ECE437: Sensors and Instrumentation

Lab 1: Introduction to Opal Kelly FPGA and Digital I/O Lab

Introduction

Welcome to ECE437! This class focuses on developing communication interfaces with variety of
sensors, such as temperature, pressure, capacitive, image sensors and others using Verilog and
Python programming languages. As you develop the necessary firmware using Verilog and
software in Python to acquire data from various sensors, you will also gain important
understanding how these sensors operate. By the end of the course, you will gain knowledge how
to develop large scale projects that will enable you to simultaneously and in real-time communicate
with collection of different sensors. The data acquired from these sensors will be transferred to the
PC using USB 3.0 interface and displayed in real-time on the computer screen. Although we don’t
focus on any particular sensory application in this class, the sensor platform that is available for
you in this class can be used for other courses, such as senior design and others. You are strongly
encouraged to leverage the resources available to you in this class and used them to solve real life
problems outside this class.

We have developed a custom printed circuit board (PCB) which houses several different sensors:
temperature, capacitive, humidity, imaging sensor and others. The board also has several different
LEDs and push buttons that will be used to output and input data. This custom PCB interfaces with
an FPGA board designed by OpalKelly Inc. OpalKelly provides versatile data acquisition cards
based on Xilinx FPGA chips and today they are one of the leading companies in this space. The
company was started few years ago by two undergraduate students in the Electrical Engineering
department at the University of Illinois at Urbana-Champaign, while they were working on their
senior design project. Having struggled with designing an interface between sensors and computers
for their senior design project, they created a versatile digital input/output board that can be used
for various projects and applications. Today, their cards are used in many industrial applications,
such as automotive and airline industry, as well as for low-budget prototyping.

The OpalKelly board that we will be using in this class is XEM7310-A75. Additional information
about this board can be located on the OpalKelly’s website, located here. It is important to
understand the different resources you will be using in this class which will enable you to
communicate and acquire data from various sensors. The FPGA that is housed on the OpalKelly
XEM7310-A75 board is physically connected to the input/output pins of the various sensors
housed on our custom PCB. The FPGA also has capabilities to communicate to the PC via USB
3.0 interface using OpalKelly’s proprietary firmware and software. This USB interface capabilities
enable fast and easy communication between the sensors and PC using the FPGA as the command
central.

You will be developing firmware code for the FPGA in Verilog using Xilinx’s Vivado software —
the leading development platform for hardware description language such as Verilog and VHDL.
To receive data on the PC from the FPGA, you will be developing Python code. Note, OpalKelly
also provides support for Matlab, C, C# and other programming languages. OpalKelly’s website

https://docs.opalkelly.com/display/XEM7310/XEM7310

provide numerous firmware and software examples, tutorial and other advices. They provide
discussion forums where you can find answers to commonly encountered problems. You are
strongly encouraged to explore OpalKelly’s website and get familiar with their support. Here is a
link where you can locate some of the tutorials and examples: link.

In this class, we will be developing primarily finite state machines (FSM) in Verilog hardware
description language. Throughout the semester and especially in the next two labs, you will learn
about the basic Verilog syntax that will enable you to write successful FSMs. In this first lab, you
will learn about declaring input/output variables and communicating with the outside world using
buttons and LED display. You will write a simple FSM that will enable you to control the clock
speed of your FSM. There are lot of resources on the web that can help you master Verilog code.
Here is one place where you will find many useful examples: link.

Relevant Documents for this Lab

Required reading material for this lab:

1. Information for the XEM7310-A75 board can be located here.
2. OpalKelly Verilog and Python tutorial can be located here.
3. Verilog example code on the course website: intro.v and xem7310_v1.xdc.

Additional reference material:

1. Verilog tutorials and example can be located here.
2. The sensor board used in class: layout and schematic.

The goals of this lab are:

1. Guide you to the process of setting up a project in Xilinx.

2. Write an introductory FPGA programs from Xilinx Vivado.

3. Successfully synthesize the code and program the FPGA using OpalKelly FrontPanel.

LEDs and Buttons

We'll begin with the Xilinx Vivado. Start Vivadoe from the Desktop or the Start Menu. You'll see
the following screen:

———

VIVADO? £ XILINX

Select Create Project to start the wizard. Give your project a simple name such as Labl. Make
sure to choose an easily accessible location to save your project, as we will need to get access to

http://www.asic-world.com/examples/verilog/
https://docs.opalkelly.com/display/XEM7310/XEM7310

some of the files in the project directory. Also assure that the “Create project subdirectory” box is
checked. This will create your project as a folder, which is necessary to be able to store the project
files you will be creating later.

Select RTL Project as your project type and check the “Do not specify sources at this time” box.
On the Default Part screen, use the Family and Package filters with “Artix-7” and “fgg484”
respectively. Choose xe7a75tfgg484-1, click Next, and then click Finish.

Warning: Make sure you select the aforementioned FPGA device (family and package). If you
make the wrong selection, you will get strange errors later in your design and it will not be obvious
why your design is not synthesizing. Please double check that you have selected the correct settings
on this window. This oversight has been the number one issue preventing students from completing
this and future labs in timely manner.

7 Mew Project b

Default Part

Choose a default Xilinx part or board for your project. This can be changed later. '

Parts | Boards

Reset All Filters

Category. | All w Package: foggdad w Temperature: All Eemaining w
Family: Artix-7 - Speed: All Remaining -
Search: “
Part /O Pin Count Available 10Bs LUT Elements FlipFlops Block RAMs Ultra RAMs DSPs
¥c7a75ifggda4-3 484 285 47200 94400 105 0 180 ~
¥cTa75ifggdad-2 484 285 47200 94400 105 0 180

| ¥c7arsifggd84-2L 484 285 47200 94400 105 0 180
¥c7aisifiggd84-1 484 285 47200 94400 105 0 180
xc7arstifggd84-1L 434 285 47200 94400 105 0 180
¥C7a100tfggd84-3 434 285 63400 126800 135 0 240
%c7a100tfggda4-2 484 285 63400 126800 135 0 240
xc7a100tfiggd84-21L 484 285 63400 126800 135 0 240
¥c7a100tfggd84-1 484 285 63400 126800 135 0 240
¥c7al100tifggd84-1L 434 285 63400 126800 135 0 240
< >

i N Y

|
A
|ua]
[
=]
o
=
]
=
W

Cancel

XEM 7310 Default Part window

Now that we have a project initialized, let's go into the detail of the various panes in Vivado. The
left pane, highlighted in orange, is the Flow Navigator. From here, you can create diagrams, add
sources to your program, run simulations, implementations, and create bitstreams. The box
highlighted in blue near the top left is the Sources Window that allows you to view and manage
your sources and constraints. Below that is a box highlighted with a yellow rectangle. This pane
will allow you to see some of the properties of your simulation, if you wish to do so. On the right
is the red-highlighted “IP Catalog” pane, which contains many wizards provided by Xilinx, along
with many of the functions supported on the board. Lastly, the bottom pane, highlighted in green,
is the Console. All the debugging warnings and errors show up here, as well as interaction with
the simulator.

File Edit Flow Tools Window Layout View Help Q- Quick Acce Ready
= >, n oo X Default Layout v
Flow Navigator z & 7 PROJECT MANAGER - project_1 ? X
v PROJECT MANAGER 1
Sources ? 00 X IP Catalog 200X
£¥ Settings
Q T =2 4+ 3 Cores | Interfaces
Add Sources
Design Sources = - *
Language Templates i - - ;F '[:‘ .
Constraints m
ame
¥ P Catalog ~ = Simulation Sources R
~ [Vivado Repository
,,,,,,,,,, @m0
v P INTEGRATOR Hierarchy = Libraries Compile Order 4 Alliance Partners
> Autonotive & Industrial
Create Block Design ' .
Properties x Selection ? 00O ’ AX Infrastructure
Open Block Design : 5 ~
o
Generate Block Design _
Details
Select an object to see properties
" SIMULATICH Select an IP or Interface or Repository to see details
Run Simulation

g y . y > .
v RTL AMALYSIS TclConsole x Log Reports Design Runs 2 _0O0
> Open Elaborated Design a = 1 B E @
E start_gui i
create_project project_l C:/Users/Iyler/project_l -part xc7a75tiggdfd-
v SYNTHESIS _F: ject_1 C:/U. /Tyler/, 1 Ta75tfggddd-1
E INFO: [IP_Flow 19-234] Refreshing IF repositories
P Run Synthesis + INFO: [IP Flow 19-1704] No user IPF repositories specified

“ INFO: [IF Flow 19-2313] Loaded Vivado IP repository 'C:/Xilinx/Viwado/2017.2/data/ip’.
> Open Synthesized Design :

¥ IMPLEMENTATION

P Run Implementation

> Open Implemented Design -
| semngs
L

Default Project Manager Window Panes

Get started by adding a new source file from the Flow Navigator using the “Add Sources” button.
Choose Add or create design sources in the Add Sources dialogue box. In the next window, click
Create File and choose Verilog as the file type, and give it a simple file-name like “Intro” Make
sure the file location says “<Local to Project>". Once the file is added, click Finish. On the next
screen, we'll add our input and output variables, which you can copy from the example below.

¢ Define Module X

Define a module and specify !0 Ports to add to your source file.

For each port specified:
MSE and LSB values will be ignored unless its Bus column is checked. '
Ports with blank names will not be written.

Module Definition

Module name: |Intr0|

/O Port Definitions

+ = il

PortMame Direction Bus MSB LSB

button input v |/ 3 0 -
led output v & 7 0

sys_clkn input v

sys_clkp input v w

In this example, button is a 4-bit input signal; led is an 8-bit output signal; sys_clkn and sys_clkp
are single bit input signals. These four signals are the input and output signals from the module
that we will create shortly. They are also input/output signals from the FPGA to the outside world
in this example. You will shorty create a constrains file which will define how these signals are
mapped to physical pins on the FPGA.

After pressing OK, we're finally ready to write some Verilog. Locate the new source file in the
Sources panel and double clicking on the filename “Intro.v”. There will be few lines of code
already inserted for you by Vivado in this file. This will be the input/output variables that this
module will use to communicate with the rest of project. In our example, these four variables will
communicate between the FPGA and the outside world, such as LEDs, buttons and clock signals.

Our first example code will be a counter. We will define an 8-bit counter whose contents will be
displayed on the LEDs. We will use two different buttons to determine if the counter will increment
or decrement. When either one of these buttons is pressed, the counter will count up or down,
respectively. Note that the buttons and LEDS are active low by default. This was a design decision
when we created this custom board. When the buttons are pressed, they are in state 0. Otherwise,
the buttons are in state 1. Similarly, the LEDs turn on when a low signal (i.e. state 0) is presented
and they are off when a high signal is applied.

Finite state machines require a clock signals which controls the current state of your code and
computes the next state. The counter is a simple example of FSM and requires a clock signal which
will dictate when the counter will change its current state. The two clock signals, sys clkn and
sys_clkp, are low voltage differential clock signals, also known as LVDS signals. These two
signals cannot be directly used to control the various finite state machines that you will develop.
Instead, we will generate a main clock signal from these two LVDS clock signals using the
IBUFGDS module. This new clock signal, which we will define as clk in our code, operates at
200MHz.

Since the new clock signal (i.e. clk) operates at 200MHz, it will be impossible for us to observe
the counter changes on the LEDs when we press various buttons. These high frequency signals

can only be observed on the oscilloscope, which will be explored in a later lab. To be able to
observe the various states of the counter on the LEDs, we will step down the main clock by writing
your first FSM code. Once we generate a slow clock, we will write a second FSM that will control
the counter state depending on which buttons is pressed. The second FSM will run from the slow
clock and will control the counter current and next state depending on which button is pressed.

The counter code is shown next and can be downloaded from the course website. Can you

concisely explain what this module does? If you are confused, the answer is below.
1 “timeseale 1ns / 1lps

'
'
,
. module intro(

4 input [3:0] button,
output [7:0] led,
input sys clkn,
input sys_clkp

)i

10 reg [23:0] clkdiv;
11 reg [7:0] counter;

reg slow clk;

wire clk;

IBUFGDS osc_clk(
.0(clk),
-I(sys_clkp),
.IB(sys_clkn)

)i

initial begin
clkdiv = 0;
counter = 8'h00;
end

assign led = ~counter;

/7 E e, the slow cl W
always @(posedge clk) besgin
clkdiv <= clkdiv + 1'bl;
if (clkdiv == 10000000) bkegin
slow_clk <= ~slow clk;

clkdiv <= 0;

46 ! always @(posedge slow_clk) begin
if (button [0] == 1'b0) begin
counter <= counter - 1'bl;
end
else begin
counter <= counter + 1'bl;

' end
'

! end

1 endmodule

Here is a description of the code above. First, you should note how we have initialized the various
registers (i.e. variables) in the code. All registers must be first declared using reg data type with
the correct bit length. For example, slow clk is a single bit register because clock signals require
a single bit. Counter is an 8-bit register which is mapped directly to the LEDs.

Second, you should observe the various ways we have initialized the registers in the code. You
can initialize registers using binary, hexadecimal or digital numbers. For example, counter is an 8-
bit register. It is initialized to value 0 using hexadecimal notation 8h’00. The 8h means this is an
8-bit number initialized to hexadecimal value 0. When we increment the counter, we use binary
notation 1°b1. Register c/k_div is compared to decimal number 10,000,000 because we like to slow
down the main clock 10 million times. Most of the time you will use digital values to initialize or
compare the values of your registers. However, sometimes using binary or hex notation will make
your problem easier to understand.

In the first FSM, we like to slow down the main clock, which runs at 200MHz, and create a slow
clock that runs at 20 Hz. This is done by using an intermediate register (or variable) named clkdiv.
The register clkdiv is first initialized to value 0. This is a very important step and always remember
to initialize your registers in your code. Otherwise, you will not know what state they are
initialized, and you might observe erroneous results or even your code might not run at all. In this
example, at every rising edge of the high-speed clock signal, we will increment c/kdiv and check
if it exceeds 10,000,000. If it does, we will toggle the state of the slow clk register. Hence, we
toggle the slow clk every 10 million cycles from the fast clock.

The second FSM controls the counter state. Note that the code that is in the a/ways block runs out
of the slow clk. In fact, every time the slow clk goes from state O to state 1, that code will be
evaluated. In this code, we will decrement the counter register if button 0 is pressed. Otherwise,
the counter is incremented.

Note that we have used the assign statement to map the counter register to the external LEDs via
the variable /ed. The variable led is a wire (not a register) and this is why we use assign statement.
If led was a register it will have to be in the always statement because register need clock signals
to be updated. Since the external LEDs are active low, we have mapped the complement of the
counter to the LEDs.

When you save a Verilog file in Vivado (Ctrl+S, File = Save, or click the save icon), it
automatically parses and checks for correct Verilog syntax. The next step is to synthesize your
code which is equivalent to compiling code in many programming language, such as C or C++.
Since the synthesize process is slightly long, you are highly encouraged to save frequently to avoid
wasting time on simple errors.

The next step is to add a constrain file in your design. The constrain file maps the input/output
variables in your top module (i.e. /ntro.v in this example) to physical pins on the FPGA. For
example, the 4 buttons that are on the custom board are physically connected to 4 pins on the
FPGA. The constrains file keeps track of all these physical connections to the proposer variable
names. Since we have designed this board, we have created the necessary constrains file and you
can download it on the course website.

Next, you will need to add the constrains file in your project. Go to the Flow Navigator pane again
and add a new source, but this time choose Add or create constraints. Add the constrains file

that you downloaded from the course website by selection Add Files in the Add or create
constrains window. The name of the constrain file is xem 7310 vi.xdc.

The Sources Pane should now show the added constraints file. Open the constrain file by double
click on the file name. Scroll through the file and locate the “led” variable. The led[0] variable is
connected to pin A13 on the FPGA. This pin from the FPGA is directly connected to an LED on
the OpalKelly board. You will refer to this constrains file later in the class when you will need to
find which pins from the FPGA are connected to the various pins from the sensors.

Now that we have our top-level module and our pin-mapping, we are ready to synthesize and
program the FPGA (or flash) with our first design. In the Flow Navigator, press Run Synthesis to
start the build process. The Console will print a series of messages describing the synthesis. Once
the synthesis is complete, you will be prompted to begin implementation. Go ahead and begin
implementation as well. Once that is finished, you will have the option to Generate Bitstream.
Select this option and click OK in the dialogue box. This command should go quite quickly and
will generate a *.bit file used by the FPGA to run the program. If there are any error messages,
they will be displayed in this window and you will need to correct them so that you can generate
a bit file. Also pay attention to the warning message. Sometimes the reason for problems in your
design are in the warning messages.

Custom Sensor Board Overview

Before you can flash your FPGA with the newly compiled bit file, you should get familiar with
the sensor’s board. The test board is composed of two PCB boards: the FPGA board designed by
OpalKelly and our custom sensors board which houses various sensors. The image bellow outlines
all the components on both boards. There are four switch buttons on the bottom left corner of the
custom board. There are also eight LEDs on the OpalKelly board which are relevant for this
exercise. Take the time to get familiar with all components.

A schematic representation of our custom board can be located on the course website. In the
schematic view, you can trace how the various sensors and other external components are
connected to the FPGA.

Do not touch any of the component on the board with your hands because there is a high chance
you will damage the board. As you walk around, you accumulate lot of electrical charges. When
you touch the PCB, you will most likely discharge these charges on the electrical components and
cause damage.

Next, you will need to power up your board and connected to the PC. Only use the power adapters
that are provided with the PCB board. Connect the power cable to the “5V power” port and connect
the board to the PC via the “USB 3.0” port. Note, that your computer has USB 2.0 and USB 3.0
ports. Although for these first few labs it will not make much difference which port on the
computer you have connected the board, this will be an issue later in the class when we start using
high speed data transfers. It is a good practice to start connecting the board to the correct USB port
on the PC.

Diode Test Points 5V

connector

E 437
Sensor Board
20170710 »

suid Q| [eubiq
spod QONd |

Push button switches

Now that you have created a bit file of your design, you are ready to program (or flash) the
FPGA. Open the FrontPanel program from either the Desktop or Start Menu (under Opal Kelly -
> FrontPanel). If you cannot locate the program in the start menu, open up Windows Explorer
and go to: C:\Program Files\Opal Kelly\FrontPanelUSB\FrontPanel.exe. You'll be greeted with

the following program:

-

4] Opal Kelly FrontPanel = 2

FrontPanel Help

XEM7310-A75 pemmn —
Opal Kelly XEM7310 N ‘% l’

Welcome to FrontPanel,

L A

Click the middle-left button (IC with down arrow) and go to your corresponding project directory.
Select the <FileName>.bit file, where <FileName> is your top-level filename. The FPGA should
automatically flash and start running your program. Test it out by pressing button[0] on the board
and see how the counter increments or decrements.

Checkpoint 1 — (100 points)
The test code that you just compiled and tested it on the system ensures that your board is working,
and you have written a correct HDL code. You will use this sample as a starting point for the code
that you will need to develop.
You will need to write Verilog code that will do the following task:
. Count from 0 to 100 in steps of 10 and display the results on the LEDs. Stop counting once
the counter reaches 100. (50 points).
. Count from 0 to 100 in steps of 10. Once the counter reaches 100, it will count back 0 in
steps of 10. The counting up and down will be repeated indefinitely (50 pts).

Once you complete your code, please demonstrate it to the TA.

Post lab Questions (5 points each question):

1.
2.
3.

How many total digital input/output pins does the XEM 7310-A75 board have?
What is the maximum clocking speed of the XEM 7310-A75 board?

How does the XEM 6002 board compare to XEM 7310-A75 in terms of logic gate
count, transfer speeds between the board and PC, external memory, and clocking
speed of digital logic?

Why is the clkdiv register 24-bit long?

If clkdiv is declared as an 8-bit register, what is the minimum frequency you can
achieve for the slow_clk signal using these FSMs?

Look at the Project Summary window. In the Utilization section, you will find out the
number of look up tables (LUT), flip flops (FF), input/output pins (IO) and buffers
(BUFG) are used for your design. How many resources on the FPGA are used to
implement your code?

Include a printout of your Verilog code with your report.

	ECE437: Sensors and Instrumentation
	Lab 1: Introduction to Opal Kelly FPGA and Digital I/O Lab
	Introduction
	Relevant Documents for this Lab

	The goals of this lab are:
	LEDs and Buttons
	Custom Sensor Board Overview
	Checkpoint 1 – (100 points)
	Post lab Questions (5 points each question):

