Smart Trap

Team 63 Jonathan Drugas, Xiaowei Yuan, Christian Morales ECE 445

 $\bullet \bullet \bullet$

Introduction and Objectives

- Add-on for existing pressure plate activated traps
- Safe trap method to capture creatures like raccoons while leaving non targeted creatures like pets alone

How it Works

- Our device defeats the trap in idle state
- Servo physically blocks the pressure plate
- Camera & computer vision detect target animal
- Target detected -> servo moves -> trap armed

Ethics and Safety

- No animals were handled when testing this device
- Pressure plate traps are non-harmful devices

High Level Requirements for Smart Trap

- 12 hours of battery life
- Ten second decision time
- Pressure plate control
- System should turn off during the day

Block Diagram from Design Document

Design Process

Revisions to Initial Circuit Design (Power Control)

- Two main components:
 - Idle power switching
 - Daylight sensor power switching

• Revisions:

- Q5 switched to NMOS
- R3 switched to 10kOhm
- Standard capacitor and resistor values were used (4.7uF instead of 5uF)

Revisions to Initial Circuit Design (Motor Control)

- This initial design did not work
- The design may have produced our simulation results if an analog mux was used
- The simulation results that we expected would not have controlled the servo
- Several debugging phases were necessary to redesign this circuit

Motor Control Circuit: Motivation

• Reserve computing power for image detection

• ECE 445 guidelines suggest minimizing the use of microcontrollers

Motor Control Circuit: Debugging Process

- Debug using function generator
- Servo is responsive to pulse width in milliseconds, not necessarily duty cycle at a particular frequency
- 800us to 2.0ms controls the full range of motion

Motor Control Circuit: Debugging Process

- LTSpice used for simulations
- How do we switch between pulse widths?
- Below is the working simulation. Currents only run through the switched PMOS.

Motor Control Circuit: Debugging Process

- Bench performance did not reflect simulation (Rds on from PMOS, etc.)
- Resistances were adjusted while looking at the scope
- Yellow represents motor control waveforms, blue represents pulse select

Current State of the Circuit on Breadboard

PCB Design Strategy

- The PCB was designed before the motor control was fixed
- Separate ground planes for sub-circuits

PCB Revisions

- Motor control topology should be updated
- Signal trace widths should be increased from 6mil to 10mil
- Some signal traces likely need better isolation

Computer Vision and Machine Learning

Machine learning : Goals

1. Animal detection

2. Animal classification

Machine Learning : Features

1. Fast

2. Accurate

3. Run in real-time

detected image

Machine Learning : Running Environment

Linux (Ubuntu 16.04)

Python: 3.7.4

Tensorflow: 1.14.0 Keras: 2.2.4

Numpy: 1.17.4

Machine Learning : General Processing Steps

- 1. Resize
- 2. Convolutional layer
- 3. NMS

Machine Learning : Detailed Algorithms

Confidence value =

$$\Pr(\text{Object}) * \text{IOU}_{\text{pred}}^{\text{truth}}$$

$$Pr(Class_i | Object) * Pr(Object) * IOU_{pred}^{truth} = Pr(Class_i) * IOU_{pred}^{truth}$$

Machine Learning : Error Calculation

X: size of bounding box Y: accuracy of prediction

Machine Learning : Real-Time Camera & Timing

	INF0]	0ur	SmatTrap	ML	took	0.167678	seconds	to	recognize	this	frame.						
	INF0]	Our	SmatTrap	ML	took	0.165931	seconds	to	recognize	this	frame.					_	
cameracapture = cv2.videocaptu-	INF0]	Our	SmatTrap	ML	took	0.164086	seconds	to	recognize	this	frame.	n	camera	we	need	to	use
cv2.namedWindow('detected imag	INF0]	Our	SmatTrap	ML	took	0.167707	seconds	to	recognize	this	frame.						
<pre>cv2.setMouseCallback('detected'</pre>	INF0]	Our	SmatTrap	ML	took	0.168516	seconds	to	recognize	this	frame.						
<pre>print ('for ECE445 ML DEMO')</pre>	INFO	Our	SmatTrap	ML	took	0.168392	seconds	to	recognize	this	frame.						
success, frame = cameraCapture	INFO	Our	SmatTrap	ML	took	0.167460	seconds	to	recognize	this	frame.						
while success and cv2.waitKey(INFO	Our	SmatTrap	ML	took	0.167712	seconds	to	recognize	this	frame.						
<pre># load video into Binary L</pre>	INFO	Our	SmatTrap	ML	took	0.169045	seconds	to	recognize	this	frame.						
blobImg = cv2.dnn.blobFrom	INFO	Our	SmatTrap	ML	took	0.170969	seconds	to	recognize	this	frame.						
and the second	INFO	Our	SmatTrap	ML	took	0.180642	seconds	to	recognize	this	frame.						
net.setInput(blobImg) # u	INFO	Our	SmatTrap	ML	took	0.175180	seconds	to	recognize	this	frame.						
notroctinpat(btobing) a d	INFO	Our	SmatTrap	ML	took	0.180270	seconds	to	recognize	this	frame.						
I I I I I I I I I I I I I I I I I I I	INFO	Our	SmatTrap	ML	took	0.176859	seconds	to	recognize	this	frame.						
outInfo - not gotUnconnect	INFO	Our	SmatTrap	ML	took	0.167384	seconds	to	recognize	this	frame.	+ 1	avore				
start - time time()	INFOI	Our	SmatTrap	ML	took	0.166099	seconds	to	recognize	this	frame.	L	ayers				
laverOutputs	INFO	Our	SmatTrap	ML	took	0.163617	seconds	to	recognize	this	frame.						
tayeroutputs = net.forward	INFO	Our	SmatTrap	ML	took	0.162779	seconds	to	recognize	this	frame.						
end = time.time()	INF01	Our	SmatTrap	ML	took	0.167140	seconds	to	recognize	this	frame.	- 11					
<pre>print("[INF0] Our Smatlrap</pre>	TNF01	Our	Smattrap	MI	took	0.161730	seconds	to	recognize	this	frame.	#	print	int	0		
	TNF01	000	Smattran	ML	took	0.161266	seconds	to	recognize	this	frame.						
	TNEO	011	Smattrap	MI	took	0 169407	seconds	to	recognize	this	frame.						
	THE O	001	Shachiap		coon	01100101	50001105		recognizze	enco	in an is i						

Machine Learning : More Improvement

- 1. Neural network & locally
- 2. Daytime & nighttime

Current State of Product & Demonstration Results

Block Diagram from Demo (Debugging Stage)

Demonstration Results

• Proximity detection and component switching

• Pressure plate control

• Computer Vision

Further Work

- Battery power
- Daytime power savings
- Microprocessor
- Integration
- PCB

Thank You!

Any Questions?