
Smart Sports Scoreboard

ECE 445 Design Document
Michael Manning, Max Mitchell, and Matthew Rosenbaum

Group 49
TA: Daniel Vargas

2/26/2021

1 Introduction

1.1 Objective

Smartphones have become a central part of our society in America over the past decade. As of
last year, 96% of Americans owned a cell phone, and 81% of the population owned a smartphone
[1]. As a result, we have become nearly dependent on using smartphones to obtain information,
stay connected to social circles, and communicate. As of 2019, people have been found to check
their phones an average of 96 times a day, a number that has increased by 20% over two years
prior [2]. Among these occurrences, sports apps are among the most common - a Capgemini
study found that 69% of sports fans utilize smartphone technology to enhance their sports
following [3]. Although, this great ability has brought with it a few negatives, specifically with
the exposure to blue light. Studies have found that an excessive amount of blue light exposure
can lead to daytime fatigue and a disruption of one’s circadian rhythms. Furthermore, blue light
can cause damage to the retina, leading to macular degeneration. The same studies found that
children and adolescents are most susceptible to this damage, since their eyes are not as
developed [4].

Our team strives to provide fans with a fast and real-time sports experience without the use of a
device that emits blue light, such as a phone or television. In order to do this, we will develop a
wall-mounted LED display, interfaced with Bluetooth and Wi-Fi, that allows users to specify
their favorite sports teams and display information about the team’s ongoing games. The device
will use a Wi-Fi chip to connect to the home’s internet and scrape the score and game
information from the web. There will also be a Bluetooth application that allows users to easily
choose their favorite teams as soon as the scoreboard system is taken out of the box.

1.2 Background

Many media companies, such as ESPN, Yahoo!, and FOX, have developed their own sports apps
within the last 10 years. These apps allow the user to check the scores or even stream the game
directly within the given app. As stated according to [3], 69% of sports followers utilize these
platforms to follow their teams. The ESPN app itself has 70 million downloads and 2 million
daily active users [7]. Although, outside of apps, websites, and television, there are no viable
products on the market that enable a user to follow their teams in a unique way.

With the ability to scrape the web or utilize an API to grab sports scores, there is an excellent
opportunity to give fans a new method for following their favorite teams and scores. We plan to
test our system modularly, checking that information from an actual sports game is being
delivered. Accomplishing these feats will give every sports fan a unique and high-quality fandom
experience without needing to pick up their phone.

1

1.3 Physical Design

Fig. 1. Physical Design of Front of Scoreboard

Fig. 2. Physical Design of Back of Scoreboard

2

Fig. 3. Physical Design of Side of Scoreboard

After talking with the machine shop, the physical design of our scoreboard is going to be
constructed of wood. Our LED Display is going to have dimensions of 26”x10” and there will be
a 1” wood barrier on each side of the scoreboard to allow for access to the LED’s in order to
replace or perform work on them. The power supply we plan on using for the device has
dimensions of 8”x4.5”x2” and is going to be connected through the back of the device. All
components within the device are going to be accessible through the back. The device is going to
be hung with angle brackets, or another mechanism that may work more properly. With the
current design we will have a workspace inside of the scoreboard with dimensions 3
¾”x10”x26”. Within these dimensions we will have to store the microphone, the PCB, and other
components. The machine shop stated that they need to visualize our parts before they can come
up with a definitive drawing of how the device will look.

3

1.4 User Interface Workflow

Fig. 4. User Interface Workflow Diagram

Above is a diagram for the user experience. This is the ideal workflow for the user and how the
device will operate starting from the first time they interact with it until the restart of the process.

1.5 High-Level Requirements

● The scoreboard operates at a latency no greater than 30s [11] with a 2.4 GHz band, and it
displays the correct score of the game at run-time.

● The scoreboard system will be able to operate up to 15 amps to fit standard electrical
outlets in the U.S. The Bluetooth LE protocol must transmit data at a speed of at least 1
Mb/s.

● The scoreboard system must have a UI that is easy to navigate for the user. It must allow
the user to select their favorite team and customize LED interfaces using team themes.

4

2 Design

In our design, the ESP32 acts as the brains of the design, enabling a web interface through Wi-Fi,
a Bluetooth connection to send over Wi-Fi password information, enough processing power to
drive our LEDs and react to noise from the microphone in real time, and a small form factor to fit
within our enclosure. Our power system is sufficient enough to power all of our LEDs and the
sensors. Our enclosure, while not displayed in the block diagram, is another crucial component.
It will look clean while also being light enough to be mounted on a wall.

Fig. 5. Block Diagram

2.1 Power Subsystem

A power supply is required to power the LEDs, the ESP32 chip, and the microphone sensor.
Both the WS2812B and ESP32 can be powered with 5V, and we will have 600 LEDs with a
maximum power draw of 60mA per LED, for a total power draw of 36A. This assumes that all of
our LEDs are on at max intensity, which would never be the case in our project. The ESP32 and
microphone draw a negligible amount in comparison. Therefore a 15A power supply will be
suitable, with the note that only 40% of our LEDs can be on at maximum power at any given
time. This subsystem must interface with the LED display subsystem, audio reaction subsystem,
and Wi-Fi and Bluetooth subsystem, providing constant power at 5V +/- 0.1V. If the power
supply were to malfunction, the entire device would fail.

5

2.1.1 5V Power Supply

We will be using a power supply with a built-in AC to DC converter that plugs into a standard
US wall outlet. This will allow for easy set-up for the users, who will plug the device into the
wall. It will interface with the LEDs, a microphone sensor, and ESP32 to provide power.

Fig. 6. Circuit Schematic for Constant Current Test Circuit where IL = .07/R3

6

Requirements Verification

1. Supply voltage output of 5V +/- 2%
power.

2. Can support load between .036A to
15A.

1.
a. Probe both terminals using an

oscilloscope.
b. Ensure output voltage is within

2% of 5V.
2.

a. Connect output of 5V power
supply to VDD of
constant-current test circuit
from Figure 6.

b. Change Rs from Figure 6 to
deliver a max of 15A. Measure
using a multimeter.

c. Measure output voltage with
an oscilloscope, ensure output
voltage is within 2% of 5V.

2.1.2 Voltage Regulator

We will be using a linear voltage regulator to supply 3.3V to the ESP32 from the 5V AC to DC
power supply. We will use the TI LM-1117 regulator to step down the voltage, ensuring that
3.3V is provided to the ESP32 while 5V is provided to the rest of the system components. The
addressable LEDs and microphone sensor both require 5V.

7

Requirements Verification

1. Supply 3.3V to ESP32 +/- 8.33% from
a 5V source. Maximum voltage for
ESP32 is 3.6V.

2. Operates at a current that does not
exceed 800mA.

3. Can maintain a thermal stability no
greater than 125℃.

1.
a. Probe both terminals using an

oscilloscope.
b. Ensure output voltage is within

8.33% of 3.3V.

2.
a. Connect VOUT from Figure 7 to

VDD of constant-current test
circuit from Figure 6.

b. Change Rs from Figure 6 to
deliver a max of 15A. Measure
using a multimeter.

c. Measure output voltage with
an oscilloscope, ensure output
voltage is within 8.33% of
3.3V.

3.
a. During verifications 2(a,b,c),

use an IR thermometer to
ensure that chip never reaches
a temperature above 125℃.

Fig. 7. Circuit Schematic for TI LM1117 Linear Voltage Regulator[6]

2.2 LED Display Subsystem

The LED Display will act as the main visual interface that displays the current score of the game
or record of the user’s favorite team. This subsystem will interface with the power supply to
receive 5V power, and with the ESP32 to receive digital lighting instructions through its GPIO
pins. If a portion of the LED strip were to fail, the rest of the device would function normally,
but with some LEDs non-operational.

2.2.1 WS2812B Addressable LEDs

We will be using two rolls of 5 meter, 300 pixel WS2812B LEDs. This gives us 600 LEDs to
work with at a resolution of about 1.5 LEDs per inch. If we do an array of 40x15, we have a
dimension of ~26 inches by ~9 inches. Each roll will be cut into 7 strips of 40 and one strip of
20, giving us 14 strips of 40 and 2 strips of 20. These will be arranged horizontally to the front of
the enclosure, with power connected to each horizontal strip to reduce loss from resistance. The
data pins will be serial, giving us an array we can easily map to control the lights as if they are a
40x15 display.

8

2.3 Audio Reaction Subsystem

The audio reaction subsystem makes the scoreboard an interactive highlight of the room in group
settings. It is quite common for sports fans to become vocal during close times or big plays, and
the scoreboard will listen to such moments and react accordingly. There may be a “sound level”
setting similar to that used at some stadiums, or an animation that occurs after the volume hits a
certain threshold. This subsystem interacts with the ESP32 to send the analog microphone
volume information via a GPIO pin, and with the power subsystem to receive 5V power. If this
subsystem were to fail, the rest of the device would function normally, just without audio
reaction in the lights.

2.3.1 Microphone Sensor

We will use a SparkFun Sound Detector or create our own microphone sensor to detect the
room’s noise level. The sensor takes 5V power so it can be powered by the power supply. It will
transmit the sensor data through one of the ESP32’s GPIO pins.

9

Requirements Verification

1. Each of the 600 LEDs can operate at
36mA and are visible from 5m away.

2. Each of the 600 LEDs are
programmable by the ESP32
microcontroller. and can be set to all
color gradients in hex form.

1.
a. Deliver 36mA to load by

changing Rs from the constant
current circuit of Figure 6. 5V
must be supplied to VDD from
a 5V power source.

b. Use a meter stick to measure
5m.

2.
a. Write a test script that iterates

over 600 LEDs. At each LED,
set color to ten different hex
color codes (for example: baby
blue is #89CFF0). If ten colors
are correct, then the given LED
is programmable.

b. Results will be kept on a grid
of 600 rows and 11 columns.
The first column is the LED #,
and the next 10 columns
correspond to the unique color.

Fig. 8. Circuit Schematic for SparkFun Sound Detector

10

Requirements Verification

1. Must be able to differentiate between
normal room talking volumes (~60dB)
and yelling volumes (~80-90 dB).

1.
a. Test the sensor at a baseline

volume level (60dB) and
record the sensor output.

b. Test the sensor at a yelling
volume level (80dB+) and
record the sensor output.

c. Ensure that there is an
observable (+/- 10%)
difference in the recorded
sensor output.

2.4 Wi-Fi and Bluetooth Subsystem

While called the Wi-Fi and Bluetooth subsystem, this subsystem also acts as the driving
microcontroller to control the lights, interpret microphone data, and interact with the user
through the web application and bluetooth connection. This subsystem interfaces with every
other subsystem. It interfaces with the power subsystem to receive 5V power, with the LED
display subsystem to send lighting information over the GPIO pins, with the audio reaction
subsystem to receive analog volume data over a GPIO pin, and with the user interface subsystem
through Wi-Fi 802.11 and Bluetooth Low Energy. This is the most critical subcomponent, and
any part of the ESP32 malfunctioning would likely cause the entire system to fail.

2.4.1 ESP32

We are using an ESP32 chip as it has support for both Wi-Fi and Bluetooth built in, and it has a
dual core processor to handle both the connectivity and the application code. It is limited to 520
kB of on-chip SRAM, but has support for external Flash and SRAM should our code be larger.
Most modules contain an external Flash built in. This interfaces with the power supply for 5V
power, the lights to control them via a GPIO pin, and the microphone sensor to read input
through a GPIO pin. It also interacts with the user interface subsystem by hosting a local web
application through Wi-FI, and retrieving Wi-Fi password information through Bluetooth.

11

12

Requirements Verification

1. Is powered properly by the voltage
regulator at 2.2-3.6V.

2. Has Bluetooth compatibility
(Bluetooth Low Energy).

3. Has Wi-Fi compatibility (802.11n).

4. Can properly drive the LEDs through
one of the GPIO pins.

1.
a. Connect the chip to the 3.3V

output of the voltage regulator.
b. Verify that the chip turns on

and can perform a simple
script (turning an LED on and
off).

2.
a. Create a simple BLE script for

testing.
b. Connect a phone to the chip

using Blynk App.
c. Verify the connection works

by sending some info across.
3.

a. Create a simple Wi-Fi script
for testing.

b. Connect to the Wi-Fi and ping
a test server.

c. Verify the connection was
successful.

4.
a. Create a script to drive the 600

LEDs with some colors.
b. Run the script and verify that

all the LEDs light up properly.

Fig. 9. ESP32 Pin Layout [10]

2.5 User Interface Subsystem

This subsystem is fully in software, but will be the only way the user interacts with the device to
change their favorite team or control the visual settings. There will be two user interfaces, the
main one is a web application connected to the ESP32 over Wi-Fi to control the settings, and the
second one is through a phone app called Blynk connected to the ESP32 over Bluetooth Low
Energy to retrieve the Wi-Fi password for the network it will be connected to. If this subsystem
fails, the user would no longer be able to connect to new Wi-Fi networks or change their favorite
team, but if the password is already entered the rest of the device would continue to function
properly.

2.5.1 Web Application

We will create an intuitive web interface for users to communicate with the device. This is where
users will tell the device who their favorite teams are, and what visual configuration they want.
Some options could include a moving gradient of lights, a scoreboard for when games are in
progress, or the current record of the team. This block interfaces with the ESP32 chip’s Wi-Fi
802.11 protocol and the user’s phone or computer browser.

13

14

Requirements Verification

1. The user must be able to select from
all available teams from the following
six sports: NFL, NBA, MLB, NHL,
College Basketball, and College
Football.

2. The user must be able to toggle
between four customization modes:
display the current score (if there is a
game in progress), most recent score,
team’s record, or a moving gradient of
lights that are the color of the team.

3. The web app must have a latency no
greater than 500-750ms. This ensures
that a change made on the web app
will be displayed immediately on the
scoreboard.

1.
a. Write software for the web app

that properly parses the API
response containing the list of
teams, storing the teams
alphabetically in the form of a
list.

b. One-by-one, select one team
from each sport listed. The
scoreboard must display the
final score of each team’s
previous game.

2.
a. There will be a dropdown

menu that allows the user to
select between modes. Select
each mode, one-by-one,
ensuring that each mode
displays accordingly on the
LEDs.

b. Repeat step (a) for all six
sports for quality assurance.

3.
a. Open the web app running

locally on a computer. Open
the web inspector by right
clicking.

b. In the web inspector window
and select the ‘Timelines’ tab
if using Safari. Select the
‘Network’ tab if using
Chrome.

c. Make a customization change,
as explained i n (2). Note the
length of the request in the web
inspector.

d. Repeat step (c) for all four
customization modes, for all
six sports.

2.5.2 Bluetooth Connection

We will utilize a Bluetooth connection using the ESP32’s Bluetooth Low Energy (BLE) to
receive the user’s Wi-Fi password information. We will utilize Blynk, an iOS app that allows
users to create custom UI’s and easily connect to Bluetooth enabled microcontrollers suchs as the
ESP32. Blynk will allow our group to overcome Android limitations.

15

Requirements Verification

1. Data must be transmitted at a 1 Mb/s
speed.

2. Connection to the 802.11n Wi-Fi
network must be successful after first
attempt using the Blynk app.

1.
a. Write a test script that

interfaces with the ESP32
microcontroller.

b. Simulate data being sent and
print the data transmission
speed on the serial monitor [5].

2.
a. Simulate taking the scoreboard

out of the box as if it is brand
new by bringing it to a place
where it has never connected
to the Wi-Fi network before.

b. Enter Wi-Fi network name and
password via Blynk.

c. Write a test script with a set
team (i.e, Illinois Basketball)
and get the latest score using
the ESPN API. Display it
serially or on the LED matrix.

2.6 Board Layout & Schematics

 Fig. 11. ESP32 Footprint [12] Fig. 12. ESP32 Symbol [12]

Fig. 13. ESP32 Dev-Kit Schematic [10]

16

Fig. 14. ESP32 Schematic [10]

2.7 Software

The software is critical for data transmission between the scoreboard’s subsystems. For the
scoreboard to work as intended, the software must be working properly behind the scenes. Its
first purpose is to scrape ESPN’s APIs and parse the response bodies for the essential data. Once
the data is stored, the software will use it to drive the LED system and display correct, up-to-date
information. Figure 15 displays the flow of our software system, starting with the user selecting a
sport and team and ending with the microcontroller driving the LED system with the correct
information.

17

Fig. 15. Software Process Flow

2.7.1 Sports Data Scraper

The API endpoints provide a comprehensive list of teams and their associated team IDs for the
six sports listed in Section 2.5.1. The specific ID can be used to reach two other endpoints
designated for the given team. The first endpoint is shown in Figure 16, and it has all of the
results of the past games. The second endpoint, shown in Figure 17, lists the team’s upcoming
game, as well as their record and team colors. The first challenge in this section will be parsing
the JSON file for the proper information. As stated in Section 2.5.1, there are four different
customization modes. Thus, when parsing the API, we will store all information that can
possibly be displayed on the scoreboard. The second challenge will be error handling. We cannot
control if one of ESPN’s endpoints is failing to display information, but we do not expect it to
occur on a daily basis. On the off-chance that an error were to occur, our software must be
responsible for relaying a simple error message to the user. An example would be “Error
retrieving team information! Please try again later.”, with a link to return to the homepage.

18

Fig. 16. Game Scores Endpoint for Illini Basketball

Fig. 17. Team Information Endpoint for Illini Basketball

19

2.7.2 LED Driver

Once the data is obtained from the API, it must be used to program the LEDs. The LED
subsystem will be connected to the scoreboard’s microcontroller, ESP32. There will be a piece of
software flashed to the ESP32 that has an algorithm to efficiently iterate over the entire LED
matrix. Instead of turning an LED on once at a time, the algorithm will store each LED’s color in
an array of length 600. Once each array element is set, the LEDs will be changed simultaneously
to their new values. Figure 18 shows an example display on the scoreboard and corresponding
array configuration. The example is not drawn to scale, but the configuration will be the same for
a 40x15 LED matrix.

Fig. 18. Example LED Display and Array Configuration

20

2.10 Tolerance Analysis

The most important tolerances we must maintain are the ESP32 chips processing speeds to parse
the API data and limiting the latency to drive the 600 LEDs in real time stutter free. The ESP32
utilizes a dual-core Xtensa LX6 processor, with both cores running at 240MHz. The ES2812B
LEDs’ latency depends on the length of the led array. Each LED requires 3 Bytes of data (1 for
each color channel), giving us a total memory requirement of:

3 (Color channels) * 600 (LEDs) = 1800 Bytes = 14400 Bits Eq. 1

The ESP32 has 520kB of SRAM, so this is not an issue. Looking at the datasheet, the
transmission time takes 1.25µs per bit, and 50µs for the reset, for a total transmission time of:

14400 (bits) x 1.25µs + 50 µs = 18.05 ms = 55.4 fps Eq. 2

Most modern monitors use either 30fps or 60fps with some high end gaming monitors running at
144fps [13]. Our LEDs will not be displaying high speed games, so 55.4fps falls within the
acceptable range of real time response rates. If needed, we could use multiple GPIO pins and
split the data to shorter segments, but that will not be necessary with this number of LEDs. This
would help reduce the length of data propagation needed from the full 600 LEDs to a smaller
amount like 100 if we used 6 GPIO pins, reducing the total transmission time.

As part of the ESP32 documentation, one of the processors manages the Wi-Fi and Bluetooth
while the other manages the application code. Working backwards from the 18.05ms cycle time,
it is easy to calculate the maximum number of operations we can perform per refresh on each of
the CPU cores. The ESP32 runs at either 160MHz or 240MHz, so we can analyze both scenarios:

 240 MHz * 1000000 Hz / MHz * 18.05 ms * 1000 s/ms =

y4.3 x 1012 Operations per Cycle Time Eq. 3
 160 MHz * 1000000 Hz / MHz * 18.05 ms * 1000 s/ms =

 2.88 x 1012 Operations per Cycle Time Eq. 4

This is a very large number of operations, but is failing to consider the Wi-Fi latency we may
experience. We can reformat the equation with a variable ℓ to account for latency in ms.

2.4 x 1011 (18.05 ms - ℓ) Operations @ 240 MHz Eq. 5
1.6 x 1011 (18.05 ms - ℓ) Operations @ 160 MHz Eq. 6

As long as the latency is less than 18.05ms, there will be time for operations to occur in real
time. Latency can commonly go above that, but that is okay given our requirements. We only
need the score and records to update with a latency of up to 30s, so as long as we interrupt the

21

processor to drive the LED animations at a consistent rate of up to 55.4fps, we have 30s of
leniency to parse the sports API data and decide if any update to the scoreboard is necessary.

3 Costs and Schedule

3.1 Costs

As shown below, our costs are broken down into two categories, labor and components. The
grand total, $30,124.45. is composed of the sum of the labor costs and the component costs.

3.1.1 Labor Costs

The labor costs of the project are broken down on a person by person basis and summed up at the
end to give us the total cost of labor for the group. We assumed a rate of $40/hour for the project
as there is a large software engineering component to our work. We assumed that for the rest of
the 10 weeks, we will all be contributing about 10 hours/week to the project. Using these
statistics we came up with our total labor costs to be $30,000.

3.1.2 Component Costs

The sheet below contains all of the components we need and the associated costs with them.

22

3.2 Schedule

23

4 Ethics and Safety

4.1 Safety

The Smart Sports Scoreboard is intended to be used in the homes of sports fans. Indoor use
mitigates some risks, but safety issues are still capable of arising due to a number of unforeseen
circumstances that could occur within a user's home. This device has been designed with OSHA
standards in mind [8]. All energized electrical components will be properly enclosed or isolated
such that the user can interact with the device and have no harm to themself. In creating an
enclosure, insulators will be used so that electric current can not flow through the device and into
the user. Failure to account for this could, although improbably, result in shock, electrocution, or
burns. The web interface also allows for the user to operate the device while not having direct
contact with the Smart Sports Scoreboard. This component adds another level of safety for the
user and their experience.

4.2 IEEE Ethics Accordance

We as a group, in accordance with the IEEE Code of Ethics, understand that it is our
responsibility to commit ourselves to the highest ethical and professional standards in creating
this device. In particular, our device is responsible for “hold(ing) paramount the safety, health,
and welfare of the public” [11]. As a Smart Sports Scoreboard, further versions of the product
may include sports gambling features so that users may stay up to date with betting odds on
games that they are following. Any sports betting features do not have the ability to make
wagers. These features are specifically for entertainment purposes. We as a group only condone
sports gambling where it is done legally in states that allow it, and only when it is done
responsibly by the individuals making the wagers.
Our device also strives “to treat all persons fairly and with respect” [11]. The purpose of our
device is to provide real-time information in a visually appealing way to the user, so that they
may spend less time on their smart devices and more time honed in on what is happening around
them. We, in no way, intend to alter the information the user receives, and only hope to provide
the user with true information. Therefore, we strive to treat all persons, teams, and players being
represented on our device fairly and with the utmost respect.

It is our responsibility as a group to hold each other accountable in “striv(ing) to ensure this code
is upheld by colleagues” [11]. We, in accordance with the code of ethics, will support our
teammates and continually follow up with each other to ensure that we uphold conduct of the
highest standard. If a member of the group is to behave unethically, no retaliation will be present
against individuals who report a violation. It is our responsibility in creating a device to make
sure that positive value is provided to the world, and this is what we plan on doing.

24

References

[1] Pew Research Center, Mobile Fact Sheet, Pew Research Center, June 12, 2019.

Accessed on February 15, 2021. [Online]. Available:https://www.pewresearch.org/
internet/fact-sheet/mobile/

[2] Asurion, Americans Check Their Phones 96 Times a Day, Asurion, November 21,

2019. Accessed on February 14, 2021. [Online]. Available: https://www.asurion.com/
about/press-releases/americans-check-their-phones-96-times-a-day/

[3] C. Gough, Sports fans using mobile apps worldwide 2019, by age, Statista, March 20,
2020. Accessed on February 14, 2021. [Online]. Available: https://www.statista.com/
statistics/1100567/sports-content-mobile-apps/

[4] F. Yanoga, Does blue light from electronic devices damage your eyes?, Wexner

Medical Center, June 13, 2019. Accessed on March 3, 2021. [Online]. Available:
https://wexnermedical.osu.edu/blog/blue-light-and-vision

[5] Random Nerd Tutorials, ESP32 Bluetooth Low Energy (BLE) on Arduino IDE,
Random Nerd Tutorials, June 4, 2019. Accessed on March 3, 2021. [Online].
Available: https://randomnerdtutorials.com/esp32-bluetooth-low-energy-ble-arduino-
ide/

[6] Texas Instruments, LM1117 800-mA, Low-Dropout Linear Regulator, LM1117
datasheet, February 2000. [Online].Available: https://www.ti.com/lit/ds/symlink
/lm1117.pdf?ts=1614878932564&ref_url=https%253A%252F%252Fwww.ti.com%25
2Fstore%252Fti%252Fen%252Fp%252Fproduct%252F%253Fp%253DLM1117T-3.3%2
52FNOPB%2526keyMatch%253DLM1117-3%2B3%2526tisearch%253DSearch-EN-ev
erything

[7] K. Draper, ESPN Tries to Get With a Mobile, App-Driven World, The New York

Times, April 12, 2018. Accessed on February 15, 2021. [Online]. Available:
https://www.nytimes.com/2018/04/12/sports/espn-app.html

[8] OSHA, “CONSTRUCTION SAFETY & HEALTH.” [Online]. Accessed: 01-Mar-2021.
Available: https://www.osha.gov/sites/default/files/2018-12/
fy07_sh-16586-07_4_electrical_safety_participant_guide.pdf.

[9] IEEE.org, IEEE Code of Ethics, IEEE, 2021. Accessed on February 13, 2021.

[Online]. Available: https://www.ieee.org/about/corporate/governance/p7-8.html

25

https://www.ieee.org/about/corporate/governance/p7-8.html

[10] Espressif Systems, ESP32 Series, ESP32-WROOM-32 datasheet, Jan 2021. [Online].

Available: https://www.espressif.com/sites/default/files/documentation/esp32-
wroom-32_datasheet_en.pdf

[11] H. Regan, Spoiler Alert: Low Latency Crucial for Sports Apps, Wowza Media
Systems, May 22, 2017. Accessed on March 3, 2021. [Online]. Available:
https://www.wowza.com/blog/spoiler-alert-low-latency-crucial-for-sports-apps

[12] L. Podkalicki, eagle-libraries, ver 1.7. Accessed on March 4, 2021. [Online].

Available: https://github.com/lpodkalicki/eagle-libraries

[13] B. Stegner, “Do Monitor Refresh Rates Matter? Everything You Need to Know,”

MUO, 12-Feb-2021. [Online]. Available: https://www.makeuseof.com/tag/60hz-vs-
144hz/. [Accessed: 05-Mar-2021].

26

