
Robotic Caricature Artist

By

Dylan Huang

Peter Kuimelis

Soumithri Bala

Final Report for ECE 445, Senior Design, Spring 2018

TA: Xinrui Zhu

May 2018

Project No. 2



Abstract

This document outlines the design and construction of the Robotic Caricature Artist, with three primary areas of

focus: hardware and mechanical design, firmware, and processing software. The final product is meant to be used as

an entertainment device in public settings such as county fairs and amusement parks; it consists of an easel mounted

with belts, motors, and circuitry whose objective is to mimic the art of a caricaturist.
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1 Introduction

1.1 Objective

A caricature is a style of portrait that exaggerates certain features of the subject for comedic effect. Modern

caricature artists typically work as street vendors or at social events, creating caricatures of patrons for a

small fee. But caricature artists have a skill that takes at least a year to perfect and train, making them

inaccessible and rare, especially if you do not live in a city [1]. Since we do not have many hours, we wish to

create an automated system that replicates the caricature artist experience as closely as possible. Caricature

artists can take a mental snapshot of the subject and draw a simple portrait in a few minutes. Thus, our

system should be able to capture an image of a patron, apply effects to the image, and use a motorized

system to draw the image onto a sheet of paper.

1.2 Background

Image processing is ubiquitous in entertainment – applications such as Snapchat allow for one to immediately

apply filters to an image, which has proved to be tremendously popular. One feature nearly all apps of this

nature share is instant gratification; in some cases, filters can be previewed before the image is captured. The

entertainment value of certain art, however, is being able to experience the process of creation as much as the

result. Listening to music at a concert, for example, is completely different from listening to a pre-recorded

track. This motivated our decision to have our project replicate the excitement and anticipation of watching

an artist work rather than just receiving the final product.

Although our system also uses a camera for image capture, the audience will not receive a preview of the

applied transformations before the drawing is completed. Next, rather than use a printer to create the

drawing, we want to use a v-plotter system mounted to an easel, as this approach has many advantages.

First, the illustration process is bared to the user, as the paper is exposed during the process. Further, the

toolpath of a v-plotter will more closely mimic that of a human, as the machine will draw each discrete

stroke rather than sweep the page along an axis. Finally, the drawing is also done with a pen, which adds a

natural variation that a desktop printer lacks.

While the hardware of this project is incredibly important, the software will be responsible for integrating

all the individual components into a cohesive product. The image processing component of our project

will be done entirely in software; there is prior research in computer-generated caricatures which we are

looking to implement [2]. Additionally, lower-level software, such as firmware, will be essential for reliable

communication between the computers and microcontrollers in our project.

1.3 High-Level Requirements

• Apply a caricature effect to an image and generate plotter instructions

• Plot geometric shapes and complex lines given a G-code script

• Must perform the entire process autonomously
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2 Design

2.1 Block Diagram

Our block diagram requires three modules: a power supply, control module, and I/O module. The power

supply’s purpose is to drive voltage to the control module to the Powered USB Hub, and ATmega328 custom

circuit. The power supply ensures that our entire system is reliably powered and can be driven from any wall

outlet. The control module consists of a Computer, Powered USB Hub, and ATmega328 custom circuit that

will be able to accept inputs from a phone camera, caricaturize and vectorize an image, and driver stepper

motors that will carry out the vectorized instructions and draw an image. The peripheral module includes

the phone camera and may be expanded to improve user experience. The mechanical module consists of all

the components that are needed to produce the final drawing: two stepper motors and a servo motor.

Figure 1: Block Diagram of Electronic Components
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2.2 Mechanical Design

Figure 2: Complete Mechanical Design

2.2.1 Dimensions

The dimensions of the board and placement of the motors significantly impact the total drawing area and the

quality of the drawn image. Too great of a change between the sent cartesian value and actual translation

value implies poor resolution; a tension that is too high or too low in a given area is also problematic,

as movement restriction or backlash can occur. For these reasons, calculating an optimal board size is

important, as this will impact the quality of our final product and the impact on the viewer; the drawing

area must also be greater than 8.5 by 11 inches, as a common printer can produce an illustration of this size.

A given cartesian point can be converted into an angle and distance and vice versa using the following

relations:

x = cos(α) ∗ d (1)

y = sin(α) ∗ d (2)

d =
√
x2 + y2 (3)

α = atan2(y, x) (4)

These equations are used with the Law of Cosines to check the position of the head after a movement in the
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x, y coordinate system. This allows for resolution to be determined across the entire drawing surface. An

unacceptable deviation is an actual movement that is greater than 1.4 times the expected movement.

The following equations are used to calculate the tension on each belt, where tleft and αleft correspond to

the tension and angle of the left belt, respectively:

tleft =
cos (αright) ∗m

cos (αleft) ∗ sin (αright) + sin (αleft) ∗ cos (αright)
(5)

tright =
cos (αleft) ∗m

cos (αleft) ∗ sin (αright) + sin (αleft) ∗ cos (αright)
(6)

An unacceptable belt tension is a force less than half the weight of the end effector, or greater than 1.5 times

the weight of the end effector.

The source referenced for these equations contains code that performs these calculations by fixing motor

positions, fixing borders, and calculating areas of low tension and accuracy [3]. We used this code and

made several modifications, which allowed us to specify the size the drawing page, as well as the size of the

borders. Additionally, the program now fixes the motors to the correct offsets from the corners of the board

based on the NEMA17 motor dimensions. We also modified the program to calculate the largest optimal

rectangular drawing area, which is where both tension and resolution are optimal [4]. Finally, we convert

the values computed for the board size and optimal area to inches and output them to the console. Using

this code, we were able to experiment with different sizes of boards until we found an output that suited

our project’s needs. The program output is shown in Figure 3b below, where the gray areas correspond to

the board, white to the page, and blue to areas of low tension; the crosses indicate motor placement. The

console output, Figure 3a, shows the dimensions generated by the program.

(a) Program Console Output

(b) Output Plot; Blue = Poor Tension

Figure 3: Complete Program Output

2.2.2 Drive System

We used GT2 belts and 16-tooth pulleys for our drive system. This allows us to precisely calculate the steps

needed for a linear belt movement of one millimeter:

STEPS PER MM =
STEPS REV ∗MICRO STEPS

BELT PITCH ∗ PULLEY TEETH
=

200 ∗ 16

2 ∗ 16
= 100 (7)
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Additionally, we used retracting badge holders as constant force springs to keep the belts aligned on the

pulleys. Figure 4 shows the complete drive system.

(a) Pulley and Belt Configuration (b) Belt Alignment System

Figure 4: Complete Drive System

2.2.3 End Effector

A robust end effector design is crucial for our system to work properly, as this is the piece that is driven by

the motors of our project and contacts the page. Additionally, our design requires a servo to lift the pen

to allow for non-drawing movements and a way to secure a pen without using screws. To begin, we looked

at pre-existing end effector designs for v-plotters and used these designs to inform our own [5]. We decided

to use screws and bearings to connect the belts to the end effector, as this minimizes the chances of pieces

wearing out over time; our design also has mounting points for the servo and a compression lock to secure

the pen. The completed end effector assembly is shown in Figure 5.
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Figure 5: End Effector Assembly

2.3 Power Module

2.3.1 12V 30A Power Supply

The 12V power supply converts 120V AC mains voltage to 12V DC, which is used to power the stepper

motors and the 12V to 5V converter.

2.3.2 12V to 5V Converter

The 12V to 5V converter supplies 5 volts to the Powered USB Hub.

2.4 Control Module

2.4.1 Computer

The computer is our image processing and data facilitation unit for our entire system. It allows us to receive

images from the phone camera, filter the image, vectorize, and convert the output to consumable G-code

for our custom circuit to read and drive the motors. This component is especially necessary to achieve

the caricature effect for our drawing robot. The computer will interface, through our USB hub, with the

ATmega328 and the camera. This component is necessary to generate consumable G-code and allow our

robot to perform the entire process autonomously.
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2.4.2 Powered USB Hub

The powered USB hub supplies 5 volts to the servo and our custom circuit; it also facilitates data transfer

between the computer and the rest of the machine.

2.4.3 Circuit (PCB)

The PCB receives commands via USB, contains a microprocessor to run our firmware, and connects all

components necessary to drive the mechanical system. The interface between USB and the microprocessor is

handled by a Silicon Labs CP2102, an inexpensive and ubiquitous USB bridge IC [6]. We use an ATmega328

microprocessor with a 16MHz oscillator to achieve the maximum clock frequency of the device, to ensure that

we accommodate our requirements for instruction throughput [7]. The in-chip serial programming (ICSP)

pins are made accessible with pin headers to allow the bootloader to be burned on to the EEPROM of the

ATmega328.

We use the Pololu carrier board for the Allegro A4988 stepper motor controller to drive the stepper motors

[8]. The MSX pins on the IC have been wired to keep the device in 1/16 microstep mode, and the digital

control inputs are wired to digital I/O pins on the ATmega.

We add one 100µF decoupling capacitor per stepper motor driver to reduce ripple from the power supply,

as specified in the reference circuit in the A4988 documentation.

Appendix B shows the full schematic.

2.5 Peripheral Module

2.5.1 Camera

The camera is used to capture our subject; we used an Android phone connected via USB as our camera,

with some Python code to facilitate the capture and transfer of images. This code is shown in Appendix F.

2.6 Mechanical Module

2.6.1 Stepper Motors

We are using two Kysan Nema 17 1.8◦-step stepper motors in our project, with each motor corresponding

to one of the plotter’s axes.

2.6.2 Servo Motor

The servo motor is fitted onto the end effector; its function is to lift the end effector off the easel to allow the

pen to glide to another location without dragging. The servo motor will be connected to our custom circuit.

2.7 Firmware Module

The firmware for the ATmega328 converts a sequence of G-code instructions to incremental motor move-

ments. The firmware buffers instructions over the USB bridge, parses and executes the instructions, performs

the necessary inverse kinematic calculations, executes the steps for each motor, and returns an acknowledge-

ment signal to the computer.
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2.7.1 Serial Communication

To communicate G-Code instructions, we delimited instructions with the new line character ’\n’ and created

a communication control flow based on this delimiter. A single drawing is represented as a file containing

delimited G-Code instructions and is sent using a Python script. The control flow for communication can

be seen below:

Figure 6: Control Flow for Serial Communication

There is only one branch condition based on the incoming character. If the character is ’\n’, we parse

and execute the G-Code instructions. Once the instruction is successfully parsed and executed, we send an

acknowledgement signal to the computer and reset the instruction buffer. If it is not ’\n’, we simply add

to our instruction buffer and wait for the next character.

2.7.2 Inverse Kinematics

The number of steps to be executed on each motor is solved using inverse kinematic equations. Given initial

and final X/Y coordinates, we calculate the change in belt length, ∆R1 and ∆R2, which is used to calculate

the number of steps for each motor, MSteps1 and MSteps2. An illustration of the inverse kinematics can

be seen below:

8



Figure 7: Diagram of inverse kinematic equations

The following equations describe the Pythagorean equations that calculate the change in belt lengths,

∆R1 and ∆R2. These belt lengths are then used as input to the next equations that calculate the number

of steps for each motor, MSteps1 and MSteps2. The constant, STEPS PER MM , refers to the result of

equation 7.

∆R1 =
√
X2

1,final + Y 2
1,final −

√
X2

1,initial + Y 2
1,initial (8)

∆R2 =
√
X2

2,final + Y 2
2,final −

√
X2

2,initial + Y 2
2,initialx (9)

MSteps1 = STEPS PER MM ∗∆R1 (10)

MSteps2 = STEPS PER MM ∗∆R2 (11)

2.7.3 Step Execution

After calculating the number of steps for each motor, we must properly execute these steps for each motor.

This problem is posed in the context of a diagonal movement in Appendix C. The nature of our ”v-plotter”

does not allow us to draw a straight line by simply extending one motor at a time. This limitation is

illustrated in the following diagram:
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Figure 8: Limitation of completely extending the belts one at a time in a v-plotter

By extending one motor at a time, the actual movement mimics an ”L”, which incorrectly represents the

desired movement. One solution is to simply drive each motor simultaneously, but since the ATmega328 is a

single-core microchip, this is not possible [7]. Our initial solution interleaved the steps for each motor, where

the increments are determined by the ratio of left and right motor steps. An illustration of this solution can

be seen below:

(a) Correct Movement

(b) Interleaved Steps Over Time

Figure 9: Illustration of how the ”L” movement is avoided by interleaving steps

The left diagram depicts the correct movement; the right diagram shows the interleaving of motor steps

over time. This solution worked, but the speed and jerkiness affected precision. These negative effects were

caused by manually driving the HI and LO signals that controlled the motors. This meant that we did not

account for the current acceleration of the belts and the direction in which the belt was previously traveling.
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This is a problem, however, that has already been solved by an external library, so our final version uses

that instead [9]. After using an external library, we found a 30% increase in speed and less jerkiness in our

drawing, which noticeably increased our precision. We were also able to add a 4th parameter to our G-Code

that controlled the speed of the stepper motors from 5 to 35 millimeters per second.

2.7.4 Acknowledgement Signal

Since the ATmega328’s serial buffer is only 64 bytes, sending all of the G-Code instructions at once causes

overflow [10]. To alleviate the small buffer size, we used the ASCII character ’*’ as an acknowledgement

signal for the computer to send the next G-Code instruction. A diagram of how this system works can be

seen below:

Figure 10: Diagram that illustrates the acknowledgement system

Figure 10 uses the Y-axis as time, the left side as the computer, the right side as the ATmega328, and

crossing vectors as the transfer of data. The computer waits for an acknowledgement signal before sending

the next instruction, effectively avoiding the truncation of G-Code instructions.

2.8 Image Processing Module

The Image Processing Module is responsible for processing the captured image and producing G-Code

instructions that are sent to the machine. This software module is written in Python and uses the SciKit-

Image, SciPy and OpenCV libraries. The requirements of this module are that the entire process takes less

than 60 seconds on an average laptop CPU and that predicted drawing times take less than 15 minutes. A
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summary of the stages in this module are illustrated in Figure 11 below.

Figure 11: Image Processing Software Suite

2.8.1 Segmentation

Because our machine needs to operate under a variety of realistic settings, we cannot guarantee that the

subject will be in placed in front of a uniform background. Therefore, before we can create a drawing of

their face, we need to separate the face from the rest of the image. This problem has been studied before.

Android phones, for example, perform face segmentation using an end-to-end convolutional neural network

model. Although the results are state-of-the-art, this approach has some serious disadvantages: namely,

long inference times, and reliance on a pretrained black-box model that we can not modify to our specific

needs. Instead, we investigated segmentation methods based on graph cuts, which leverage image statistics

and traditional graph algorithms.

For our software pipeline, we selected the GrabCut segmentation algorithm, which was first described in

the 2004 paper, GrabCut: Interactive Foreground Extraction using Iterated Graph Cuts. [11]The algorithm

uses Gaussian Mixture models to represent the distributions of foreground and background pixels. At each

iteration, GMM parameters are updated given the current best guess for foreground and background regions.

Then, an energy function that sums foreground likelihood (unary) and smoothing (pairwise) terms for every

pixel is constructed, and a segmentation mask is computed with a min-cut solver. This process repeats until

the segmentation converges. A reference implementation is provided available in the OpenCV library [12].

For inputs, the algorithm only requires initial guesses for foreground and background. We supply this initial

guess by detecting a face in the image with Haar Cascades, which computes a bounding box around the

detected face [13]. Pixels inside the bounding box are treated as probable foreground, and pixels outside the

bounding box are treated as probable background. The results are visualized below.

Figure 12: GrabCut segmentation algorithm results
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2.8.2 Filtering and Morphological Operations

In this section we describe the filtering and morphological operators that we use to convert from a color

image to a binary image that has the appearance of a hand-drawn sketch. First, we convert the RGB image

to grayscale using the weighted average (luminosity) method. Then we perform edge detection. Common

edge detection methods that are implemented in most image processing packages include the Canny edge

detection algorithm, Sobel filtering and Laplacian of Gaussian filtering. We decided to use the Laplacian of

Gaussian method because it is simple, can be performed with a single convolution operation, has a single

parameter to tweak, and gives satisfactory aesthetic results. The Laplacian of Gaussian can be viewed

as convolution with a blurring (Gaussian) kernel followed by convolution with a kernel that approximates

the magnitude of the spatial derivative (Laplacian). Associativity of convolution allows these steps to be

combined into a single operation. The full Laplacian of Gaussian filter kernel is defined by

LoG(x, y) = − 1

πσ4

[
1− x2 + y2

2σ2

]
e

−(x2+y2)

2σ2 (12)

which is sampled to yield a discrete kernel [14]. Increasing sigma increases the amount of blur applied to the

image before differentiation, which results in smoother images and fewer edges. We then apply a threshold

to obtain binary images. For the next stage, we perform a binary erosion operation, which reduces the area

of connected components in the image. Finally, we remove small components entirely from the image [15].

These operations reduce the number of filled pixels and remove small artifacts from the image, serving our

objective of minimizing drawing time. The effects of these operations are visualized below.

Figure 13: Morphological erosion and small object removal

2.8.3 Toolpath Optimization

There are several possible approaches to generating a toolpath for a binary image. The simplest method is

to simply scan across the paper line by line from top to bottom. At a typical vertical resolution of 250 pixels,

this takes considerable time (detailed analysis in Table 1). Instead, we chose to formulate the problem as an

instance of the Traveling Salesman Problem, in which the end effector must touch every filled pixel (city)

in the image while minimizing total tour length. Although the problem is NP-Hard, the TSP is a heavily

studied problem in computer science and many excellent heuristic-based, sub-optimal algorithms exist [16].
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Figure 14: Binary image and its corresponding TSP instance (with solution)

The above diagram illustrates the conversion from a binary image to a toolpath using the TSP formulation.

Strictly speaking, the TSP solver finds a closed path that is not oriented, but an arbitrary direction can

be chosen, and the final connection omitted, as has been done in the diagram for the sake of clarity. A

hypothetical solution for this toy instance is given by:

(2, 1)→ (3, 1)→ (4, 1)→ (4, 2)→ (3, 2)→ (1, 4)→ (1, 5)→ (2, 5)

The dashed line indicates that the tool retracts during the traversal of this edge. More precisely, the pen

needs to retract whenever the tool moves a between two pixels that are greater than a specified Euclidean

distance β apart. For β =
√

2, the pen will only draw lines between pixels that are 8-connected, and for β

= 1, the pen will only draw lines between pixels that are 4-connected. Since lifting the pen adds an average

of 250ms to the drawing time, we need to minimize the number of pen lifts in order to minimize drawing

time; increasing β reduces the number of pen lifts by relaxing the criteria for when a lift should occur.

This suggests a simple algorithm for generating a sequence of G-Code commands from a sequence of pixel

coordinates, visualized in Figure 18 located in Appendix E.

As previously mentioned, the exact solution to the TSP is intractable, so we implemented a greedy al-

gorithm using the nearest neighbor insertion heuristic. This heuristic has been shown to produce solutions

that are often within 25% of the optimal solution in terms of tour length [17]. A brief summary of the

algorithm is as follows: we start with a random city and then add the next closest city not already in the

tour until all cities have been added. The naive implementation of this algorithm ran in O(n2) time where

n is the number of cities (filled pixels), but we were able to improve this to O(n log(n)) by using a KD-Tree,

which supports O(log(n)) nearest-neighbor queries. Since the KD-Tree implementation that we used does

not support deletion, we also maintained a hash set of visited cities, and expanded the search neighborhood

exponentially until a new city is found. The full pseudocode is included in Appendix D. Run times and

estimated drawing times are included in the corresponding verification section.
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3 Design Verification

We unit tested off-the-shelf components and verified they met our operating requirements. The verification

process of these components can be found in Appendix A. The following section outlines the verification

procedures for the major blocks of our design.

3.1 Mechanical Design

We verified our mechanical design during assembly. First, we wired our power supply to the mains and

verified the output was within the acceptable parameters; next, we wired our circuit to the motors and

verified that each axis could drive the end effector properly. We then tested 5mm lines on the X and Y axis

and measured their lengths with an digital caliper. The measurements for these lines, in the good region,

yielded less than 10% error shown in Appendix H. Further tests on the accuracy of our design were done

through our firmware.

3.2 Firmware Module

We tested our firmware by first unit testing all four arguments to our G-Code instructions. By sending the

following G-Code, we qualitatively observed the behavior of our system and confirmed that it was working

correctly. The G-Code for this unit test can be found in Appendix I. After determining that our unit tests

succeeded, we sent a drawing consisting of ∼6000 lines of G-Code Instructions and confirmed that it correctly

drew and halted.

3.3 Control Module

We verified that our control module was operational by supplying power to the 5V and 12V inputs and

attempting to move the stepper motors. We know that this circuit is working correctly when the motors

resist movement, because the enable pins are high whenever the board is powered. We also unit tested

pathways in our circuit by driving each motor through our firmware.

3.4 Image Processing Module

All of the major requirements of the Image Processing Module were met. The execution time of the seg-

mentation, filtering and toolpath optimization were at most 20 seconds, 10 milliseconds and 5 seconds,

respectively, for all images tested. Thus, the execution time for the entire process is well under 1 minute as

required. The aesthetics results were assessed by manual inspection. Figure 15 shows some example images

and the results of processing, up to and including the Filtering and Morphological Operations stage.
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Figure 15: Example effects of filtering for 10 test images

Table 1 shows the results of toolpath optimization on a test set of N = 10 images. To calculate draw

time, we use a measured value of 250 ms per pen lift anf the default feed rate of 25 mm per second. Greedy

optimization reduces the draw time by 58% on average compared to the naive tour, bringing the total average

draw time to 10.8 minutes, ±1.63. Assuming normally distributed data, the total draw time should stay

within our upper limit of 15 minutes 99.5% of the time.

Table 1: Results of Toolpath Optimization

Zig-Zag pattern Optimized

Travel distance 36, 900 (±1, 780) 14, 300 (±2, 210)

Pen lifts 237 (±7.10) 309 (±42.1)

Travel time (s) 1, 480 (±71.3) 573 (±88.5)

Pen lift time (s) 59.3 (±1.77) 77.3 (±10.5)

Total draw time (min) 25.6 (±1.21) 10.8 (±1.63)
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4 Cost

4.1 Parts

The complete list of parts and their costs can be found in Appendix G.

4.2 Labor

We have chosen an hourly wage from a salary info sheet provided by engineering at Illinois for a Computer

Engineering graduate [18].

Table 2: Labor Cost Analysis

Team Member Hourly Rate ($/hr) Hours (hrs) Cost x 2.5 ($)
Dylan Huang 39.30 180 17685
Peter Kuimelis 39.30 180 17,685
Soumithri Bala 39.30 180 17,685

Total 53,055
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5 Conclusion

5.1 Accomplishments

We successfully assembled the robot before the deadline and were able to demo the entire pipeline from image

capture to finished drawing. It takes one single command to execute the entire process and ∼15 minutes to

complete. A finished product can be seen in Appendix J.

5.2 Ethical considerations

We considered two ethical issues while working on our project. Since the three members of this group were

the primary testing subjects during development, there is a high potential for our image processing software

to be over-fitted to our features. According to section 7.8.8 in the IEEE Code Of Ethics, we must treat

all persons fairly and not engage in acts of discrimination [19]. To achieve this goal, we would need to do

extensive testing on a diverse set of subjects to make this product enjoyable for everyone.

Finally, we wish to be realistic in our claims of what this project can do; we do not claim that our project

is true art, as artists spend many hours perfecting their craft. Instead, we view our project as a fun way to

introduce people to computing and robotics.

5.3 Future work

5.3.1 Mechanical Design

Several improvements could be made to the mechanical design. The assembly could be made significantly

lighter and more portable; using a thinner frame, for example, may allow for the device to be collapsed and

transported more easily. The end effector could also be redesigned to support multiple pen holders, which

would allow for a greater range of drawing styles.

5.3.2 Firmware Module

Our communication system has no reliability protocol that ensures robust data transfer. A future iteration of

the acknowledgement system could implement a TCP-like sequence numbering reliability protocol to ensure

that the correct instruction is being sent [20].
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Appendix A Requirement and Verification Table

Table 3: System Requirements and Verification

Component Requirement Verification Verification
status (Y

or N)
12V 30A Power
Supply 1. Converts wall voltage to

(110V) to 12V 30A DC ± 5%
1. Use a multimeter and measure

12V/30A out of the power sup-
ply

Y

12V to 5V Con-
verter 1. Supply a steady 5V at 3A ± 5%

to the Powered USB hub
1. Measure the open-circuit volt-

age of the input and output of
the 12V to 5V 3A converter us-
ing a multimeter

2. Measure the 3A output of the
12V to 5V 3A converter using
an ammeter in series

Y

Computer
1. Receive an image from the

camera
2. Apply filters to the image, save

as a binary raster image
3. Convert binary raster image to

G-Code

1. Ensure images taken on camera
appear in specified location in
the Raspberry Pi’s file system

2. Open the image and verify that
the filters have produced the
desired result

3. Run the G-code through a tool-
path simulator that checks for
syntax errors and verify that
the output of the G-code sim-
ulation matches the binary im-
age file

4. Send G-code instructions to
ATmega328 circuit and check
for acknowledgement signal

Y

Powered USB
Hub 1. 5V to 3A ± 5% 1. Measure the open circuit volt-

age across the VCC and GND
pins of the USB female connec-
tors and ensure 5V 3A ± 5%

Y

ATmega PCB
1. V5 (name of power input line)

remains at 5V ± %10 through-
out operation of machine

1. Use multimeter to measure V5
node and measure the maxi-
mum deviation

Y

Continued on next page

21



Table 3 – continued from previous page
Component Requirement Verification Verification

status (Y
or N)

Camera
1. Minimum of 8-megapixel still

photos
2. Automatic focusing in range of

lighting conditions

1. Check dimensions of captured
image

2. Empirically verify the photos
appear focused and properly lit

Y

Stepper Motors
1. Drawing precision for 5 units of

distance at less than 1 of angle
error

2. Temperature cannot reach over
40C when operating

1. Direct the system to draw a
straight line of 5 units of dis-
tance and measure with dial
calibers the actual Y and X co-
ordinates. Compare these mea-
surements with the expected X
and Y coordinates and calcu-
late error . Ensure that error is
less than 1

2. Execute the entire pipeline for
a filtered image and measure
the temperature during oper-
ation with an IR thermome-
ter. Ensure that the temper-
ature does not exceed 40C

Y

Servo Motor
1. Have enough torque to lift the

end effector off the easel such
that the pen is not touching the
paper

1. Place the servo motor under
the end effector unit. Use a
function generator to supply a
PWM wave with a frequency of
50Hz and a duty cycle of 7.5%
for position 0. Then change the
duty cycle to 10% to move the
to the 90 position. Ensure that
the servo motor can lift the end
effector off the ground.

Y

Continued on next page
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Table 3 – continued from previous page
Component Requirement Verification Verification

status (Y
or N)

Image Process-
ing 1. Face detection accuracy 90% or

better under favorable lighting
conditions

2. Background of image is
masked/removed

3. All processing takes less than 1
minute.

1. Place subject 5 feet in front of
camera in a uniformly lit in-
door space. Capture image;
repeat N=100 times. Soft-
ware must correctly identify
and crop face at least 90/100
times.

2. View preview image for a large
(N=100) batch of test images.

3. Use a timer library to measure
the wall-clock time from begin-
ning to end process (raw image
to G-code).

Y

Firmware
1. Receive G-code commands

from computer
2. Convert G-code into multiple

delta movements
3. Send commands to stepper

drivers

1. Add log statements to print
received commands; verify re-
ceived command is the same as
sent command

2. Execute test instruction, mea-
sure rotation of stepper motors
and verify with inverse kine-
matic equation.

Y
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Appendix B Schematic

Figure 16: Circuit Schematic

Appendix C Step Execution

Figure 17: Step execution problem posed in the context of a diagonal vector movement
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Appendix D Pseudocode

Algorithm 1 Greedy TSP solver

1: procedure GreedyTSP(cities,N)
2: build KD tree
3: tour ← empty list
4: visited← ∅
5: i← 0
6: tour[i]← random city in cities
7: while i < N do
8: k ← 2
9: searching ← True

10: while searching is True do
11: k nearest← tree.query(tour[i], k)
12: for city ∈ k nearest do
13: if city 6∈ visited then
14: tour[i]← city
15: visited← visited ∪ {city}
16: searching ← False
17: break
18: k ← k ∗ 2
19: return tour
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Appendix E G-Code Generation Flow Diagram

Figure 18: Generating G-Code from a sequence of coordinates
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Appendix F Camera Capture Code

Figure 19: Python code for capturing image on Android phone

Appendix G Parts Cost

Table 4: Parts Costs

Part Part

Number

Manufacturer Unit

Cost

($)

Qty Total

Cost

($)

Drawing Pad Post-it 20.33 1 20.33

Stepper Motor OMC Corporation Limited 13.99 2 27.98

Stepper Driver (5PK) BIQU 8.99 1 8.99

12V-5V Converter Kimdrox 7.99 1 7.99

Arduino Knockoff Elegoo 10.90 1 10.90

12V PSU BMOUO 18.56 1 18.56

USB Serial WINGONEER 8.99 1 8.99

Continued on next page
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Table 4 – continued from previous page

Part Part

Number

Manufacturer Unit

Cost

($)

Qty Total

Cost

($)

USB Extension Amazon 5.34 1 5.34

Timing Belt Mercurry 8.88 1 8.88

Pulleys DROK 11.89 1 11.89

Extension Cord Micro Connectors Inc. 2.73 1 2.73

Belt Holders Key-Bak 12.45 1 12.45

Servo ElectroBot 7.99 1 7.99

Bearings Amico 4.21 1 4.21

Phone Mount Aduro 10.99 1 10.99

Powered USB Hub Plugable 16.95 1 16.95

USB to UART 336-3694-ND Silicon Labs 1.40 3 4.20

22pF Capacitor 445-11133-1-ND TDK Corporation 0.07 10 0.71

100F Capacitor 399-6726-1-ND KEMET 0.43 4 1.72

USB mini B 609-4700-1-ND Amphenol FCI 0.71 2 1.42

16MHz Crystal X176-ND ECS Inc. 0.69 2 1.38

Power Barrel Jack CP-002AHPJCT-ND CUI Inc. 1.44 1 1.44

Power Barrel Connector CP3-1000-ND CUI Inc. 1.04 1 1.04

Header Female S7002-ND Sullins Connector Solutions 0.45 4 1.80

Header Female S7001-ND Sullins Connector Solutions 0.42 3 1.26

Header Female S7006-ND Sullins Connector Solutions 0.65 6 3.90

ATmega328 Socket ED3050-5-ND On Shore Technology Inc. 0.33 2 0.66

Header Female S7004-ND Sullins Connector Solutions 0.52 2 1.04

Total 205.74
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Appendix H Design Verification

Figure 20: Testing 5mm lines on the Y and X Axis

Appendix I G-Code Unit Test

G0 X0 Y0 Z1 # Testing Z-Axis (Servo)
G0 X0 Y0 Z0
G0 X0 Y-50 Z0 # Testing Y-Axis
G0 X0 Y-25 Z0
G0 X25 Y-25 Z0 # Testing X-Axis
G0 X-25 Y-25 Z0
G0 X25 Y-25 Z0 F35 # Testing Stepper Motor adjustable speed
G0 X-25 Y-25 Z0 F5
G0 X0 Y0 Z0 # Reset

Figure 21: Firmware Verification Code
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Appendix J Completed Output

Figure 22: Completed Drawing
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