Kalman Filter
Problem Set-up:

Reality:

1. Process model: $x_k = A x_{k-1} + w_p$
2. Measurement model: $y_k = H x_k + n_m$

State estimator: Combine process & measurement

$\hat{x}_k = x_k^P + K_k (y_k - \hat{y}_k)$

If I have x_{k-1}, then I can model both x_k^P and $\hat{y}_k = H x_k^P$
What do we need to do this?

- Estimate K_k
- time index

- If process noise $n_p = 0$,
 - K_k should be 0
- if measurement noise $n_m = 0$
 - K_k should be H^{-1}

because,
$$\hat{x}_k = x_k^p + H^{-1}(Hx_k + n_m - Hx_k^p)$$
$$= x_k + H^{-1}n_m \approx x_k$$

Main intuition: seems like possible to use K_k as a knob that combines the process and measurement.

If I turn K_k the wrong way, the prediction should diverge from the true x_k, which will also manifest in gap in true and modeled measurement ($y_k - \hat{y}_k$).
434: Kalman Filters

1. Start with an initial \hat{x}_0

2. That gives us a process based estimate x_1^p

3. If this was correct, then I expect the measurement y_1 to match with my modeled measurement Hx_1^p

 If it does not match, then the error is composed of both process error and measurement error.

4. My goal is to modulate the process estimate x_1^p with some linear function of this error.

 This gives me an estimate of the state variable as: $\hat{x}_1 = x_1^p + K_1(y_1 - Hx_1^p)$

5. What should K_1 be?

 - Well, design it such that it minimizes the MSE of state estimate error, defined as: $e_1 = x_1 - \hat{x}_1$

 - So we want to minimize $E[e_1^2]$

6. Let's model e_1 ... $e_1 = x_1 - (x_1^p + K_1(y_1 - Hx_1^p)) = x_1 - (x_1^p + K_1(Hx_1 + n_m - Hx_1^p))$

 $(1 - K_1H)x_1 - (1 - K_1H)x_1^p + K_1n_m$

 $(1 - K_1H)(x_1 - x_1^p) + K_1n_m$

 $\text{e}_1^p = (1 - K_1H)e_1^p + K_1n_m$

 Not surprising that this error has both un-modeled components – the process error e_1^p and the measurement error n_m

7. For MSE, we compute $E[e_1e_1^T]$... since e_1 can be a vector ... or you can stack up $[e_1, e_2, e_3 ...]$ to make a vector

 - This expectation then becomes: $P_1 = E[e_1e_1^T] = (1 - K_1H)(e_1 - x_1^p)(e_1 - x_1^p)^T(1 - K_1H)^T + K_1n_m n_m^T K_1^T$

 Cross terms aren’t present because e_1^p and n_m are uncorrelated. Why? Because the process and measurement errors are independent. Thus,

 $E[e_1e_1^T] = (1 - K_1H)P_1(1 - K_1H)^T + K_1R_m K_1^T$

 Not surprising that this error covariance has the process error covariance P_1^p and the measurement error covariance R_m

8. Find K_1 that minimizes this covariance, i.e.,\[
\min_K (1 - K_1H)P_1(1 - K_1H)^T + K_1R_m K_1^T
\]

 - This gives: $K_1 = \frac{P_1^p H^T}{(H P_1^p H^T + R_m)}$

 [See equations 11.21 to 11.24 in this article for minimization]

9. Perhaps we can assume we know covariance for the measurement error R_m ... but we don't have P_1^p

 Since $K_1 = f(P_1^p)$... we need P_1^p

10. Ok, so let's define $P_1^p = E[e_1^p e_1^p]^T$ where $e_1^p = x_1 - x_1^p = Ax_0 + n_p - Ax_0 = A e_0 + n_p$

 So, $P_1^p = E[(A e_0 + n_p)(A e_0 + n_p)^T] = A P_0 A^T + R_p$

 ... again, assuming e_0 and n_p are uncorrelated.

 So we have $P_1^p = A P_0 A^T + R_p$

 Of course, this P_1^p depends on the previous P_0

 Assuming we have resolved the previous states well, we now have everything we need for K_1

11. Now, let's resolve this P_1^p from last step ... which is the same as resolving P_1 since it would be used in the next step.

 $P_1^p = f(K_1, P_1)$... so we have resolved both K_1 and P_1 now

 In fact, plugging K_1 into P_1 ... and then simplifying, we get:

 $P_1 = (1 - K_1H)P_1^p$

 ▼ Derivation
\[P_1 = (1 - k_i H) P_1^P (1 - k_i H)^T + k_i R_m K_i^T \]
\[= (P_1^P - k_i H P_1^P) (1 - H^T K_i) \]
\[= P_1^P - P_1^P H^T K_i^T - k_i H P_1^P + k_i (H P_1^P H^T + R_m) K_i^T \]

Substitute \(K_i = \frac{P_1^P H^T}{H P_1^P H^T + R_m} \)

\[= P_1^P - P_1^P H^T \left(\frac{P_1^P H^T}{H P_1^P H^T + R_m} \right) - \left(\frac{P_1^P H^T}{H P_1^P H^T + R_m} \right) P_1^P + \frac{P_1^P H^T}{H P_1^P H^T + R_m} \]

\[= P_1^P - k_i H P_1^P \]

\[= (1 - k_i H) P_1^P \]

Thus, \(P_1 = (1 - k_i H) P_1^P \)
\[
\begin{align*}
\hat{x}_k &= A \hat{x}_{k-1} \\
P_k^P &= A P_{k-1} A^T + R_p
\end{align*}
\]

\[
\begin{align*}
\hat{x}_k &= x_k^p + K_k (y_k - H x_k^p) \\
K_k &= P_k^p H^T \\
&= \frac{P_k^p H^T}{H P_k^p H^T + R_m} \\
P_k &= (1 - K_k H) P_k^p
\end{align*}
\]
Questions