
Selective Listening

ECE 445 Design Document - Spring 2021

John Hammond, Bryce Tharp and Wei Yang Ang

TA: Evan Widloski

Contents

1 Introduction 2
1.1 Problem and Solution Overview 2
1.2 Visual Aid . 3
1.3 High-level Requirements . 4

2 Design 4
2.1 Block Diagram . 4
2.2 Subsystems . 5

2.2.1 Listener . 5
2.2.2 Binaural Headset . 5
2.2.3 Microphone Array . 6
2.2.4 Audio Codec . 6
2.2.5 Volume Control . 12
2.2.6 Audio Processing Unit . 13

2.3 DSP Code . 16
2.4 Tolerance Analysis - Latency . 21

3 Cost and Scheduele 22
3.1 Cost and Analysis . 22
3.2 Schedule . 23

4 Discussion of Ethics and Safety 24

5 Citations 24

1

1 Introduction

1.1 Problem and Solution Overview

Imagine you are in a noisy environment (a restaurant, concert venue, etc) and
you want to listen to one person or group in particular. For individuals who
struggle with hearing loss this can be a challenging situation, even with modern
hearing aids. Most hearing aid improvements are developed by corporations
that are shrouded in proprietary technology and are inaccessible to researchers
working on this complex issue. In addition, hearing aid research is particularly
difficult because there are not readily available hardware platforms that are
fast enough or suitable for real-time experiments. Our solution is to construct a
comprehensive, open-source hardware platform for general-purpose research use.

The listening platform we are designing in ECE 445 is a culmination of a
large body of research and development done by Ryan Corey and members of
the Augmented Listening Laboratory (Bryce Tharp and John Hammond are
members on the team). In the context of this course, we will build the sup-
porting hardware systems necessary to create a flexible listening platform and
showcase a solution to the Cocktail Party Problem - “the task of hearing a
sound of interest in a noisy auditory environment” [1]. We will use microphone
arrays composed of over a dozen microphones, a powerful audio processing unit
powered by an FPGA (Field Programmable Gate Array) and an audio mixing
board to tune the level of each source present in the system.

The solution we are developing for ECE 445 to solve the cocktail party
problem is particularly unique. No other listening device on the market today
comes with a real life mixing board to augment individual sounds in real time.
We have a suite of programmable logic with proven fast and accurate FIR filters
and we are leveraging a powerful DSP algorithm developed by Ryan Corey [2]
to improve listening technology for years upon the open source release of the
Augmented Listening Platform.

2

1.2 Visual Aid

Altera DE1
FPGA

1 2 3
ON

OFF

Source
1

Source
2

Source
3

A
Audio
Codec

Figure 1: User diagram

1: The binaural headphones will be worn by the listener in order to preserve
spatial cues. In this way, the listener will be able to naturally recognize noise
regardless of their orientation in the sound field.

2: The microphone array will consist of 14 digital MEMS microphones [2] di-
rectly connected to the FPGA GPIO pins. These microphones will help the
beamformer reduce noise more effectively.

3: The FPGA will be portable audio processing unit capable of filtering audio
and providing unique coefficients to construct the desired beamformer.

3

1.3 High-level Requirements

• The listener can distinctly hear each unique source one at a time in our
demo using a mixing board, and independently adjust the level of several
real-life sound sources.

• The total delay through our system should be no more than 10ms to avoid
disorientation.

• The binaural headphones must preserve spatial awareness and direction-
ality of all sources.

2 Design

2.1 Block Diagram

Figure 2 shows a block diagram of our entire system. The main components
to look at here are the microphone array and the audio processing subsystem.
Samples are fed from the microphones, through the FIR banks in the FPGA, and
back to the headphones for the user to listen to. This basic platform has many
uses, but for the sake of this class we will be showing the selective listening demo.

4

Figure 2: Block diagram of full listening platform

2.2 Subsystems

2.2.1 Listener

The listener is the user of our wearable microphone array and audio processing
system. They will wear a pair of binaural headphones and affix a microphone
array to their chest.

2.2.2 Binaural Headset

A binaural headset is simply a pair of headphones with a microphone positioned
at each ear. We will be using a readily available pair of binaural earbuds in our
design. The binaural headphones will serve two purposes. The user will listen
to the processed audio through the earbuds, and the microphones at each ear
will serve as a part of the complete microphone array. Most binaural headsets
have analog microphones at the ears, and we will also use a pair with analog
mics.

5

2.2.3 Microphone Array

The main microphone array will be a static grid of 14 small MEMS microphones.
These MEMS microphones have a built in ADC so they will connect directly to
the FPGA over I2S. We chose 14 microphones here to keep a total array size of
16, including the binaural microphones.

Each of our MEMS microphones comes on a small breakout board. We
chose to use these boards instead of directly soldering to the MEMS microphones
because they are very fragile, and a challenging package to work with. However,
these breakout boards themselves are not sufficient to create a full array. We
will be building a larger board to affix each breakout board to, and we will
daisy chain these larger boards together to form the complete array. A 16-pin
ribbon cable will connect each of these larger PCBs together, but the absolute
minimum size is 11 conductors. We chose 16 conductors because cables are
readily available.

The geometry of this array must be carefully designed for our beam former
and other future applications to work well. The shape of the array is not so
important as long as the mics are in fixed positions relative to one another.
Varying these positions significantly increases the complexity of beam forming
and we will not look to solve that problem with this demo. Inter microphone
spacing is the most important specification for the array.

Signal integrity and clock skew were our final considerations when defining
array specifications. Each microphone must be on the same sample clock and
bit clock to ensure samples are lined up correctly in time. By virtue of our daisy
chain design, each microphone will share the same conductor for both of these
clock signals, which will limit our skew to that caused by the wires themselves.
Our longest cable run will be from the end of the microphone array daisy chain
back to the FPGA, which will be no greater than 14 feet with the cables we
chose. We do not believe there will be a significant signal degradation over this
short distance at the modest frequencies audio signals use.

Requirements Verification

All microphones are synchronized to
the same bit/sample clock within a
single cycle

1. Connect oscilloscope to 4 mi-
crophones’ clock pins

2. Verify that clock skew is
within one period

2.2.4 Audio Codec

Our audio codec will be made up of four main components. First, we will have
a pre-amplifier to bring the binaural microphone outputs to line level. Then,
an ADC is needed to sample these microphones for processing on the FPGA.
Aditionally, a DAC will be needed to convert the filtered audio back to analog
to play on the headphones. Finally, there will be an amplifier at the output of
the DAC chip to allow the user to change the listening level.

6

A pre-amplifier circuit is needed to bias the two binaural electret micro-
phones and amplify their output voltage levels to line level. Most off the shelf
ADC ICs do not have a suitable amplifier circuit built in, and require an external
circuit to amplify mic level to line level. The pre-amplifier is made up mostly
of an op amp and supporting components. Figure 3 shows our premilinary
schematic. We have not selected resistor values for our op amp circuit (figure
3) because we have not yet measured the output level of the microphones. Op
amps are capable of a wide range of amplification levels so we are not concerned
about getting one that won’t fit our needs.

The audio codec system will also feature a pair of ADCs to complete our
input stage. These are necessary to sample our analog mics to create an I2S
stream to the FPGA. These ADCs will operate at our -10dBV line level input,
which comes from the pre-amplifier circuit. We have been careful to choose a
chip that complies with the 16-bit/48kHz I2S sampling our FPGA uses.

The first component of our codec’s output stage is a pair of DAC chips.
These chips take the 16-bit/48kHz I2S processed audio stream from the FPGA
and convert it back to analog to be played on headphones for the listener. They
will output at a nominal line level of -10dBV.

Finally, our output amplifier stage will function primarily to change the
output volume. We chose to utilize the same op amp IC as the pre-amplifier
for simplicity. This amplifier will use a simple two resistor amplifier circuit, but
with the ability for the user to change the output level. This amplifier will be
similar to the circuit in figure 3, but a potentiomenter will be inserted in the
design for volume control. We also have not picked exact resistor values here,
and we will make those decisions via experimentation on our first prototype.

7

Requirements Verification

Input pre-amplifier amplifies mi-
crophones to a line level between
0.75Vpp and 1.0Vpp.

This can be verified using an oscil-
loscope.

1. Play loud tone on speaker
near microphone to represent
maximum input volume

2. Use averaged oscilloscope
measured output to verify
level is between 0.75Vpp and
1.0Vpp

Output volume level does not ex-
ceed 85dB SPL

85dB SPL is the threshold for hear-
ing damage.

1. Play loud tone through input
microphones with no filtering

2. Place earbuds in headphone
measurement dummy ear
canals

3. Adjust output volume slider
to maximum

4. Ensure output does not ex-
ceed 85dB

Output signal noise floor does not
exceed 10bB SPL

1. Disconnect microphones from
board input

2. Place earbuds in headphone
measurement dummy ear
canals

3. Measure SPL

The pre-amplifier design we have chosen is based off of the standard non-
inverting amplifier design. The integrated chip in our pre-amplifier schematic is
the proven and robust TI RC4580. It is a dual operational amplifier chip which
will serve our need for two channels (right and left). As stated earlier, we still
need to measure the output voltage of the analog headphones, but once we do
we can calculate the operational amplifier gain needed to hit -10dBV.

Gain in a simple operational amplifier is calculated by:

Av =
Vout

Vin

Our design needs to output a voltage around line level (say 1V to simplify
the problem), if we assume the input voltage hovers around 100 mV, then:

8

Av =
1V

0.1V
= 10V/V

We can calculate the dB gain:

G = 20 log(10) = 20dB

As a result of this calculation, we can tune our resistor values to ensure we
build a pre-amplifier circuit with 20 dB gain. In a non-inverting amplifier a
good guideline for computing resistor values is:

Av = 1 +
R1

R2

The two outputs of the pre-amplifier shown below will connect to the VinR
and VinL of the ADC IC shown in Figure 5.

Figure 3: General Purpose Pre-Amplifier Design

9

Figure 4: ADC Schematic

10

Figure 5: DAC Schematic

11

2.2.5 Volume Control

Our platform will feature a volume control interface for the user. In this specific
beam forming demo, there will be four sliders: one will control the master
output volume level, and the other three will be used to adjust the volume level
of each individual source. Each slider is going to be sampled by a small AVR
microcontroller, and the resulting levels will be sent to the FPGA via I2C to
factor into our beam forming algorithm.

The volume sliders were very straightforward with regards to design. Sliders
like these are more specifically called fader potentiometers. We will place these
potentiometers between the Vref rail and ground, and connect the wiper pins
to the A/D pins on the AVR. Our only design considerations for these sliders
is the travel distance. A longer slider will give the user a greater resolution in
volume levels.

The microcontroller for this subsystem also has few requirements. We chose
to implement a microcontroller to sample the sliders to help take some of the
design complexity away from the FPGA board. The DE-10 Nano board does
feature A/D inputs that we could use, but writing code to use those would in-
crease the size of our code base for the main platform, which is already large
and difficult to manage. A quick program on the AVR micro will suffice to
bridge the interface between the FPGA board and the sliders. The sliders will
be sampled at a frequency of 1kHz to keep a responsive feel for the user.

Figure 6: Physical Diagram of Potentiometer Sliders [3]

Figure 7: Simple electrical circuit for Potentiometer Sliders

12

The Mixing Board will be soldered onto a PCB along with the Audio Codec
components. The potentiometer sliders output (pin 2 on figure 7) will directly
plug into the AVR digital pins. Those signals will be sent via I2C to the FPGA
GPIO pins.

Requirements Verification

Volume sliders should have at least
20 levels for fine control

1. Write small shell script to dis-
play volume level over ssh

2. Move slider and ensure that
volume increments in quanti-
ties of less than 5%

I2C interface is capable of sending
volume levels 1000 times per second

1. Prepare a 16kB binary file
2. Stream it over I2C from a shell
3. Use unix time to ensure the

time to send is less than 1 sec-
ond

2.2.6 Audio Processing Unit

The audio processing unit is the main computer of the Augmented Listening
Platform, a Terasic DE-10 Nano board. The primary component is the Altera
Cyclone V SoC Hard Processor System (HPS). The Cyclone V series of chips
have both an FPGA built in as well as a dual core ARM Cortex-A9 proces-
sor. This setup is significantly more powerful than modern hearing aids, and
allows users to prototype complex algorithms. The ARM processor is used to
interface with on board peripherals and run our DSP code. On the other hand,
the FPGA is used to accelerate FIR filtering, interface with I2S peripherals,
and record audio. Much of the FPGA codebase is taken from the Augmented
Listening Project, though we will be expanding the functionality and polishing
it for an open source release.

Like we mentioned above, the FPGA in our design serves a few purposes.
The most important is the FIR filtering acceleration. One of the main goals
of this platform is to be high performance and low latency, two areas in which
an FPGA/HPS architecture is usually beneficial. More specifically, we want
the ability to do time domain filtering with very sharp FIR filters (greater than
512 taps). Software only applications will usually utilize an FFT/IFFT to do
processing in the frequency domain because it is faster on a general processor.
However, with our time domain processing and dedicated FIR filter banks, we
should be able to achieve source to listener latency of around 5 ms. Figure 8
shows the signal flow from source to listener through the FIR bank, as well
as a calculation for overall latency. The filter outputs can either be recorded
individually or summed together.

13

John spent a significant amount of time designing the filter architecture
working as a part of the Augmented Listening Lab. This design requires sharp
filters to support as many applications as possible, including our planned se-
lective listening demo. However, the FPGA has a finite amount of logic units
(ALMs) and hardware multipliers. Specifically, our Cyclone V chip only has
224 hardware 18x18 bit multipliers. Clearly this small number of multipliers
would not be sufficient for a large number of basic FIR filters. Instead, we
have decided to leverage an open source low area FIR filter written by Gary
Gisselquist. This filter has two memories, one for taps and one for the samples
“shifting through.” A state machine iterates over these two memories and uses
a single multiply/accumulate unit to perform the convolution. This approach is
slow, but it is sufficiently fast for audio processing and only uses one multiplier
regardless of the length of our filter.

Another advantage of having such a low area filter is the ability to use full
IEEE-754 floating point math for all filtering. Our samples are 16-bit from the
MEMS microphones and ADCs, so it would be possible to just do 16-bit FIR
filtering. That is how the platform functioned in the past. However, researchers
will greatly appreciate the convenience of using floating point taps from an end
user perspective. Fixed point systems are comparatively limited in dynamic
range, and floating point numbers are easier to understand. The Cyclone V is
still able to create 112 32-bit multipliers so we are not concerned about the area
tradeoff of this number system. John wrote a pair of SystemVerilog modules at
both the input and output of the system to convert between 16-bit fixed point
and 32-bit IEEE-754 floating point numbers.

Aside from the actual filters, the FPGA has logic in place to dynamically
update the filters from the ARM HPS. A program running on the linux system
can interact with the memory mapped Avalon interface to write tap coefficients
to the filters. We will speak more about this process in the following paragraph,
and also discuss more in depth some of the challenges of this approach.

The ARM HPS is the other half of the audio processing unit. While the
FPGA is mainly for FIR acceleration, the ARM CPU is interfacing with out-
side devices and controlling the FPGA logic. Our ARM HPS is running linux,
specifically a fork of Yocto linux called rsYocto. The linux system is responsible
for networking, memory and storage management, and providing a platform
for our C and python code to interface with the FPGA hardware. Section 2.3
describes how our python script will actually solve for the beam former, and
figure 9 shows how some of our C code wraps around the python script.

A big challenge of this hybrid ARM/FPGA design is dealing with virtual
memory. The ARM Cortex-A9, like most high performance modern processors,
uses virtual memory through paging. This is great from a system security
perspective and efficiency in memory allocation, but it presents challenges when
we have one device (HPS) using virtual memory addresses and another (FPGA)
using physical memory addresses. Thankfully, linux allows us to use mmap()

to translate between virtual and physical addresses, and /dev/mem to touch
memory directly.

14

The software running on the HPS is generally C/C++, python, and bash.
We need to split our code base like this because python is not usable for doing
low level memory operations (refer to the last paragraph). On the other hand,
C/C++ is not great at doing high level signal processing and linear algebra
math. Although projects like OpenBLAS exist they do not match the usability
of something like python or MATLAB. Therefore, we decided to use C/C++ pro-
grams for memory access, python scripts for doing the actual signal processing
work, and bash to glue everything together. A future goal of the project is to
consolidate everything into either C/C++ or python but that has proven to be
very difficult.

Requirements Verification

Source to listener latency must be
less than 10ms 1. Audio source is connected to

a speaker and oscilloscope
2. Audio output is also con-

nected to the oscilloscope
3. Observe latency between au-

dio captured and processed
through the system and the
reference signal

Filters should be able to achieve
-6dB attenuation on suppressed
sources

1. Record three sounds being
played at 900Hz, 1000Hz,
1100Hz

2. Plot energy spectrum
3. Ensure that suppressed

sources are at least 6dB down
from peak of main source

50ms time to calculate filter coeffi-
cients 1. Set up selective listening demo

2. Run python script with unix
time command. This will
measure time elapsed

No pops when reloading filter banks
1. Take sound recording
2. Observe in audacity and en-

sure waveform maintains am-
plitude through filter transi-
tions

15

Ability to use python to compute fil-
ter coefficients 1. Python code should be able to

get samples from SD card
2. Python code will export filter

coefficients to a .csv file
3. Bash script will glue together

the Python/C++

2.3 DSP Code

The signal processing algorithm that we will be programming comes from Ryan
Corey’s PhD Thesis [2]. What follows is a mathematical overview of the algo-
rithm.

The algorithm that is running on the ARM core of the Audio Processing
Unit is designed to determine a unique set of coefficients to be loaded into the
FIR filter banks to perform a signal processing operation called “beamforming”.
Beamforming is a speech audio process that can extract unique sounds in a noisy
room. If we want to listen to a single source or multiple specific sources, we
have to calculate the FIR filter coefficients for each source. The problem can be
described by the following:

Let’s say there exists N sound sources and M microphones, and additive noise
in the system. In addition, we can also assume the sources and microphones are
static so that the system is Linear-Time Invariant (LTI). If the system is LTI
then we can describe it using convolution:

Xm =
∑N

n=1(am,n ∗Sn)(t) + Zm(t), for m = 1,...,M

In the case of our beamformer, it is also an LTI system. Each signal has its
own FIR filter, and since the system is linear we can sum the outputs of each
filter:

y(t) =
∑M

m=1(wm ∗ xm)(t)

However, since we need two signals (for the left and right ears) we need two
beamformers composed of multiple different filters per signal.

y1(t) =
∑M

m=1(wm1 ∗ xm1)(t)

y2(t) =
∑M

m=1(wm2 ∗ xm2)(t)

16

We can think about this problem in the frequency domain and create an
“Acoustic Model”. The system can be described in terms of matrix multiplica-
tion.

Acoustic Model:
~X(Ω) = A(Ω)~S(Ω) + ~Z(Ω)

All of the above terms can be described as matrices (for instance ~A(Ω) can be

represented as an M x N matrix and ~X(Ω) can be described as an M x 1 matrix).
In the same way we can represent the beamformer:

(Ω) = W (Ω) ~X(Ω)

Let’s first consider the simplest case: we want to separate all N sources such
that M = N and no noise exists. We simply invert the channel matrix (A) to
retrieve the sources back:

W(Ω) = A−1(Ω)

= A−1(Ω) ~X(Ω)

= A−1(Ω)A(Ω)~S(Ω)

= ~S(Ω)

Next, let’s add microphones such that M > N and add noise to the system.
The ”Power Spectral Density” of the noise must be considered. This density
can be described as a co-variance matrix for random noise signals. One type of
beamformer we will use to mathematically describe the system is a ”Linearly
Constrianed Minimum Variance” (LCMV) beamformer (however it should be
noted that we can interchange this beamformer with others - the theory is very
similar). The equation to describe such a beamformer is:

W(Ω) = [AH(Ω)
∑−1

Z (Ω) A(l)]−1AH(Ω)
∑−1

Z (Ω)

The LCMV is a ”left inverse” of A meaning that:

W(Ω)A(Ω)~S = [AH(Ω)
∑−1

Z (Ω) A(Ω)]−1AH(Ω)
∑−1

Z (Ω) =

~S

17

One advantage of using the LCMV is that it minimizes noise power (remem-
ber the ”Power Spectral Density” we included in the M > N case with additive
noise). This beamformer blocks the noise power without affecting the channel
noise.

In our demonstration we will have multiple sources, which means we will
require multiple beamformers. However, let’s consider a single source beam-
former. A is the channel matrix and is commonly considered as the Acoustic
Transfer Function.

~X(Ω) = ~A(Ω)S(Ω) + ~Z(Ω)

The single target LCMV beamformer is commonly known as the ”Minim-
mum Variance Distortionless Response” (MVDR) beamformer:

W(Ω) =
(~AH(Ω)

∑−1
Z (Ω))

(~AH(Ω)
∑−1

Z (Ω) ~A(Ω))

Now, let’s scale this MVDR beamformer equation by the Acoustic Transfer
Function of one of the microphone sources:

W (Ω) = A1(Ω)
(~AH(Ω)

∑−1
Z (Ω))

(~AH(Ω)
∑−1

Z (Ω) ~A(Ω))

The advantage of using this source microphone is that the filter will work
regardless of how we scale the transfer function vector (by multiplying A1(Ω) by
any scalar). In other words, the beamformer output is estimating the sound that
would have been recorded by the microphone if no noise was present. Regardless
of the beamformer we choose, the relative transfer function that is substituted
into the beamformer formulas will yield the same result as scaling the output
to match the reference microphone.

In the system we are building, there are fourteen other microphones located
on the listener’s body. These extra microphones estimate the unwanted noise at
each ear and cancel it out without changing the source the listener wants to hear.

X1(Ω) = A1(Ω)S(Ω) + Z(Ω).

Y1(Ω) = X1(Ω) − Z(Ω)
≈ A1(Ω)S(Ω)

The beamformer we are building will be a ”multiple-output” beamformer.
Each source must be scaled by its own transfer function in each ear:

18

Wleft(Ω) = A =

A1,1(Ω) 0
. . .

0 A1,N (Ω)

[AH(Ω)
∑−1

Z (Ω)A(Ω)]−1AH(Ω)
∑−1

Z (Ω)

Wright(Ω) = A =

A2,1(Ω) 0
. . .

0 A2,N (Ω)

[AH(Ω)
∑−1

Z (Ω)A(Ω)]−1AH(Ω)
∑−1

Z (Ω)

In addition to the binaural beamforming, we are building a binarual ”remix-
ing” system. This means the left and right outputs should be identically scaled
combinations of the source components:

Y1(Ω) =
∑N

n=1 GnA1,n(Ω)Sn(Ω)

Y2(Ω) =
∑N

n=1 GnA2,n(Ω)Sn(Ω)

These mixing levels can be built into the binaural beamformer:

W(Ω) =

[
G1A1,1(Ω) . . . GNA1,N (Ω)
G1A2,1(Ω) . . . GNA2,N (Ω)

]
[AH(Ω)

∑−1
Z (Ω)A(Ω)]−1AH(Ω)

∑−1
Z (Ω)

On the FPGA we have constructed FIR filters that can be reloaded with
new coefficients. Using this logic we will beamform each source separately, then
scale and add up the outputs.

In order to estimate the Acoustic Transfer Function A(Ω) we will play a
known pilot signal at each source location. This Transfer Function is the Fourier
Transform of cross-correlation:

~A(Ω) =
~X(Ω)S∗(Ω)
S(Ω)S∗(Ω)

With that transfer function in hand we can play a pilot signal at each source
and use the beamforming algorithm described to calculate the coefficients to
load into the FIR filter banks. The software algorithm will be written in Python.

Figure 8 shows the forward model of signals propagating through the Au-
dio Listening Platform. There are sixteen total microphones (two analog and
fourteen digital) that listen to audio from the sources present. Then the analog
stream is boosted to line level and converted to a digital format for processing.
The FPGA logic contains the FIR filters that will process the coefficients com-
puted from software on the ARM core. Finally, the signals will be augmented by
the beamformers and converted back to analog signals for the listener wearing
the binaural headphones.

19

Figure 8: Forward Model of signals propagating through the Augmented Lis-
tening Platform

Figure 9: High level overview of the ARM beamforming program

20

2.4 Tolerance Analysis - Latency

One overarching goal of our project is to maintain a short source to listener
latency. Research suggests that audio latency greater than 10ms will be notice-
able by a listener and can be disorienting. To stay below this figure, we have
made decisions at every step in our design process to minimize latency. In most
signal processing systems, the largest source of latency is processing the audio.
This can come in the form of FIR filters, IIR filters, or FFT/IFFT and freqency
domain processing. Below we will show some of the steps in processing audio,
as well as a breakdown of how we minimized latency.

Our platform can be represented as a linear system, as shown below. Each
element in this system has some delay associated L. Yn(t) is the output of each
filter, Hn(t) is the impulse response of each filter, and Xn(t) is the signal coming
from microphone n.

Y1(t) = X1(t) ∗H1(t)

Y2(t) = X2(t) ∗H2(t)

...

Yn(t) = Xn(t) ∗Hn(t)

Notice that we have chosen to do time domain convolution to implement
our FIR filtering rather than frequency domain multiplication. Using an FPGA
affords us this luxury. The filtering latency from our FIR banks is directly
proportional to the number of taps in our filters. Below, N is the number of
taps, H[n] is the discrete-time impulse response, Fs is the audio sample rate,
X[n] is the input signal, and Y [n] is the output signal.

L = (N − 1)/2 · (1/Fs) (1)

This latency L is referred to as the group delay of the filter. Keep in mind this
only holds true with a linear phase FIR filter, which has symmetrical coefficients.
Applying equation 1 nets us a group delay of:

L = (512 − 1)/2 · (1/Fs) = 5.3229 ms

This latency figure is well within the perceptible 10ms. We are able to
generalize the latency of any arbitrary filter because our design is strictly using
linear phase filters. Linear phase filters are always symmetric about the middle
of the filter, so we consider an output sample is valid once its input sample
reaches the center of the filter.

Unfortunately, this group delay is an unavoidable consequence of using long,
linear phase filters at relatively slow sample rates. Our FPGA implementation

21

is more than fast enough to do time domain filtering at 48kHz or faster. Below is
a calculation showing the time to perform a single convolution. N is the number
of taps, Fclk is the FPGA system clock, and M is the number of multiply/adds.

T = (1/Fclk) · (N/M) = 10.240 µs

This time is more than fast enough to complete a 512-length convolution
within one clock cycle at 48kHz. We chose to use a single multiply/add unit to
minimize area, however we could add additional units to significantly increase
speed at the cost of area. Using an FPGA gives us the ability to do filtering
now and adapt to even more sophisticated filters in the future.

3 Cost and Scheduele

3.1 Cost and Analysis

Our fixed development costs are estimated to be $40 per hour, 15 hours per
week for three people. We plan to finish 70% of our design this semester:

2 · $40 · 15 · 16/0.7 = $13, 440 (2)

Our parts cost is estimated to be $307.75 for the whole system, hence our
total cost is $13,747.75.

Figure 10: Parts List

22

3.2 Schedule

Figure 11: Detailed Schedule

Cr
ea Selective Listening
Enter Company Name in cell B2. 1

Th
e
Ce 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9
Th
is TASK START END M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S

Ce
ll Design + Build

R
o Microphone Array 3/1/21 3/29/21

Pre‐Amplifiers / Amplifiers 3/15/21 4/5/21

ADC 3/15/21 4/5/21

DAC 3/15/21 4/5/21

Volume Sliders 3/15/21 4/5/21

Micrcontroller Integration 3/30/21 4/12/21

FPGA Filter Design 3/20/21 4/12/21

Software 3/1/21 4/12/21

Testing + Debugging 4/12/21 4/28/21

Th
e Class Assignments

Design Document 3/1/21 3/4/21

Design Review 3/2/21 3/10/21

Teamwork Evaluation 1 3/17/21 3/17/21

First Round PCBway Orders 3/1/21 3/15/21

Simulation + Soldering Assignment 3/15/21 3/19/21

Second Round PCBway Orders 3/15/21 3/25/21

 Individual progress reports 3/22/21 4/5/21

Mock demo 4/12/21 4/23/21

Demonstration 4/23/21 4/28/21

Final Paper 4/17/21 5/5/21

This is an empty row
Th
is

Mar 29, 2021 Apr 5, 2021 Apr 12, 2021 Apr 19, 2021 Apr 26, 2021 May 3, 2021

Mon, 3/1/2021

Mar 1, 2021 Mar 8, 2021 Mar 15, 2021 Mar 22, 2021

Figure 12: Gantt chart for schedule

23

4 Discussion of Ethics and Safety

Our project could present multiple safety hazards. One such hazard is our
power system. We are using a rechargeable battery pack that could cause a fire
hazard if not cared for properly. If the power system experiences any physical
damage there poses a risk of short circuiting the device, or overcharging the
device [4]. If the device is short circuited or overcharged it could overheat and
damage the board or even pose a fire hazard. Before plugging our battery pack
into our system (i.e. the FPGA) we will test the battery pack to ensure it
doesn’t exceed 6V. Another risk that could pose a safety hazard to users of our
platform is hearing damage. The users of our device will be wearing binaural
headphones, with microphones located close to the ear canal. We will ensure
that listeners using our product will not experience noises exceeding 85 dB [5].
One key activity that contributes to hearing loss is listening to sounds through
headphones that are too loud [6]. Our team will take measures to eliminate the
risk of hearing damage while using our platform.

As a team, we fully understand the importance of upholding the IEEE Code
of Ethics and we take it very seriously [7]. We strive to develop our platform
to be constructed sustainably, and to protect our users privacy in accordance
with IEEE Code of Ethics #1. Our project, beyond ECE 445, will be released
as an open source platform for hearing aid researchers and manufacturers to
take advantage of to improve accessibility of hearing aid technology to benefit
all communities. No user’s audio data will be collected on our system in accor-
dance with IEEE Code of Ethics #5 and #6. We will take every precaution to
uphold the IEEE Code of Ethics as we develop and release our platform to the
public to benefit people who struggle with hearing impairments. The users of
our platform will face no discrimination of any form in accordance with IEEE
Code of Ethics #7.

Our mission as a team is to make the most accessible and safe open-source
hearing aid technology to researchers and hobbyists worldwide. We strongly
believe that our system can contribute significant welfare to the public in a
variety of life-changing applications people use everyday.

5 Citations

1. “Cocktail Party Effect.” Wikipedia, Wikimedia Foundation, 2 Mar. 2021,
en.wikipedia.org/wiki/Cocktailpartyeffect.

2. Corey, Ryan Michael. “Microphone Array Processing for Augmented Listen-
ing.” University of Illinois at Urbana-Champaign, 2019.

24

3. “PS60-20MC1BR10K BI Technologies / TT Electronics: Mouser.” Mouser
Electronics, www.mouser.com/ProductDetail/BI-Technologies-TT-Electronics/PS60-
20MC1BR10K/?qs=sGAEpiMZZMukHu252BjC5l7YeT2c9CjZIR0dvTECv0j98Y3D.

4. Back, Jerry. “LITHIUM BATTERY SAFETY.” EHS, www.ehs.washington.edu/system/files/resources/.

5. Rai, Amrit, and Naomi Dainty. “6 Simple Ways To Check If Your Head-
phones Are Too Loud.” Deafblind UK, 18 Aug. 2020, deafblind.org.uk/6-simple-
ways-to-check-if-your-headphones-are-too-loud/.

6. “Do Headphones Increase Your Risk of Hearing Loss? Facts You Should
Know.” Oklahoma Hearing Center, 17 Feb. 2021, okhc.org/headphones-hearing-
loss/.

7. “IEEE Code of Ethics.” IEEE, www.ieee.org/about/corporate/governance/p7-
8.html.

25

