

By

Aadhar Patel (alpatel2)

Ian Kidder (ikidder2)

Maulin Patel (mpate222)

Final Report for ECE 445, Senior Design, Spring 2021

TA: Alex Sirakides

5 May 2021

Project No. 4

EDUCATIONAL	STICK	SHIFT	ASSISTANT

2

Abstract	

For our project, we designed an educational device that teaches users how to drive manual transmission
cars. The Educational Stick-Shift Assistant plugs into any compatible vehicle’s OBD-II port, from which it
draws power and communicates with the car’s engine control unit. The module reads information
regarding the car’s speed, engine RPMs, and throttle position to output real-time instructions for the
user to follow. Through a series of instructional pre-programmed lessons, the user can master manual
transmission vehicles in an isolated environment at slow speeds. We implemented the full functionality
of the Educational Stick Shift Assistant, except that it is not compatible with all of the cars we initially
designed it to work with. 	
 	

3

Contents	

1. Introduction 1

2 Design 1

2.1 Block Diagram 1

2.2 Power Module 2

2.2.1 Buck Regulator 3

2.2.2 Slide Switch 5

2.3 ECU (Engine Control Unit) Interface Module 5

2.3.1 CAN Transceiver 6

2.3.2 DB9 Connector 7

2.4 Control Module 7

2.4.1 Microcontroller 7

2.4.2 Button Breakout Board 8

2.5 Program and Debug Module 8

2.5.1 USB to UART Converter 9

2.6 Audio Module 9

2.6.1 Mini MP3 Player 10

3. Software Design 11

3.1 Flowchart 11

3.2 Driving Lessons 11

4. Cost and Schedule 13

4.1 Cost of Parts 13

4.2 Labor Cost Breakdown 13

4.3 Schedule 14

5. Conclusion 15

5.1 Accomplishments 15

5.2 Ethical Considerations and Safety Hazards 15

5.3 Further Work 15

6. References 16

Appendix A - Requirements and Verification Tables 17

4

1.1 Power Module 17

1.2 ECU (Engine Control Unit) Interface Module 17

1.3 Control Module 17

1.4 Program and Debug Module 18

1.5 Audio Module 18

Appendix B - Miscellaneous Diagrams and Pictures 19

1

1.	Introduction	
Knowing how to drive a manual transmission vehicle is a valuable skill for anyone traveling abroad,
buying a new car, or looking to save some money. However, it can be hard to learn how to drive a
manual without in-person instruction. The Educational Stick Shift Assistant provides instructions to
anyone who wants to learn to drive a manual car independently through interactive pre-programmed
lessons. Our solution is a system that reads the car's speed and engine RPMs to output audio
instructions for the driver to follow. Our goal is to have the driver become familiar with shifting gears,
giving them the knowledge and confidence they need to drive a manual car.

COVID-19 has caused mass layoffs, closed down businesses, and halted the economy. As a result, the
global production of cars has decreased [1]. In addition, due to social distancing and safety guidelines,
many people want to avoid using public transportation. One safe and economical alternative is to buy
used cars. However, the price of used cars has tremendously increased [2] due to this pandemic. An
affordable option is cars with manual transmissions, which are on average $1000 cheaper [3] compared
to their automatic counterparts. However, manual transmission vehicles are inaccessible to people who
do not know how to drive them. Knowing how to drive a manual car also equips the person with a vital
travel skill as nearly 80% of cars on the road in Europe have manual transmissions as of 2020 [4]. In
conclusion, knowing how to drive a manual car is a beneficial skill for almost anyone.

2	Design	

2.1	Block	Diagram	
Figure 1 represents the block diagram of the Educational Stick Shift Assistant and provides a visual
representation of the components used to achieve the final product. The Engine Control Unit (ECU)
Interface Module is responsible for retrieving vehicle data such as RPMs, vehicle speed, and throttle
position when requested by the Control Unit. The Control Unit is responsible for analyzing data from the
ECU Interface Module and input from the user through the Button Breakout Board and sending
commands to the Audio Module. The Audio Module outputs the desired audio cue stored on the SD
Card through the AUX Connector for playback by Vehicle Speakers. The Power Module is responsible for
regulating and providing power to all the submodules/components in the design. The Program & Debug
Module is not user accessible and enables easy programming and monitoring of the microcontroller
during prototyping and final build stages.

2

Figure 1: Stick Shift Assistant System Block Diagram

2.2	Power	Module	
The Power Module is responsible for regulating and providing power to the rest of the components in
the design via a 3.3 V rail. We designed the Power Module to source power from two sources, the USB
connector in the Program & Debug Module and the DB9 Connector. The DB9 connector provides access

3

to the car’s 12 V battery which connects to the input of the slide switch. The other input to the slide
switch is the 5 V supply provided by USB. Regardless of the input, the output is stepped down to a
constant 3.3 V by a buck regulator. Figure 2 shows the buck regulator connected to the slide switch and
both input voltages.

Figure 2: Power Module Schematic

We used a CAN transceiver and USB-UART converter in our initial design that each required 5 V inputs.
To power them, we were planning on using a slide switch configuration similar to figure 1, except that
the inputs to the slide switch would be the output from a fixed 5 V buck regulator and the 5 V USB
output. To power the 3.3 V components on the board, we planned on placing a 3.3 V low-dropout linear
regulator (LDO) at the output of the slide switch.

We moved away from this design because it would require more power conversions and lower overall
energy efficiency while adding unnecessary complexity. We were able to eliminate the LDO from our
design by switching to 3.3 V tolerant versions of the CAN transceiver and USB-UART converter, therefore
removing the need for a 5 V source anywhere on our board. To accommodate this change, we switched
to a fixed output 3.3 V buck regulator for the final design.

2.2.1	Buck	Regulator	
The buck regulator steps down both the 5 V USB input and the vehicle’s 12 V battery to 3.3 V to power
the rest of our board. In order to utilize this component, we had to reference the datasheet [5], which
allowed us to create a typical application circuit. Some of the passive components that were needed
consisted of capacitors, an inductor, and a diode.

We encountered one issue while implementing the Power Module on our PCB because the first 3.3 V
buck converter we ordered was only available in a 3 mm x 3 mm package with 0.25 mm wide pads,
which were far too small for us to solder by hand. The small pad size forced us to switch to a buck
regulator in a larger package, so we selected a through-hole buck regulator that we placed on pin
headers.

We then had an issue where the buck regulator was outputting a constant 4.2 V across all input voltages
when attached to the pin headers on the PCB. This was surprising, especially since we had successfully
tested the Power Module on a breadboard beforehand, so we were confident that the buck regulator

4

was functioning correctly. After extensive testing, we suspected a loose connection between the buck
regulator and the PCB caused by the pin headers, so we desoldered the pin headers and soldered the
buck regulator directly to the PCB. This solved the issue, but unfortunately, the 4.2 V burnt out our
ESP32 by exceeding its maximum input voltage of 3.6 V [9].

For the input capacitor, we chose a ceramic capacitor of 100 uF with a 16 V rating based on the
recommendation made in the datasheet. Similarly, for the output capacitor, the datasheet offered a
range from 100 uF to 470 uF. The output capacitor that we chose was 100 uF with a 16 V rating again.
For both the input and output, the voltage rating for the capacitor had to be greater than or equal to
4.95 V, as shown below.

																																																																																		𝑉out = 3.3	V																																																													[1]

																																				𝑉𝑜𝑙𝑡𝑎𝑔𝑒	𝑅𝑎𝑡𝑖𝑛𝑔	𝑓𝑜𝑟	𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟	 ≥ 1.5	 ∗ 𝑉𝑜𝑢𝑡	 = 	4.95	𝑉																																	[2]

We performed a series of calculations for the inductor to figure out the minimum current rating it must
handle. The value of the inductor given by the datasheet was 330 uH for a fixed 3.3 V output. To find the
inductor’s minimum required current rating, we performed the following calculations.

																																	𝑁𝑜𝑚𝑖𝑛𝑎𝑙	𝑆𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔	𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, 𝑓𝑠	 = 	52	𝑘𝐻𝑧																																													[3]

																																																																				𝐿 = 330	𝑢𝐻																																																																													[4]

																												𝑉𝑖𝑛	(𝑚𝑎𝑥) 	= 	15	𝑉																									𝑉𝑖𝑛	(𝑚𝑖𝑛) 	= 	5	𝑉																																												[5]

																																					𝑀𝑎𝑥	𝐷𝑢𝑡𝑦	𝐶𝑦𝑐𝑙𝑒, 𝐷	 = 	
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛(𝑚𝑖𝑛)
	= 	0.66																																																				[6]

			𝐼𝑛𝑑𝑢𝑐𝑡𝑜𝑟	𝑅𝑖𝑝𝑝𝑙𝑒	𝐶𝑢𝑟𝑟𝑒𝑛𝑡, 𝛥𝐼𝐿	 = 	
(𝑉𝑖𝑛(𝑚𝑎𝑥) 	− 	𝑉𝑜𝑢𝑡) 	∗ 	𝐷

𝑓𝑠	 ∗ 	𝐿
= 	0.45																																	[7]	

																	𝑀𝑖𝑛𝑖𝑚𝑢𝑚	𝐶𝑢𝑟𝑟𝑒𝑛𝑡	𝑅𝑎𝑡𝑖𝑛𝑔, 𝐼𝐿	(𝑚𝑖𝑛) 	= 	𝐼	𝑚𝑎𝑥	 +	!"#
$
	= 	1.225	𝐴																										[8]

From the calculations up above and from equation 8, we can see that the minimum current rating for
the 330 uH inductor has to be 1.225 A. We chose an inductor rated at 1.6 A, which meets the
specifications required for the buck regulator.

To test and verify we could meet our requirements for the buck regulator, we swept the input voltage to
the buck between 4.7 V and 5.3 V to simulate the worst-case scenario from the USB cable. The input
voltage from the USB cable should never drop below 4.7 V nor exceed 5.3 V. The output voltage from a
12 V car battery can vary between 10.5 V, for an unhealthy battery, up to 14.5 V, for a battery being
charged by an alternator. Therefore we swept the input voltage between 10.5 V and 14.5 V to ensure
that we achieved a stable 3.3 V output across all possible input voltages. We also tested these voltage
conditions at the minimum and maximum current load scenarios. We found the minimum current load
to be 84 mA when the Stick-Shift Assistant is idling and the maximum current load to be 110mA during
peak operation. As shown in figure 3, the buck’s output voltage has a maximum deviation of 37 mV
(1.12%) from 3.3 V across all possible input voltages and load conditions, well within our specifications
for all components.

5

Figure 3: Voltage Input vs. Voltage Output Relationship

2.2.2	Slide	Switch		
The slide switch takes in the 5 V output from the USB cable and approximately 12 V output from the DB9
connector and allows us to choose which source we want to power the board with. This ensures that we
can power the board when programming the ESP32 while retaining the ability to draw power from the
12 V car battery once finished. This switch is enclosed within the product box, making it inaccessible to
the end user. Figure 2 shows how the slide switch connects to the buck regulator and the USB
connector.

2.3	ECU	(Engine	Control	Unit)	Interface	Module	
The ECU Interface Module begins with an OBD-II to DB9 cable, which provides access to the vehicle's
ECU and 12V battery for us to use as a power source. The DB9 cable's data pins connect to the CAN
Transceiver, allowing the Control Module to request and interpret ECU signals from the vehicle. Figure 4
shows an example circuit diagram for the TL2575HV-33IN CAN Transceiver. In this figure, CANH and
CANL are the high and low CAN physical bus pins, respectively, and connect to the vehicle through the
DB9 connector. The D and R pins are transmitting and receiving pins, respectively, connected to the
microcontroller via GPIO pins. The IC is then powered by the 3.3 V power line and grounded to the signal
ground provided by the DB9 connector.

6

Figure 4: ECU Interface Module Schematic

2.3.1	CAN	Transceiver	
The CAN transceiver is the interface between the CAN physical bus and the CAN protocol controller
(microcontroller) [6]. This sub-module is used to help convert the digital signals from the CAN controller
to Analog signals on the CAN physical bus when transmitting commands and vice-versa when receiving
data. The CAN transceiver enables the communication between the CAN protocol controller
and the ECU. This enables us to request vehicle data such as vehicle RPMs, vehicle speed, and throttle
position for further analysis by the microcontroller.

During the testing phase of the CAN transceiver, we used a CAN simulator which we utilized with a
RedBoard and CAN bus Shield. We used this simulator to send out data that was interpreted by the CAN
transceiver. The baud rate at which the CAN transceiver successfully communicated with the CAN bus
and received data was 500 Kbps. We chose this baud rate based on the fact that it is common in most
vehicles. Figure 5 shows the control module receiving data at 500 Kbps.

Figure 5: CAN Transceiver Verification

7

2.3.2	DB9	Connector	
The DB9 connector allows communication with the vehicle ECU by connecting to the OBD-II port via a
DB9 to OBD-II adapter cable. We chose the DB9 connector for its smaller physical footprint and part
availability compared to the OBD-II port. An adapter cable connects the DB9 connector to the OBD-II
port in the vehicle. See figure 4 for a diagram depicting DB9 pinouts and which physical pins we are
using for this project.

During testing, we identified an issue where signals from the OBD-2 port to the DB9 connector did not
have continuity. We eventually determined that the SnapEDA footprint for the DB9 connector was
incorrectly labeled, resulting in PCB traces connecting to the wrong pinouts on the DB9 connector. This
was solved by desoldering the PCB mount DB9 connector and utilizing a DB9 connector soldered to the
PCB via extension wires.

2.4	Control	Module	
The Control Module consists of the microcontroller and input buttons. It is in charge of handling,
processing, analyzing, and transmitting data. The microcontroller processes data received from the ECU
interface module and gave commands to the audio module. The buttons allow the user to choose what
kind of feedback they want from the assistant. Figure 6 shows the circuit schematic for the Control
Module.

Figure 6: Control Module Schematic

2.4.1	Microcontroller	
The microcontroller is the central processing unit and has three main functions. The microcontroller
retrieves live vehicle data such as RPMs, vehicle speed, and throttle position from the vehicle ECU,
enables the user to input which lesson to learn via the Button Breakout Board, and controls the MP3
player to playback audio cues through the Audio Module.

We chose the ESP32 microcontroller from ESPRESSIF Systems to achieve these functions for its extensive
user-friendly and open-source C libraries to achieve these functions. One significant advantage of the

8

ESP32 WeCAN controller library specifically for the ESP32, which we used in our design. To program and
test the ESP32 microcontroller, we used the ESP32 Core available in the Arduino IDE libraries. We
encountered multiple difficulties programming the ESP32, starting with the boot button on GPIO0. On
an ESP32 development board, a prefabricated auto-program circuit handles the flash sequence, so we
overlooked the need to hold GPIO0 to ground to flash our code to the standalone ESP32. We initially
solved this by soldering a jumper wire between GPIO0 and ground when flashing the chip. In the next
iteration of our PCB, we added a boot button connected between GPIO0 and ground to solve this
problem robustly.

As mentioned in section 2.2.1, we accidentally burnt out our first ESP32 during testing by supplying 4.2 V
to the input pin. We figured out that the ESP32 burned after it repeatedly failed to flash code from our
laptops, giving the error: “Timed out waiting for packet header.” After figuring out that we had burned
the chip, we abandoned this PCB and ESP32, moved to our improved PCB design, and used a spare
ESP32-WROOM-32-D that a TA had in the lab. The functionality of the ESP32-WROOM-32-U and ESP32-
WROOM-32-D are effectively the same for our purposes, the only difference being that the U model
does not have the built-in antenna present on the D model.

2.4.2	Button	Breakout	Board	
The button breakout board allows drivers to interface with the software. The driver can choose which
lesson to learn and can repeat a lesson if desired. The microcontroller communicates with the input
buttons via GPIO and monitors them to make various decisions in software. The buttons mount to the
outside of the housing and connect to the microcontroller via jumper wires. As shown in figure 6, the
buttons are active low with the 3.3 V power rail as their source. The buttons are all debounced via
software and inputs are ignored when the vehicle is in motion to discourage distracted driving.

2.5	Program	and	Debug	Module	
The Program and Debug module includes the USB connector and the USB to UART converter. This
module is strictly for programming and debugging the microcontroller and monitoring the data received
from the ECU interface module during the prototyping and build phases. This module is not accessible to
the user and serves no purpose in the finished product. However, note that this module can both
program/communicate with the microcontroller and also power the board independently, eliminating
the need to plug the board into a car’s OBD-2 port every time. The USB connector connects the USB to
UART converter, which allows communication to the microcontroller as the standalone ESP32
microcontroller does not have USB D+/D- pinouts. Figure 7 shows a schematic view of the Program and
Debug module.

9

Figure 7: Program and Debug Module Schematic

2.5.1	USB	to	UART	Converter	
The USB to UART converter receives data from a laptop over USB and converts the data to serial UART,
which interfaces directly with the microcontroller. This device serves as a bridge between the USB
connector and the microcontroller.

2.6	Audio	Module	
The Audio Module consists of the AUX connector and a breakout MP3-player board with a built-in SD
card slot. This module provides audio instructions to the driver through the vehicle’s speakers. The
audio instructions are pre-recorded MP3 audio files. The AUX connector provides DAC_R and DAC_L
signals used for audio playback by the vehicle speakers. Figure 8 shows a schematic view of the Audio
Module.

Figure 8: Audio Module Schematic

10

2.6.1	Mini	MP3	Player	
The MP3 player receives playback commands from the microcontroller and outputs the appropriate
audio file from the attached SD card reader. The command set is specified in a provided library. The MP3
player sends its left and right channel audio output via an AUX cable. This AUX cable connects to the
vehicle’s AUX input for playback through vehicle speakers.
	 	

11

3.	Software	Design	

3.1	Flowchart	

Figure 9: Software Flowchart

Figure 9 shows an abstract layout of the Educational Stick Shift Assistant’s software implementation. The
software implements many features that affect user experience. First, the software ensures that the
input buttons, intended for the user to interact with the software, are disabled when the vehicle is in
motion. From the Main Menu, the user can select between the various lessons. From a Lesson Menu,
the user can elect to repeat the current lesson, return to the Main Menu, or continue with the current
lesson (only available for some lessons). The flowchart depicts when the module is actively reading ECU
data and outputting audio instructions. An abstract structure of individual lesson functions is shown on
the left side of the flowchart. Note that all lessons differ somewhat and that this is just a general
breakdown of significant actions the device performs to achieve full functionality.

3.2	Driving	Lessons	
This module delivers driving instructions in audible format to teach users how to drive stick-shift. To
achieve this, the user can select from three driving lessons, each with varying difficulty levels. The
module delivers two key lessons that a driver may practice multiple times to help them learn to drive
stick-shift at low speeds in a safe environment away from traffic and pedestrians.

12

In addition to the standard accelerator pedal, brake pedal, and steering wheel, manual transmission
vehicles also have a clutch pedal and a stick shift. The first lesson introduces the clutch and stick shift to
get the driver comfortable with their operation while the car is stopped. This lesson also teaches the
user how to start moving forward and stopping the car without stalling. In contrast, the second lesson
introduces making the transition between first and second gears. Once these concepts are understood,
all other gear shifts are essentially the same. Finally, the third lesson is the continuous monitoring mode
which only gives shifting guidelines without further explanation.

The driver can replay any lessons at any time to encourage repeated practice and promote mastery of
each essential skill. As this is meant to be an instructional device and used in an isolated area by the
driver away from traffic or pedestrians, the device only focuses on low-speed driving in the first two
gears. We expect the driver to master the basics first and then apply the same skills to learn at higher
speeds and in live traffic by taking lessons with a licensed instructor or on their own at their own risk.

13

4.	Cost	and	Schedule	

4.1	Cost	of	Parts	
Table 1: Part Cost Breakdown

Quantity Part Name Part Number Cost
1 Audio Jack SJ1-3525N $0.76
1 CAN Transceiver TL2575HV-33IN $1.20
1 MP3 Mini Player Board DFR0299 $8.90
1 USB to UART Converter MCP2221A $2.50
1 Microcontroller ESP32-WROOM32 $8.95
1 DB9 Connector Pin PRT-00429 $1.75
1 Mini USB Socket 1734035-3 $1.24
1 Buck Regulator TL2575HV-33 $1.94
1 Slide Switch CS12ANW03 $2.25
1 Button Breakout Board KONA-01 $3.98
1 Header for Input Buttons FTSH-104-01-F-DV $2.02
2 Push Button TL3305AF260QG $0.18
2 Resistor (47 Ohm) RCG080547R0JNEA $0.50
1 Resistor (10K Ohm) CR0805-FX-1002ELF $0.10
2 Capacitor (4.7 uF) CC0805MKX5R6BB475 $0.25
4 Capacitor (0.1 uF) C0805C104K5RACTU $0.15
1 Capacitor (10 uF) CC0805ZKY5V6BB106 $0.22
1 Capacitor (0.01 uF) C0805C103K5RACTU $1.21
1 Capacitor (0.47 uF) CC0805ZRY5V8BB474 $0.20
1 Schottky Diode (20 V, 1 A) SB120 $0.43
1 Inductor (330 uH, 1.6 A) 5900-331-RC $2.21
3 Ceramic Capacitor (100 uF, 16 V) EMK325ABJ107MM-P $1.87

Total Cost $47.93

4.2	Labor	Cost	Breakdown	
Table 2: Labor Cost Breakdown

Team
Member

Hourly Wage Weekly Hours Number of
Weeks

Multiplier Cost Per
Member

Aadhar $38.00 20 12 2.5 $22,800
Ian $38.00 20 12 2.5 $22,800
Maulin $38.00 20 12 2.5 $22,800

Total Labor Cost $68,400

Our hourly wage is calculated based on the average salary for a newly graduate Electrical Engineer. The
cost per member is calculated using the following formula:

𝐻𝑜𝑢𝑟𝑙𝑦	𝑊𝑎𝑔𝑒 ∗𝑊𝑒𝑒𝑘𝑙𝑦	𝐻𝑜𝑢𝑟𝑠 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑊𝑒𝑒𝑘𝑠 ∗ 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 = 𝐶𝑜𝑠𝑡	𝑝𝑒𝑟	𝑀𝑒𝑚𝑏𝑒𝑟	

14

4.3	Schedule	
Table 3: Schedule

 Aadhar Ian Maulin
2/22 Block Diagram, Design

Document
Schematics,
Design Document

R&V Tables, Design Document

3/1 Finalize Lesson Plans, start
ordering Parts

Finalize Circuit
Schematics, start
ordering Parts

Finalize R&V Tables, start ordering
Parts

3/8 Setup coding environment
for ESP32 - using CAN API
(ECU Module)

Create PCB Layout Create PCB Layout

3/15 Begin writing software for
ESP32 - interfacing with
Audio Module

Finalize PCB Layout
after passing Audit

Finalize PCB Layout after passing
Audit

3/22 Begin writing software for
ESP32 - Lesson Plans

Begin soldering
components on the
board

Begin soldering components on
the board

3/29 Verify Audio playback
through vehicle speakers

Verify Power
distribution

Verify Power distribution

4/5 Debug and Test Debug and Test Debug and Test
4/12 Debug and Test Debug and Test Debug and Test
4/19 Prepare for Mock Demo,

start writing final
paper/teamwork
evaluation

Prepare for Mock
Demo, start writing
final paper/teamwork
evaluation

Prepare for Mock Demo, start
writing final paper/teamwork
evaluation

4/26 Demonstration and
Presentation, continue
working on final
paper/teamwork
evaluation

Demonstration and
Presentation, continue
working on final
paper/teamwork
evaluation

Demonstration and Presentation,
continue working on final
paper/teamwork evaluation

5/3 Lab Checkout, finalize Lab
Notebook and Teamwork
Evaluation

Lab Checkout, finalize
Lab Notebook and
Teamwork Evaluation

Lab Checkout, finalize Lab
Notebook and Teamwork
Evaluation

15

5.	Conclusion	

5.1	Accomplishments	
Our project successfully achieved the high-level requirements that we had set in place before starting
the project. We could access the CAN bus in a vehicle and request data such as vehicle speed, engine
speed, and throttle position. Utilizing the microcontroller and the USB to UART converter, we
successfully programmed our microcontroller. We processed the data that was being received from the
CAN bus to implement our driving lessons. We used the DFPlayer Mini MP3 player to play audio which
was vital in providing instructions successfully. All in all, we are able to incorporate all design elements
and develop a working device that met all our requirements described in further detail in Appendix A.

5.2	Ethical	Considerations	and	Safety	Hazards	
When creating an educational tool, it is imperative to instruct the learner in a safe manner. Teaching
someone how to drive prompts many factors that can harm the public. The IEEE Code of Ethics states
“to disclose promptly factors that might endanger the public or the environment” [7]. In response to
this, we included a safety warning system that discloses all the pertinent information before even
instructing the driver. Furthermore, the Illinois 2020 Rules of the Road “prohibits the use of handheld
cell phones, texting or using other electronic communications while operating a motor vehicle” [8]. This
rule is something we expect anyone who uses this assistant to be aware of. We anticipate that anyone
who uses this tool will have a license and has some information about the rules and regulations of
driving on the road. In addition, to deter distracted driving, we have prevented the use of input buttons
while the vehicle is moving. These button presses allow the user to choose a lesson and are only
operational when the vehicle is stopped, ensuring the driver’s safety.

5.3	Further	Work	
Future work has great potential regarding this project in the following areas: functionality, upgrades,
and compatibility. An important feature to add to this project is the feedback loop to verify that the
driver has shifted into the correct gear positions and pressed down on the clutch. This gives the driver
the verification that the correct steps have been taken to drive a manual car. Another improvement to
the project is upgrading the lesson plans to go more in-depth about certain aspects such as stalling. This
project can also enhance its compatibility to include support for more vehicle models by implementing
various other ECU communication protocols. All these improvements and modifications will result in a
more well-rounded product.

16

6.	References	

[1] T. Hofstätter, M. Krawina, B. Mühlreiter, S. Pöhler, and A. Tschiesner, “Reimagining the auto
industry's future: It's now or never,” McKinsey & Company, 06-Nov-2020. [Online]. Available:
https://www.mckinsey.com/industries/automotive-and- assembly/our-insights/reimagining-
the-auto-industry's-future-it's-now-or-never. [Accessed: 20-Feb-2021].

[2] J. M. Vincent, “What You Need to Know About Coronavirus and Cars,” U.S. News & World Report, 14-

Dec-2020. [Online]. Available: https://cars.usnews.com/cars-trucks/coronavirus-and-cars.
[Accessed: 10-Feb-2021].

[3] Autolist Editorial, “Manual vs Automatic - Pros and Cons,” Autolist, 29-Jul-2019. [Online]. Available:

https://www.autolist.com/guides/manual-vs-automatic. [Accessed: 10-Feb-2021].

[4] S. Gautam, R. Pansare, A. Chaudhary, and K. Gupta, “Why Does Europe Prefer Manual Cars Over

Automatic Ones?” Get My Parking Blog, 17-Feb-2020. [Online]. Available: https://blog.getmy
parking.com/2020/01/20/why-does-europe-prefer-manual-cars-over-automatic-
ones/. [Accessed: 10-Feb-2021].

[5] Texas Instruments, “TL2575, TL2575HV 1-A Simple Step-Down Switching Voltage Regulators,”
TL2575HV-33IN datasheet, (Revised Nov. 2004). [Accessed 30-Mar-2021]

[6] “CAN Transceivers,” Maxim Integrated. [Online]. Available: https://www.maximintegrated.com/en

/products/interface/transceivers/controller-area-network-transceivers.html#: ~:text=A
controller area network (CAN, loading down the system microcontroller. [Accessed: 25-Feb-
2021].

[7] “IEEE Code of Ethics,” IEEE. [Online]. Available: https://www.ieee.org/about/corporate/governance/

p7-8.html. [Accessed: 12-Feb-2021].

[8] Publications/Forms. [Online]. Available: \https://www.cyberdriveillinois.com/publications/.

[Accessed: 20-Feb-2021].

[9] “ESP32-WROOM-32,” Espressif Systems. [Online[. Available:

https://www.espressif.com/sites/default/files/documentation/esp32-wroom-
32_datasheet_en.pdf (Revised 2021). [Accessed 30-Mar-2021]

17

Appendix	A	-	Requirements	and	Verification	Tables	

1.1	Power	Module	
Table 1: Requirements and Verification for Buck Regulator

Requirement Verification

1. Accept an input voltage (VIN) in
the range: 4.7 < VIN < 14.5 V.

2. Must operate in stable
conditions in temperatures
between -15 °F and 100 °F.

3. Must output a maximum of 1.0
A to avoid burning out the Buck
Regulator.

1. Using a Digital Multimeter, we probed the VIN pin
of the buck regulator to ensure that the voltage is in
the range of 4.7 V to 14.5 V when the car is on.

2. We did not have access to an IR thermometer, so
we did touch tests and verified that the module
never got noticeably warm.

3. Using a Digital Multimeter and electronic load
machine, we probed the VOUT pin to ensure a
maximum of 1.0 A output was possible.

1.2	ECU	(Engine	Control	Unit)	Interface	Module	
Table 2: Requirements and Verification for CAN Transceiver

Requirement Verification

1. Must communicate with an
ECU at a baud rate of 500Kbit/s

2. Must have an IO voltage level
of 3.3 V +/- 5%.

1. Verified via simulator and on an actual car, we
could send and receive meaningful messages to and
from the ECU.

2. Probed all output pins with a DMM and verified
voltages were within specification.

1.3	Control	Module	
Table 3: Requirements and Verification for Microcontroller

Requirement Verification

1. Must have an input voltage
(VDD) of 3.3 V +/- 5%.

2. Must be operational in
temperatures between -15 °F
and 100 °F.

3. Must be able to process ECU
data and output a command to
the MP3 player under 5 ms.

1. We used a DMM to verify that the microcontroller
was receiving within 5% of 3.3 V on VIN.

2. We did not have access to an IR thermometer, so
we did touch tests and verified that the module
never got noticeably warm.

3. Used timestamps to verify that data processing took
well under 5ms.

18

Table 4: Requirements and Verification for Input Buttons

Requirement Verification

1. Input Buttons must be
debounced to prevent
processing multiple presses.

2. While vehicle speed is greater
than 0 MPH, changes in the
value of input buttons will be
ignored.

1. When a button value changes from digital low (0) to
digital high (1) we started a short, predefined timer.
Once the timer ended, we sampled the button
value again. If the button’s value has returned to
digital low, we recorded a button press. Otherwise,
it was ignored, successfully debouncing the button.

2. While the vehicle was moving, a passenger tried
changing the current lesson via the buttons but
could not do so.

1.4	Program	and	Debug	Module	
Table 5: Requirements and Verification for USB to UART Converter

Requirement Verification

1. LEDs must light up when data is
being transmitted/received.

2. Data must be transmitted
through a USB cable to the
MCU.

1. Verified by acknowledging the LEDs light up on the
board during programming.

2. Verified by connecting an LED and resistor between
the GPIO port and ground. We then sent the
GPIO_SET_LEVEL command from the ESP32’s
GPIO.h library to toggle the LED.

1.5	Audio	Module	
Table 6: Requirements and Verification for Mini MP3 Player

Requirement Verification

1. Must have an input voltage
(VDD) of
3.3 V +/- 5%.

2. Must be operational in
temperatures
between -15 °F and 100 °F.

3. Must have a stereo audio
output for the auxiliary cable.
Driver must be able to listen to
audio cues at a reasonable
volume.

1. Used a DMM to verify that the MP3 player was
receiving within 5% of 3.3 V.

2. We did not have access to an IR thermometer, so
we did touch tests and verified that the module
never got noticeably warm.

3. We played audio instructions during live testing in a
car and were able to hear all instructions clearly.

19

Appendix	B	-	Miscellaneous	Diagrams	and	Pictures		

Figure 1: PCB Layout

Figure 2: Final Design

