


Abstract

This project entails the creation and application of a smart sports scoreboard composed
through an addressable LED matrix system. The system provides an intuitive and
interactive interface, allowing users to view results of any of their favorite teams both
quickly and accurately. The scoreboard currently has the capability to support 11 of the
major sports leagues across the world so that users everywhere can enjoy the product.
Inspiration for the product comes from the increased use of smart devices and the
corresponding negative effects of blue light that come along with it. Our hardware and
software implementation allows users to feel connected without being connected to their
smart devices. Within this report, you can find all details surrounding the creation of our
project, our subsystems, and the results

i



Contents

1. Introduction 1

1.1 Objective 1

1.2 Background 1

1.3 Physical Product 2

1.4 High-Level Requirements 3

1.5 Block Diagram 3

2 Design 5

2.1 Power Subsystem 5

2.1.1 5V Power Supply 5

2.1.2 Voltage Regulator 5

2.2 LED Display Subsystem 6

2.2.1 WS2812B Addressable LEDs 6

2.3 Audio Reaction Subsystem 6

2.3.1 Microphone Sensor 6

2.4 Wi-Fi and Bluetooth Subsystem 7

2.4.1 ESP32 7

2.5 User Interface Subsystem 8

2.5.1 Web Application 9

2.6 Software 10

2.6.1 Sports Data Scraper 10

2.6.2 LED Driver 10

3 Verification 12

3.1 Successful Verification 12

3.1.1 LED Display Subsystem 12

3.1.2 Audio Reaction Subsystem 13

3.1.3 User Interface Subsystem 14

3.2 Unsuccessful Verification 16

3.2.1 Wi-Fi Subsystem 16

4. Costs 17

4.1 Parts 17

4.2 Labor 18

5. Conclusion 18

5.1 Accomplishments 18

5.2 Uncertainties 18

ii



5.3 Ethical considerations 19

5.4 Future work 19

References 21

Appendix A 23

iii



1. Introduction

1.1 Objective

Smartphones have become a central part of our society in America over the past decade. As
of last year, 96% of Americans owned a cell phone, and 81% of the population owned a
smartphone [1]. As a result, we have become nearly dependent on using smartphones to
obtain information, stay connected to social circles, and communicate. As of 2019, people
have been found to check their phones an average of 96 times a day, a number that has
increased by 20% over two years prior [2]. Among these occurrences, sports apps are
among the most common - a Capgemini study found that 69% of sports fans utilize
smartphone technology to enhance their sports following [3]. Although, this great ability
has brought with it a few negatives, specifically with the exposure to blue light. Studies have
found that an excessive amount of blue light exposure can lead to daytime fatigue and a
disruption of one’s circadian rhythms. Furthermore, blue light can cause damage to the
retina, leading to macular degeneration. The same studies found that children and
adolescents are most susceptible to this damage, since their eyes are not as developed [4].

At the start of the project, our team set out to provide fans with a fast and real-time sports
experience without the use of a device that emits blue light. It was crucial for us to create
such a product while still performing as well as a sports app such as ESPN. We successfully
completed this by creating a wall-mounted LED display that is interfaced with a
Wi-Fi-supported microcontroller. Using a local network connection, the device can scrape
the score and game information from the internet. Additionally, a user interface web
application was developed, allowing users to easily choose their favorite teams and
customizations.

1.2 Background

Many media companies, such as ESPN, Yahoo!, and FOX, have developed their own sports
apps within the last 10 years. These apps allow the user to check the scores or even stream
the game directly within the given app. As stated according to [3], 69% of sports followers
utilize these platforms to follow their teams. The ESPN app itself has 70 million downloads
and 2 million daily active users [7].  At the start of this project, there were no viable
products on the market that enable a user to follow their teams outside of an app or
website. The functioning prototype of our scoreboard has the potential to change that.

Since the beginning, there was an excellent opportunity to give fans a new method for
following their favorite teams because of the ability to utilize an API to grab sports scores.

1



We have tested our system modulary, checking that information from an actual sports game
is being delivered. The result is an end-to-end project that displays information accurately
and quickly. With this scoreboard, every sports fan can have a unique and high-quality
fandom experience without needing to pick up their phone.

1.3 Physical Product

Fig. 1. Front of Scoreboard Appearance

Fig. 2. Physical Design of Back Side of LEDs

Fig. 3. Physical Appearance  of Inside of Scoreboard

2



After talking with the machine shop, the physical design of our scoreboard was determined
to be constructed of wood. The LED Display has dimensions of 26”x10” and there is a 1”
wood barrier on each side of the scoreboard to allow for access to the LED’s in order to
replace or perform work on them. The power supply we used for the device has dimensions
of 8”x4.5”x2” and is connected through the back of the device. All components within the
device are accessible through the back. With the current design, we have a workspace
inside of the scoreboard with dimensions 3 ¾”x10”x26”. Within these dimensions, we have
to store the microphone, the microcontroller, and power supply. The machine shop stated
that they need to visualize our parts before they can come up with a definitive drawing of
how the device will look. Figures 1, 2 and 3 show how the physical scoreboard looks from
external and internal points of view.

1.4 High-Level Requirements

● The scoreboard operates at a latency no greater than 30s [11] with a 2.4 GHz band,
and it displays the correct score of the game at run-time.

● The scoreboard system will be able to operate up to 15 amps to fit standard
electrical outlets in the U.S. The Bluetooth LE protocol must transmit data at a speed
of at least 1 Mb/s.

● The scoreboard system must have a UI that is easy to navigate for the user. It must
allow the user to select their favorite team and customize LED interfaces using team
themes.

1.5 Block Diagram

In our design, the ESP32 acts as the brains of the design, enabling a web interface through
Wi-Fi, enough processing power to drive our LEDs and react to noise from the microphone
in real time, and a small form factor to fit within our enclosure. Our power system is
sufficient enough to power all of our LEDs and the sensors. Our enclosure, while not
displayed in the block diagram, is another crucial component. It looks clean while also
being light enough to be mounted on a wall. After fully implementing our project, there is
not much deviation from the original block diagram. The only difference is that our system
does not feature any Bluetooth. It was outside the scope of this course to send Wi-Fi
information via Bluetooth, as this would require the development of an Android
application.

3



Fig. 4. Block Diagram

4



2 Design

2.1 Power Subsystem

A power supply is required to power the LEDs, the microcontroller, and the microphone
sensor. We have 640 LEDs with a maximum power draw of 60mA per LED, for a total power
draw of 38.4A. This assumes that all of our LEDs are on at max intensity, which will never
be the case in our project. The ESP32 and microphone draw a negligible amount in
comparison. Therefore a 15A power supply is suitable, with the note that only 39% of our
LEDs can be on at maximum power at any given time.

2.1.1 5V Power Supply

We used a power supply with a built-in AC to DC converter that plugs into a standard US
wall outlet, just as planned. This supplied 5V power to each LED strip, the microcontroller,
and the microphone sensor. The power supply can be seen as the black box in Figure 3.

2.1.2 Voltage Regulator

We planned and attempted to use a voltage regulator as part of our PCB design, but due to
issues with the PCB the voltage regulator was never required. The ESP32 DevKit we used in
our final design accepts 5V voltage directly (it has a built in voltage regulator), making this
subcomponent irrelevant. The circuit design we used on the PCB can be seen below.

Fig. 5. Circuit Schematic for TI LM1117 Linear Voltage Regulator[6]

5



2.2 LED Display Subsystem

The LED Display acts as the main visual interface that displays the current score of the
game or record of the user’s favorite team. This subsystem interfaces with the power
supply to receive 5V power, and with the ESP32 to receive digital lighting instructions
through a GPIO pin.

2.2.1 WS2812B Addressable LEDs

We originally planned to use 600 WS2812B LEDs arranged in a 40x15 grid, but later
modified our design to include 640 LEDs in a 40x16 grid. We made this design change due
to having extra space at the bottom of the enclosure, and to give us a top and bottom border
with two rows of 5x7 text in the middle. The data pins were connected in serial as planned,
allowing us to easily map to control the lights as if it was a solid 40x16 display. Each strip
was connected to the 5V power supply in parallel, minimizing the power loss from
resistance. The final matrix can be seen back in Figure 1.

2.3 Audio Reaction Subsystem

The audio reaction subsystem makes the scoreboard an interactive highlight of the room in
group settings. This is utilized in our “sound border” animation setting, in which the top
and bottom borders light up relative to the volume of the room.

2.3.1 Microphone Sensor

We used the SparkFun Sound Detector to detect the room’s noise level. The sensor was
connected to the 5V power supply, and the audio pin was connected to one of the ESP32’s
GPIO pins. This gives us the raw audio signal, which we use to control how many of the top
and bottom row LEDs are turned on. The circuit for the detector can be seen below.

6



Fig. 6. Circuit Schematic for SparkFun Sound Detector

2.4 Wi-Fi and Bluetooth Subsystem

While called the Wi-Fi and Bluetooth subsystem, this subsystem also acts as the driving
microcontroller to control the lights, interpret microphone data, and interact with the user
through the web application and bluetooth connection. This subsystem interfaces with
every other subsystem. It interfaces with the power subsystem to receive 5V power, with
the LED display subsystem to send lighting information over the GPIO pins, with the audio
reaction subsystem to receive analog volume data over a GPIO pin, and with the user
interface subsystem through Wi-Fi 802.11.

2.4.1 ESP32

We decided to use an ESP32 chip as it has support for both Wi-Fi and Bluetooth built in, and
it has a dual core processor to handle both the connectivity and the application code. It is
limited to 520 kB of on-chip SRAM, but has support for external Flash and SRAM should our
code be larger. While we designed a PCB to incorporate the ESP32 chip (seen below in
Figure 7), we had difficulties getting the PCB to work properly. Our final design ended up

7



using an ESP32 DevKit instead. Another change from our design stems from the Bluetooth
compatibility. While we planned to use BLE to retrieve the Wi-Fi information from the user,
we instead decided to just hard code the information as the Blynk app we planned to use
did not function properly.

Fig. 7. EPS32 PCB Circuit Design

2.5 User Interface Subsystem

This subsystem is fully in software, and is how the user interacts with the device to change
their favorite team and control the visual settings. We originally planned for two user
interfaces, the main one being a web application connected to the ESP32 over Wi-Fi to
control the settings, and the second one a phone app called Blynk connected to the ESP32
over Bluetooth Low Energy to retrieve the Wi-Fi password for the network it will be
connected to. Our final design included only the web application.

8



2.5.1 Web Application

We created an intuitive web interface for users to communicate with the device. This is
where users tell the device who their favorite team is, what sport information they want
displayed, and what border style they want. We support 11 sports leagues, can display the
current game score, previous game score, or the team's record, and have three border
options (sound, static, or bouncing ball). The application runs on the ESP32’s server, and
users have to be on the same Wi-Fi network as the ESP32 to connect to it. The user
interface can be seen below in Figure 8.

Fig. 8. Web Application Screenshots

9



2.6 Software

The software is critical for retrieving and displaying the sports data. Originally, we planned
on accessing the ESPN API directly from the ESP32 chip and parsing the response there, but
we quickly ran into memory errors due to the large size of the responses and the limited
SRAM. We decided to create our own API server using Flask, which parses the ESPN API
and creates a small JSON file with only the information we need to send to the ESP32. This
flask server is what the ESP32 interacts with, as seen in Figure 9 below.

Fig. 9. Sports Data Flow

2.6.1 Sports Data Scraper

Our Flask server receives the league and team names from the ESP32 in the form of a GET
request, and uses this information to hit the necessary ESPN API endpoints. In this backend
we parse the long JSON to isolate the relevant information for our scoreboard. We return
the team’s primary and secondary colors, their record, the team they most recently played
and that game’s score, the team they previously played and that game’s score, and the
period/inning/quarter of these games. This resulting JSON is small enough for the ESP32 to
parse without running into memory errors.

2.6.2 LED Driver

Once the data is obtained from our custom API, it must be used to program the LEDs. Our
LED Driver allows us to write two rows of eight letters, with the top and bottom LED rows
being used as a border. This is the perfect length to display game scores and team
abbreviations. The driver software uses a bitmap dictionary of 5x7 characters to know
which LEDs to turn on for each character. The code logic for using the bitmap to draw a
character can be seen in Figure 10. Another important note is that our code keeps track of
the number of LEDs lit to ensure we don’t light more than 39%, satisfying our power supply
limitations.

10



Fig. 10. LED Driver - Single Character Logic

11



3 Verification

3.1 Successful Verification

3.1.1 LED Display Subsystem

Table 5 in Appendix A refers to the requirements and verification process for the LED
Display Subsystem. We were able to verify that all LEDs can display the full spectrum of
colors and be individually controlled by the ESP32. We wrote one script that lights the
matrix up with a looping rainbow gradient. Another script, shown in Figure 11,  was
written to individually power each LED and make them red. The successful result is shown
in Figure 12, showing the matrix after the script has finished.

Fig. 11. LED Display Verification Test Script

Fig. 12. LED Display Verification Result

12



3.1.2 Audio Reaction Subsystem

Table 4 in Appendix A refers to the requirements and verification process for the Audio
Reaction Subsystem. To properly determine if the audio sensor could properly differentiate
between different noise levels, a test script was written on the ESP32 that interfaces with
the LED matrix. Specifically, the test script programs a series of 40 LEDs to light up based
on the measured noise level. At the end of the script, the decibel level and number of LEDs
are printed. Figure 13 is the piece of code written to perform this test and Figure 14 is the
corresponding results. It is clear that the number of LEDs lit up is directly proportional to
the decibel level. It is also shown that the LEDs are only lit up only when a fan raises their
voice higher than normal talking volume. This successfully verified that the audio sensor
could differentiate between differing noise levels.

Fig. 13. Audio Reaction Verification Test Script

13



Fig. 14. Audio Reaction Verification Data

3.1.3 User Interface Subsystem

Table 3 in Appendix A refers to the requirements and verification process for the User
Interface Subsystem. To ensure that this subsystem allows for customization in terms of
sports and animations, each league was tested three times with three separate teams. Each
test run had a separate display between team record, current score and previous score.
Additionally, each test run had one of three animation modes between slow moving, static,
and sound border. The results displayed in Figures 15 and 16 are evidence that the
scoreboard system can properly display all teams from every league with every
customization option. The last column indicates a binary yes or no for a correct and
accurate display during the given test run. The following three images, Figures 17, 18 and
19, are three example displays of the different customization modes for baseball, basketball
and soccer.

14



Fig. 15. User Interface Verification Data - 1 of 2

Fig. 16. User Interface Verification Data - 2 of 2

Fig. 17. Current Game Score and Slow Moving Border

Fig. 18. Previous Game Score and Sound Border

15



Fig. 19. Team Record and Static Border

3.2 Unsuccessful Verification

3.2.1 Wi-Fi Subsystem

The Wi-Fi Subsystem represents the PCB that was designed to function the same way that
an ESP32-DevKit does. In the successful verifications of our project, we utilized the
ESP32-DevKit to host the UI server, drive the LEDs and program the audio sensor. We went
through three PCB rounds without success, including two rounds that were ordered
individually. In the first round, we were unable to solder the ESP32 module onto the PCB.
We realized that the main ground pin in the middle of the board was not properly aligned,
preventing a connection with the solder. In the second round, we determined that there was
no true ground on the PCB and power was never dissipating. This was discovered by
probing different power pads on the PCB. The longer the ESP32 was powered, the hotter it
would get. The third and final PCB arrived a day before our demo. The team worked as hard
as possible with a self-purchased soldering iron to solder the ESP32 chip onto the board,
but the iron was extremely thick. Ultimately, there was not enough time to complete the
final soldering. There was promising progress made, as the PCB was detected by the
computer when plugged in via micro-USB. However, we were unable to successfully flash
the ESP32 with MicroPython and were forced to go back to the ESP32-DevKit. Figure 20
shows the final PCB attempt, with all of the components soldered onto the board.

Fig. 20. Final PCB Attempt

16



4. Costs

The grand total for this project is a combination of the costs for parts and labor. Our grand
total for making this project is approximately $30,250.00.

4.1 Parts

The costs for the parts of this project are broken down in Table 1. As with many projects,
our group did not have all of the parts that we needed originally. Mistakes happen, and new
findings result in the continuous order process for parts in projects of this scale. Therefore,
our total for parts will not match the total for parts from the design document. Our final
cost of parts was $245.50. Our initial estimate for this project was that parts would be
$124.45. We therefore spent about double what we had budgeted, but we are happy with
our results and this is not a problem.

Table 1. Parts Costs

17



4.2 Labor

In Table 2, the labor costs of the project are broken down on a person by person basis and
summed up at the end to give us the total cost of labor for the group. We assumed a rate of
$40/hour for the project as there is a large software engineering component to our work.
We assumed that for the rest of the 10 weeks, we will all be contributing about 10
hours/week to the project. Using these statistics, we came up with our total labor costs to
be $30,000.

Table 2. Labor Costs

5. Conclusion

5.1 Accomplishments

Our team was able to put together a fully functioning smart sports scoreboard, composed of
multiple systems integrated together as described above. Our device is able to display the
scores, both past and present, and records of teams across 11 leagues. We have achieved
end-to-end functionality from an ESPN API to Flask to ESP32 server to LED matrix driver
that results in a user being able to get real time updates for their favorite team without
having to check their mobile device. We have also made this device to have a smart and
intuitive user interface which is easy to understand, customize, and use for individuals
anywhere in the world.

5.2 Uncertainties

As with any project challenges occurred during this project. Challenges present
opportunities to learn, and this is the way our group chose to attack these. Some of the
notable challenges we faced were with PCB design, Bluetooth, and low on chip memory. Our
group used an ESP32 Dev Kit in the final project and was consequentiality unable to use a
PCB which was individually designed. We express ordered 2 boards with our own money,
but were unable to get either working for the demo. Regardless of the outcome our group
learned about using Eagle software and soldering in depth. These were great takeaways
that will help our group in the future. Bluetooth was initially a portion of our design that we
eventually removed after we realized that its incorporation was outside of the scope of this

18



project. Low on chip memory initially resulted in occasional crashing of the board, but our
group was able to find workarounds so that this would not be a problem for the user.

5.3 Ethical considerations

We as a group, in accordance with the IEEE Code of Ethics, understand that it is our
responsibility to commit ourselves to the highest ethical and professional standards in
creating this device. In particular, our device is responsible for “hold(ing) paramount the
safety, health, and welfare of the public” [11]. As a Smart Sports Scoreboard, further
versions of the product may include sports gambling features so that users may stay up to
date with betting odds on games that they are following. Any sports betting features do not
have the ability to make wagers. These features are specifically for entertainment purposes.
We as a group only condone sports gambling where it is done legally in states that allow it,
and only when it is done responsibly by the individuals making the wagers.
Our device also strived “to treat all persons fairly and with respect” [11]. The purpose of
our device is to provide real-time information in a visually appealing way to the user, so
that they may spend less time on their smart devices and more time honed in on what is
happening around them. We, in no way, intend to alter the information the user receives,
and only hope to provide the user with true information. Therefore, we strived to treat all
persons, teams, and players being represented on our device fairly and with the utmost
respect.

It is our responsibility as a group to hold each other accountable in “striv(ing) to ensure
this code is upheld by colleagues” [11]. We, in accordance with the code of ethics,
supported our teammates and continually followed up with each other to ensure that we
upheld conduct of the highest standard. No member of the group behaved unethically, and
thus no retaliation was present against individuals since no one was to report a violation. It
is our responsibility in creating a device to make sure that positive value is provided to the
world, and this is what we did.

5.4 Future work

There are three areas of future work which the group sees as a possibility for expansion of
the project in the future. The first is implementing a cloud server. Right now, Flask needs to
be running locally for the device to work, but this cloud server would allow for a much
more easily accessible experience from the user, where they could use the device from
anywhere. The second is displaying individual statistics. ESPN APIs that we used had the
information for individual statistics and in the future we could display this information on
the board. The third is being able to show the whole horizontal name of a team. For
example, Liverpool gets cut off at “Liverpoo”. We could add an animation to scroll through
the team's letters to avoid confusion for users. It is important to note that the second and

19



third were not done for this project because at the end of our project timeline, the group
shifted focus away from software development and totally towards PCB design in attempt
to create a working board.

20



References

[1] Pew Research Center, Mobile Fact Sheet, Pew Research Center, June 12, 2019.
Accessed on February 15, 2021. [Online]. Available:https://www.pewresearch.org/
internet/fact-sheet/mobile/

[2] Asurion, Americans Check Their Phones 96 Times a Day, Asurion, November 21,
2019. Accessed on February 14, 2021. [Online]. Available: https://www.asurion.
com/about/press-releases/americans-check-their-phones-96-times-a-day/

[3] C. Gough, Sports fans using mobile apps worldwide 2019, by age, Statista, March 20,
2020. Accessed on February 14, 2021. [Online]. Available: https://www.statista.
com/statistics/1100567/sports-content-mobile-apps/

[4] F. Yanoga, Does blue light from electronic devices damage your eyes?, Wexner
Medical Center, June 13, 2019. Accessed on March 3, 2021. [Online]. Available:
https://wexnermedical.osu.edu/blog/blue-light-and-vision

[5] Random Nerd Tutorials, ESP32 Bluetooth Low Energy (BLE) on Arduino IDE,
Random Nerd Tutorials, June 4, 2019. Accessed on March 3, 2021. [Online].
Available: https://randomnerdtutorials.com/esp32-bluetooth-low-
energy-ble-arduino-ide/

[6] Texas Instruments, LM1117 800-mA, Low-Dropout Linear Regulator, LM1117
datasheet, February 2000. [Online]. Available: https://www.ti.com/lit/ds/symlink/
lm1117.pdf?ts=1615985306907&ref_url=https%253A%252F%252Fwww.google.co
m%252F

[7] K. Draper, ESPN Tries to Get With a Mobile, App-Driven World, The New York
Times, April 12, 2018. Accessed on February 15, 2021. [Online]. Available:
https://www.nytimes.com/2018/04/12/sports/espn-app.html

[8] OSHA, “CONSTRUCTION SAFETY & HEALTH.” [Online]. Accessed: 01-Mar-2021.
Available: https://www.osha.gov/sites/default/files/2018-12/
fy07_sh-16586-07_4_electrical_safety_participant_guide.pdf.

[9] IEEE.org, IEEE Code of Ethics, IEEE, 2021. Accessed on February 13, 2021.
[Online]. Available: https://www.ieee.org/about/corporate/governance/p7-8.html

21



[10] Espressif Systems, ESP32 Series, ESP32-WROOM-32 datasheet, Jan 2021. [Online].
Available: https://www.espressif.com/sites/default/files/documentation/esp32-
wroom-32_datasheet_en.pdf

[11] H. Regan, Spoiler Alert: Low Latency Crucial for Sports Apps, Wowza Media
Systems, May 22, 2017. Accessed on March 3, 2021. [Online]. Available:
https://www.wowza.com/blog/spoiler-alert-low-latency-crucial-for-sports-apps

[12] L. Podkalicki, eagle-libraries, ver 1.7. Accessed on March 4, 2021. [Online].
Available: https://github.com/lpodkalicki/eagle-libraries

[13] B. Stegner, “Do Monitor Refresh Rates Matter? Everything You Need to Know,”
MUO, 12-Feb-2021. [Online]. Available: https://www.makeuseof.com/tag/60hz-vs-
144hz/. [Accessed: 05-Mar-2021].

22



Appendix A

Table 3. Web Application Requirements and Verifications

Requirements Verification Verified
(Y/N)

1. The user must be able to
select from all available teams
from the following eleven
leagues: NFL, NBA, MLB, NHL,
College Basketball, College
Football, Premier League, La
Liga, Bundasliga, Serie A, and
Ligue 1.

2. The user must be able to
toggle between three
customization modes: display
the current score (if there is a
game in progress), most
recent score, or team’s record.

1.
a. Write software for the

web app that properly
parses the API
response containing
the list of teams,
storing the teams
alphabetically in the
form of a list.

b. One-by-one, select one
team from each sport
listed. The scoreboard
must display the final
score of each team’s
previous game.

2.
a. There will be a

dropdown menu that
allows the user to
select between modes.
Select each mode,
one-by-one, ensuring
that each mode
displays accordingly on
the LEDs.

b. Repeat step (a) for all
eleven leagues for
quality assurance.

Y

Y

23



Table 4. Audio Reaction Requirements and Verifications

Requirements Verification Verified
(Y/)

1. Must be able to
differentiate between
normal room talking
volumes (~60-65dB) and
yelling volumes
(~65-80dB).

1.
a. Test the sensor at a baseline

volume level (60-65dB)  and
record the sensor output.

b. Test the sensor at a yelling
volume level (65dB+) and
record the sensor output.

c. Ensure that there is an
observable (+/- 10%)
difference in the recorded
sensor output.

Y

Table 5. Addressable LEDs Requirements and Verifications

Requirements Verification Verifie
d (Y/N)

1. Each of the 600 LEDs can
operate at 36mA and are
visible from 5m away.

2. Each of the LEDs can display
the full spectrum of RGB
colors.

3. The LEDs can be individually
controlled by the ESP32 chip.

1.
a. Deliver 36 mA to the LED

and measure out 5
meters. Verify that the
LED is visible.

2.
a. Write a test script to

display a looping rainbow
gradient. Verify that the
entire spectrum is
displayed on each LED.

3.
a. Write a test script to light

up each LED individually
with the ESP32 and
ensure each light
successfully turns on.

Y

Y

Y

24


