantage of multi-view high-speed imaging technologies. To configure it properly, we will
need to install reflective markers to both ground and aero vehicles and calibrate their extrinsic
poses before using the localization data coming from the system. The calibration problem is
shown in Figure 4 1. Since the Vicon measurement can give accurate estimate for both Twj
and Twc, we can calibrate for the relative transform using

Tjc = T−1
wj Twc. (1)

To reduce the noise of the measurements, the calibration procedure is done by averaging
1000 measurements in the tangent space of Tjc.

Figure 4: Pose Calibration

2.2 Control Module

This module is in charge of stabilizing both the ground vehicle and the drone while com-
manding them to stay within close proximity of each other. To achieve this, we will need
to implement controllers for both vehicles as well as high-level trajectory generator to col-
laborate between the two. Since the drone has built-in firmware for low-level controller and
estimator, the following sections will focus instead on the control of the ground vehicle and
the trajectory generator. All control related computes happen on board the ground vehicle
with the Jetson TX2 embedded platform.

2.2.1 Ground Vehicle (Jackal) Controller

The low-level controller for the Jackal is provided as a differential-drive controller, meaning
that we can move the vehicle by commanding a linear velocity and a angular velocity. Due to
the non-holonomic constraint of differential-drive vehicles, there is no simple linear control
law that stabilizes the vehicle. As a result, a slightly modified version of a proportional
controller is used to achieve trajectory tracking for the Jackal bot. The controller produces

1Note the variable naming convention that Tab denotes an SE(3) transformation from frame a to frame
b. Also for the subsequent equations, w, j, and c is abbreviations for the world frame, jackal frame, and the
drone (crazyflie) frame respectively.

4

both linear and angular velocity commands from the positional error ex as well as heading
error eθ. The errors are calculated as

ex = ‖x− xt‖2 (2)

eθ = θ − ∠(xt − x) (3)

where (x, θ) describes the position and heading state of the Jackal, and xt is the target
position the controller is trying to track. A visual illustration is included in Figure 5. The
control law is then simply applying some control gain, Kv and Kω, on both of the errors.

v = Kvex (4)

ω = Kωeθ (5)

Figure 5: Caption

2.2.2 Trajectory Generator

Since the built-in controller on-board the drone is a linear controller, there is a certain
amount of lag between the time that the commanded way-point is sent out and the time
that the drone reaches the target. To counteract such control delay, we will need to send a
future way-point to the drone so that the drone can synchronize well with the current Jackal
position after applying that control delay. To achieve this, we implemented a constant twist
[4] motion model to predict the motion of the ground vehicle a few hundred milliseconds
into the future. The body twist of a SE(3) transform falls onto the tangent space of the
pose, which can also be viewed as the time derivative of the 3D pose on the SE(3) manifold.
The reason for using constant twist motion model instead of the simpler constant velocity
motion model is that the twist representation encodes angular velocity as a screw motion, so

5

that the prediction will consider certain amount of curvature. The body twist is numerically
differentiated (in tangent space) through consecutive pose measurement coming from the
motion capture system. An illustration of consecutive measurement is shown in Figure 6.
The dotted red curves represents the future prediction at each measurement time step using
the constant twist motion model. The instantaneous body twist at each time instance, Vj(ti),

Figure 6: Jackal Trajectory Prediction

is obtained by the following numerical differentiation

Vj(ti) =
log(Twj(ti−1)

−1Twj(ti))

ti − ti−1

(6)

where log is taking the logarithm map of a SE(3) pose. However, numerical differentiation
amplifies noise especially with small time step. To ameliorate this problem, we applied a
running average filter on those twist estimates to reduce such noises. Let h be such filter,
and we obtain Ṽj, the filtered twist estimate

Ṽj(t) = h(t) ∗ Vj(t). (7)

Finally, using the latest available pose at ti, we can apply the constant twist motion model
and extrapolate to make future pose predictions at any time t > ti.

T̂wj(t) ≈ Twj(ti) exp(Ṽj(ti)(t− ti)) (8)

We then manually tuned the control delay (which is the same as the prediction horizon) so
that the synchronization error between the desired landing position and the actual drone
pose is minimized. The final value we pick for the delay is 0.5 seconds.

2.3 Visualization Module

To help users observe the synchronization process between the two vehicles, we implemented
a visualization module in our project. The visualization module consists of an LED matrix
subsystem and an embedded software system. In the matrix consists of 64 LEDs, a 4-LED
square represents the position of the drone. The outer frame on the matrix represents the

6

edge of the ground vehicle and the inner frame represents the optimal landing position for
the drone. The outer frame and the 4-LED square will turn red when the drone is not
within the proximity required for docking and will turn green when they are well-aligned.
The inner frame will constantly stay blue. When the drone is too far away from the ground
vehicle (0.6m), however, the whole LED matrix will turn off automatically to save power.
An illustrative drawing for the visualization pattern is shown in Figure 7.

(a) Bad Alignment (b) Good Alignment

Figure 7: Alignment Indicator Illustration

2.3.1 Timer Frequency Design

The Neopixel 5050 LED [5] is controlled by a 800 kHz duty-cycle-varying PWM 2 signal.
To generate such signal without consuming software clock cycles, we designed the embedded
software to run on one of its hardware timer with DMA 3 channels built in. According to
Figure 8, the main frequency for the micro-controller is 72 MHz. With prescaler division, the
clock frequency at Timer 2, which is the hardware timer we use for generating the control
signal, is 8 MHz. We can control the signal frequency and duty cycle by manipulating the
values of ARR (Auto Reload Register) and CCR (Compare and Capture Register) on the
micro-controller. More specifically, ARR holds the value which a counter resets at. CCR,
on the other hand, holds the value that will be used in controlling the duty cycle. We can
control the final refresh rate of our matrix by using the following equations: let fo be the
original frequency available (8MHz), fc be the final clock frequency, Naa be the ARR value,
Nc be the CCR value, and Ton be the high-voltage time for each duty cycle, then we have

fc =
fo
Na

= 800kHz (9)

Ton =
1

Nc

Na
· fc

(10)

In our project, we set Na to 10 to obtain the overall 800 kHz output signal. We also set Nc to
5 for digital one and 2 for digital zero. Plugging in those numbers and the corresponding Ton

2Pulse Width Modulation
3Direct Memory Access

7

for the two cases, we get 0.6µs and 0.15µs for the high voltage time respectively. According
to the Neopixel datasheet [5], those two duty cycle periods fall within the required range for
on and off signal detection.

Figure 8: Clock Frequency Setting in CubeMX

2.3.2 Hardware system

The hardware system is designed to show the relative positions of the drone to the center
point of landing/docking area on top of the ground vehicle by lighting LEDs. This subsystem
mainly consists of two parts: LED matrix and STM32F103 micro-controller.

The LED matrix consists of 64 NeoPixel LEDs, all of which are connected in series as shown
in Figure 18. These LEDs are powered by a Li-Po battery and is stable enough to function
correctly thanks to our voltage regulator. The detailed specifications of the battery and
regulator can be found in Appendices C.6 and C.7 correspondingly, and the schematics for
them are shown in Figure 17.

The STM32F103 micro controller is in charge of getting information from upstream mod-
ules through USB serial port. The controller’s schematics is as shown in Figure 15. This
chip is also able to generate PWM waves directly through AAR and CCR (as explained
in Section 2.3.1). Comparing with other commonly seen micro-controller such as Arduino,
STM32F1 operates on higher frequency (72 MHz for our specific chip) and contains better
internal timer and DMA support. As a result, we are able to achieve outputting high fre-
quency signal without consuming CPU cycles. Moreover, STM32 also has its own built-in
USB controller, saving developers the work for building serial communication and external

8

wire hazards. Together with these hardware components, we were able to present an accurate
visualization of our synchronization between the drone and the ground vehicle.

2.3.3 Software System

The embedded software system is based on the code base generated by CubeMX. It enables
the serialized communication between motion capture module and our STM32F103 MCU
on the software level. As depicted in Figure 9, we used two threads. The USB driver thread
is specifically in charge of receiving x and y coordinates from motion capture module and
transform the received coordinates by 90 degrees counter-clockwise, since the orientation of
the motion capture system and LED matrix systems is different. It then marks the two
received coordinates as global variable so that the freeRTOS thread is able to use it. Finally,
the USB driver thread set the signal to 1 so that freeRTOS thread can be waken up. It then
processes the coordinates and decide what color to light up for each of the LEDs.

Figure 9: Flowchart of the Software System

9

3 Results and Verification

In this section, we will perform both qualitative and quantitative analysis to verify the
success criteria of our design. For a more detailed list of requirement and verification table,
see Appendix C.

3.1 Control Performance

3.1.1 Jackal Control

Since we do not assume all ground vehicles to be autonomously controlled in reality, the tra-
jectory tracking performance for the Jackal is not the focus for this project. Nevertheless, we
implemented a simple proportional controller for the Jackal bot to track time-parametrized
smooth trajectories within certain error bound. As shown in Figure 10, there is a noticeable
amount of control lag as well as tracking error when comparing with the desired trajectory.
However, the overall tracking performance is good enough for it to mimic an autonomously
planned vehicle following some arbitrary trajectory.

Figure 10: Jackal Tracking – X Coordinate

3.1.2 Crazyflie Control

The flight control, on the other hand, is much more critical to have the drone dock accurately
onto the desired landing spot. However, the on-board flight controller does not exhibit
any predictive capability, which means there will also be a certain amount of control lag.
Figure 11a shows that the tracking performance on the pre-planned circular trajectory is
pretty good, but with some fixed delay to the commanded trajectory. Applying our proposed
constant twist motion model compensation, we obtain close-to-ideal tracking performance
which exhibits very low to zero tracking delay, as shown in Figure 11b. For the manually
controlled Jackal, Figure 12 shows a similar comparison that demonstrated the qualitative
effectiveness of our motion model lag compensation.

3.1.3 Synchronization Error

Using the lag compensated controller with the constant twist prediction model, the achieved
tracking error is far below our proposed safe landing tolerance, which is 20 cm in radius.

10

(a) Without Lag Compensation (b) With Lag Compensation

Figure 11: Crazyflie Tracking of Pre-planned Trajectory – X Coordinate

(a) Without Lag Compensation (b) With Lag Compensation

Figure 12: Crazyflie Tracking of Manual Trajectory – X Coordinate

Figure 13 shows that during the synchronization and landing phase, the relative position
error between the drone and the desired landing spot on the Jackal stays below the tolerance
line for both autonomously controlled and manually controlled Jackal.

(a) Autonomous Jackal (b) Manually Controlled Jackal

Figure 13: Overall Synchronization Error

11

3.2 Visualization Results

Our visualization module is able to present the position of the drone with respect to center
point of landing area. As shown in Figure 14.a, the visualization module has a red outer
frame and a red 4-square object representing the drone when the alignment between the
drone and the ground vehicle is not accurate. Moreover, as shown in Figure 14.b, the
module completely shuts down when the drone is too far away. The module also functions
correctly when the drone is within the accepting proximity to land, as shown in Figure 14.c.
After analysis of videos taken,we found that our visualization module has a latency of around
10ms, and is hard to capture by the human eyes.

(a) In Range, Unable to Land (b) Drone Out of Range (c) In Range, Ready to Land

Figure 14: Visualization for Different Alignments

12

4 Cost Analysis

4.1 Material

Aside from basic lab infrastructures (the ground vehicle, the drone and the Vicon system),
the material costs of our projects are listed in Table 1.

Component Attributes Quantity Unit Price ($) Total Price ($)

Capacitor

22pF 10 0.07 0.72
0.1µF 20 0.08 1.52
1µF 100 0.02 2.2
10µF 10 0.14 1.44

Resistor
150Ω 10 0.05 0.54
360Ω 20 0.07 1.44
10KΩ 10 0.05 0.54

Voltage 3.3V@800mA 3 0.42 1.26
Regulator 5V@3A 2 1.26 2.52

Micro Controller STM32F103 4 6.57 26.28

LED
NeoPixel 100-Pack 1 39.95 39.95
10mA 0805 10 0.14 1.44

Level Shifter 8-Channel 3 1.1 3.3

Tactile Switch 10 0.31 3.12

Micro USB Header R/A 4 0.68 2.72

JST Header
Vertical 3 0.17 0.51
R/A 3 0.17 0.51

Crystal Oscillator 8MHz 5 0.44 2.2

Total 92.21

Table 1: Material Costs

4.2 Labor

Our estimated development cost is $40/hour, 10 hours/week for three people. This semester
is 16 weeks long, therefore our total cost for development is:

3 ∗ 40 ∗ 10 ∗ 16 ∗ 2.5 = 48000

13

5 Conclusion

5.1 Accomplishment

In this project, we have successfully demonstrated the proof of concept of a possible solution
to the last mile problem in modern drone package delivery system. Our collaborative control
system achieved close proximity control between the ground and aero vehicle as well as a
demonstration of robust docking onto moving ground vehicles. Even though we have made
many assumptions that may not be available so easily to us in reality (e.g., the pose estimate
of both the ground vehicle and the drone), we still managed to show that this solution is
completely viable given enough known variables in the system.

5.2 Future Work

As mentioned in Section 5.1, we have made many assumptions. In real world, however, we
might have to rely on computer vision to actually measure these parameters without intro-
ducing too much burden and memory bandwidth to the central server (or control system).
Therefore one future direction we can think of is how to extrapolate the control algorithm
to add a computer vision flavor. Another difficulty comes from actually scaling up the whole
system. For instance, if we have multiple drones in the same area, how can we plan their mo-
tions so that each of them can be used efficiently and safely. In addition, the communication
between different drones and the central server requires a significant amount of consideration
before implementation. Last but not least, the whole system, on the highest level, could be
generalized as an optimization problem, hence how to deploy such drones and their bases so
that the maximum efficiency can be achieved remain a question.

5.3 Ethics and Safety

Although our project by itself casts little to no ethics or safety concerns because it is in a
lab environment with comprehensive safety measures, as a proof of idea, it may raise the
following issues:

• Conflicts of Interests: The successful deployment of such networks may significantly
reduce the needs for labors in relevant industries, taking jobs from workers, and causing
conflicts between companies and workers / unions. Such consequences could go against
#3 of the IEEE Code of Ethics “to avoid real or perceived conflicts of interest whenever
possible, and to disclose them to affected parties when they do exist.” [6] We currently
do not have a solution for this and consider it far beyond our control.

• Possible Unlawful Misuse: Such a autonomous delivery system might offer more
vacant for smuggling, taking advantage of the unsupervised time before the packages
reaching the destinations, whereas increasing the difficulty for tracking such crimes.
Such consequences, together with the next two in the list, would go against #1 of
the IEEE Code of Ethics “to hold paramount the safety, health, and welfare of the
public, to strive to comply with ethical design and sustainable development practices,
to protect the privacy of others, and to disclose promptly factors that might endanger

14

the public or the environment.” [6] To avoid such unlawful activities and minimize their
damage, recording every delivery specifications and detecting for contraband before the
package is sent into the autonomous system is recommend.

• Potential Hazard to Public Safety: Aerial vehicles might cause serious secondary
injuries under potential misbehavior of the ground vehicles since the drone can cause
heavy impact and consequent explosion under high speed. UAV-related incidents are
not unusual in today’s society as shown by [7]. These experiments [8] suggest the
serious aftermaths. In response, we should advocate that drivers to drive safely or use
reliable auto vehicle systems to minimize the possibility of accidents as well as to build
a emergent evasion response for the drones.

• Privacy Concern: In industries, the cyber-security measurement at ending terminals
such as the drones could be overlooked. A breach can cause serious violation to public
privacy. Potential misuse includes stalking and leaking private information. To protect
the civic privacy, the whole system should be protected by reliable hardware / software
security such that it is maintained and examined periodically.

With aforementioned concerns, some positive aspects are listed below:

• Productivity: Without doubt, autonomous delivery systems could tremendously in-
crease the productivity. This benefit and the next point, help us to develop #1 of the
IEEE Code of Ethics [6].

• Service and User Experience: Without human intervention, the delivery systems
would avoid much mistakes of express and significantly improve the user experience.

• Social Progress: The wide use of such a system could push the progress of our society
in many aspects, such as productivity, economy, legislation, cyber-security, and so on.
This complies with #2 of the IEEE Code of Ethics “to improve the understanding by
individuals and society of the capabilities and societal implications of conventional and
emerging technologies, including intelligent systems.” [6]

15

References

[1] G. B. Haberfeld, A. Gahlawat, and N. Hovakimyan, “Safe sampling-based air-ground
rendezvous algorithm for complex urban environments,” CoRR, vol. abs/2103.07519,
2021.

[2] W. Giernacki, M. Skwierczyński, W. Witwicki, P. Wroński, and P. Kozierski, “Crazyflie
2.0 quadrotor as a platform for research and education in robotics and control engineer-
ing,” in 2017 22nd International Conference on Methods and Models in Automation and
Robotics (MMAR), pp. 37–42, 2017.

[3] C. R. Inc, “Jackal unmanned ground vehicle.” https://clearpathrobotics.com/
jackal-small-unmanned-ground-vehicle/, 2021. Accessed: 2021-04-05.

[4] Wikipedia contributors, “Screw theory — Wikipedia, the free encyclopedia.” https:
//en.wikipedia.org/w/index.php?title=Screw theory&oldid=1016439037, 2021. [Online;
accessed 3-May-2021].

[5] Shenzhen LED Colors, LED Color SK6812 Technical Data Sheet, 4 2015. Rev. 3.

[6] IEEE, “Ieee code of ethics.” https://www.ieee.org/about/corporate/governance/p7-8.
html. Accessed: 2021-02-18.

[7] “List of uav-related incidents.” https://en.wikipedia.org/wiki/List of UAV-related
incidents, Dec 2020. Accessed: 2021-02-18.

[8] E. Tegler, “What happens when a drone crashes into your face?.” https://www.
popularmechanics.com/flight/drones/a28774546/drone-head-collision/, Aug 2019. Ac-
cessed: 2021-02-18.

16

https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
https://en.wikipedia.org/w/index.php?title=Screw_theory&oldid=1016439037
https://en.wikipedia.org/w/index.php?title=Screw_theory&oldid=1016439037
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://en.wikipedia.org/wiki/List_of_UAV-related_incidents
https://en.wikipedia.org/wiki/List_of_UAV-related_incidents
https://www.popularmechanics.com/flight/drones/a28774546/drone-head-collision/
https://www.popularmechanics.com/flight/drones/a28774546/drone-head-collision/

Appendices

A Software Design

All software are maintained publicly on Github.

A.1 Embedded Software

See https://github.com/alvinsunyixiao/embedded-example/tree/jz/usb.

A.2 Control Software

See https://github.com/alvinsunyixiao/crazy land/tree/alvin/plot.

17

https://github.com/alvinsunyixiao/embedded-example/tree/jz/usb
https://github.com/alvinsunyixiao/crazy_land/tree/alvin/plot

B PCB Design

Figure 15: Schematics - STM32F103 Micro Controllers and Peripherals

Figure 16: Schematics - User I/O

18

Figure 17: Schematics - Connection Headers

Figure 18: Schematics - LED Matrix

19

(a) Top Side (b) Bottom Side

Figure 19: PCB Layout

20

C Requirement & Verification Tables

C.1 Control Module-Mocap Decoder

Requirements Verification Result

The Vicon system should be able
to locate the given object accu-
rately and broadcast its corre-
sponding coordinates to all the
devices within the predetermined
communication channel based on
the local Wi-Fi system.

Specify a certain channel and use
a PC to access it. Print the value
and check if it matches with the
object’s coordinates in Vicon.

Yes

Table 2: RV Table for Vicon and Mocap Decoder

C.2 Control Module-Ground Vehicle Trajectory Generator

Requirements Verifications Result

This module should be able
to generate a sequence of pre-
planned way points that are in-
side the bound of the Vicon mo-
tion capture system.

Numerically test all generated
way points against the allowed
rectangular boundary defined by
the Vicon motion capture system
and make sure non of them are
outside the boundary. Also plot
the generated trajectories before
executing the low-level trajectory
tracker to ensure the way points
resembles simple geometries such
as circles and polygons.

Yes

Table 3: RV Table for Ground Vehicle Trajectory Generator

21

C.3 Control Module-Low-level Car Controller

Requirements Verifications Results

The controller should be able to
connect to and pair the ground
vehicle with a PS4 controller and
allow the user to move the car
with it.

By taking the measurements from
Vicon, we can get the actual tra-
jectory that the controller exe-
cuted. We can then compare the
execution with the generated tra-
jectory and verify that the con-
troller does track achieve those
way points within 20cm radius ac-
curacy.

Yes

Table 4: RV Table for Low-level Car Controller

C.4 Control Module-Drone Trajectory Generator

Requirements Verifications Results

1. The trajectory generator
should allow the drone to fol-
low the car within a proximity of
30cm of the vehicle.

1a. Start to time the process
when the drone and the car starts
to move.

1b. After the drone successfully
synchronize with the car, move
the car in random directions and
check if the drone could still fol-
low it autonomously.

Yes

1c. Check the visualization mod-
ule on the car to make sure it is
always green.

2. The synchronization process
mentioned above should be done
within 20 seconds.

2. If step 2 is finished, check the
timer to make sure the process
takes less than 20 seconds.

Yes

Table 5: RV Table for Drone Trajectory Generator

22

C.5 Control Module-Low-level Flight Controller

Requirements Verifications Results

The controller should be able to
connect to and pair the drone
with a controller and allow the
user to move the drone with it.

1. Pair the controller. Yes

2. Try to move the drone with the
controller in all directions.

Table 6: RV Table for Low-level Flight Controller

C.6 Visualization Module-Power Regulator

Requirements Verifications Results

The voltage regulator should be
able to handle voltage of 4.5V-
5.5V and convert it to a DC volt-
age at around 3.3V.

1. Connect the voltage regulator
with a 5V power source.

Yes

2. Measure the output voltage
and make sure it is within the
range listed in requirements.

Table 7: RV Table for Power Regulator

23

C.7 Visualization Module-Li Po Battery

Requirements Verifications Results

1. The battery should be able
to provide a voltage of 3.2-4.2V
to fulfill the requirements of the
voltage regulator.

1. Connect the battery with an
multimeter.

Yes

2. Make sure the voltage across
the battery is within the required
voltage range.
3. Connect the battery with a re-
sistor of 2.5 Ohms.

2. The battery should be able to
provide a current of no less than
1.92A. Since each battery is used
to power 32 LED lights, each with
an operation current of 60mA.

4. Measure the current using the
multimeter to make sure that the
current is higher than 1.92A.

Table 8: RV Table for Li-Po Battery

C.8 Visualization Module-STM Controller

Requirements Verifications Results

1. The MCU should be able to
take an input voltage of 3.3V±
0.1V.

1. Connect the MCU with a volt-
age source of the given required
voltage.

Yes

2. With the given voltage range,
the MCU should output a volt-
age between -0.5V to -1V as logic
“0” to the LED and output a volt-
age above 3.3V as logic “1” to the
LED.

2. Measure the output pins that
are going to be used for LEDs in-
dividually and confirm that each
of them fulfills the required volt-
age.

Yes

Table 9: RV Table for STM32F1 controller

24

C.9 Visualization Module-Chained RGB LED Matrix

Requirements Verifications Results

1. The LED can operate under a
voltage of 3.7±0.1V.

1. Connect the LED to a power
source with a voltage that fulfills
the given requirements.

Yes

2. The data input voltage of the
LED should be able to interpret
a voltage above 3.7V as a logic
“1” in its output, and interpret a
voltage below -0.5V as a logic “0”
in its output.

2. Feed the Din pin with a voltage
around 3.7V and check if the light
is on.

Yes

3. Feed the Din pin with a voltage
around -1 to -0.5V and check if
the light is off.

Yes

Table 10: RV Table for Chained RGB LED Matrix

C.10 Software System

Requirements Verifications Results

1. The software system can freely
pass commands to lower level sys-
tems

1. Use software to light an LED
with certain features (colors, du-
ration etc.).

Yes

2. The latency of the software
system does not cause updat-
ing/flashing frequency of LEDs to
lag 50ms.

2. Take a video and analyze each
frame. Verify that the updating
frequency of LED matrix is at
least 20Hz (20 frame per second).

Yes

Table 11: RV Table for Software System

25

	Introduction
	Background and Motivation
	Challenges

	Design
	Estimation Module
	Control Module
	Ground Vehicle (Jackal) Controller
	Trajectory Generator

	Visualization Module
	Timer Frequency Design
	Hardware system
	Software System

	Results and Verification
	Control Performance
	Jackal Control
	Crazyflie Control
	Synchronization Error

	Visualization Results

	Cost Analysis
	Material
	Labor

	Conclusion
	Accomplishment
	Future Work
	Ethics and Safety

	References
	Appendices
	Software Design
	Embedded Software
	Control Software

	PCB Design
	Requirement & Verification Tables
	Control Module-Mocap Decoder
	Control Module-Ground Vehicle Trajectory Generator
	Control Module-Low-level Car Controller
	Control Module-Drone Trajectory Generator
	Control Module-Low-level Flight Controller
	Visualization Module-Power Regulator
	Visualization Module-Li Po Battery
	Visualization Module-STM Controller
	Visualization Module-Chained RGB LED Matrix
	Software System

