More Than Just a Chopping Board

Final Presentation

About Us

Suzy

Rishabh

Richa

Introduction

Problem

Innovate on a simple yet sometimes dangerous common household chore (chopping vegetables) to improve daily cooking

Solution

Automated chopping board!

Features

Vegetable Detection We recommend "batonnet" Would you like to proceed with this style? Yes No

Chopping Style Recommendation

Different Chopping Styles

Actual Product

Block diagram

Power Supply

Requirements	Verification
Must supply at least 5.1V at 3A to the Raspberry Pi	
Must supply 12V at up to 3A to the linear actuator	Connect the power supply to an outlet and subsequently measure the power draw at the components
Should supply 12V at up to 3A to the 3 motors and their driver circuits	

Control Unit Overview

 Vegetable Recognition System + Edge Detection

 Power Supply

 Chopping Assembly

Control Unit Overview

Vegetable Recognition System + Edge Detection

Send commands to control the motion of the blade for the selected chopping style

ne Select and confirm selection. The finished chopping should match with the specified chopping

Vegetable Recognition System

Derived from medium.datadriveninvestor.com

Train + Test Using Keras framework NN

Derived from kaggle.com

Dataset with Fruits-360

+ Integration with Camera Module to snap a photo and identify the Vegetable on chopping board

Vegetable Recognition System

Edge Detection (Pre-motor control)

Detects Edge of Objects (CV2.canny)

Detects object size based on reference (quarter) + Calculates Pixel per Inch, displays object size

Returns the (x,y) coordinate to start the chopping motions

Edge Detection (Pre-motor control)

Full subsystem functionality tested

- The I/O Unit comprises the camera and the display unit
- This camera and display unit are powered by the power supply unit
- It also uses the control unit to implement user interaction through push buttons

Initial Camera Choice

Source: raspberrypi.org

Final Camera Choice

Source: amazon.com

Screenshots to show verification of requirements for the camera

Screenshots to show verification of requirements for the camera

Display screen used for the system

Source: waveshare.com

Push buttons used for the system

Source: moderdevice.com

- Regular push buttons were used to receive user input
- This was better choice than using a touchscreen display
- Disadvantages of using a touchscreen display
 - waterproofing the screen
 - heavy motions of the chopping assembly

Video to show the verification of the requirements for the display unit

Chopping Assembly

Chopping Assembly

Requirements	Verification
Should be able to exert the required amount of force to cut through a vegetable	Placing a weighing scale under the assembly without the blade to measure the force exerted
Must chop the vegetables within 4 minutes with 75% accuracy in dimension according to the chopping dimension standards set in French Cooking	Measure the chopped vegetables to see if they are the right size and measure the time taken to complete the chopping process for all the chopping styles offered by our system

Strengths

- Vegetable detection and chopping recommendations
- User can select chopping style
- Easy to clean
- Convenient and hassle-free chopping with minimal manual work

Weaknesses

Opportunities

Threats

<u>Strengths</u>

- Vegetable detection and chopping recommendations
- User can select chopping style
- Easy to clean
- Convenient and hassle-free chopping with minimal manual work

Weaknesses

- Only four chopping styles offered
- Takes 6 minutes to complete chopping process
- Expensive for the target market
- User safety is dependent on the user's common sense

Opportunities

Threats

<u>Strengths</u>

- Vegetable detection and chopping recommendations
- User can select chopping style
- Easy to clean
- Convenient and hassle-free chopping with minimal manual work

Weaknesses

- Only four chopping styles offered
- Takes 6 minutes to complete chopping process
- Expensive for the target market
- User safety is dependent on the user's common sense

Opportunities

- College students
- Daily cooking

<u>Strengths</u>

- Vegetable detection and chopping recommendations
- User can select chopping style
- Easy to clean
- Convenient and hassle-free chopping with minimal manual work

Weaknesses

- Only four chopping styles offered
- Takes 6 minutes to complete chopping process
- Expensive for the target market
- User safety is dependent on the user's common sense

Opportunities

- College students
- Daily cooking

<u>Threats</u>

- Meal prep kits
- Pre-chopped vegetables

Future Plans

More safety for the user and the system

- Add an emergency stop button
- Design a circuit breaker
- Improve water-proofing of the system

More options

- Include more chopping styles
- Train the system to recognize more fruits and vegetables

Future Plans (Contd.)

More efficient

- Use a multi-blade design that is able to chop the vegetables in the required dimensions with less cuts
- A conveyor belt system that carries the vegetables across the assembly.
- Reduce the total time taken to complete chopping and increase the overall efficiency.

Moonshot

• Make the device a refrigerator attachment similar to an ice cube dispenser that can dispense chopped vegetables for users.

Thank you!

We will now answer any questions you may have about our project